Engineering Letters, 20:3, EL._20 3 02
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Abstract—In this paper, we propose an extended algorithm of Plague Coronary Artery

the multiple k-nearest neighbor (MKNN), which is applied to an
intravascular ultrasound (IVUS)-based tissue characterization Rotating Catheter
of coronary plaque. In the proposed algorithm, a weighted A
decision based on the distances between the input vector and the L
prototype vectors is employed instead of the majority decision ﬂ

in the labeling process of k-nearest neighbor (kNN). The fibrous

and lipid tissues were thus characterized more accurately than

ever. Furthermore, the accuracy of tissue characterization was Ultrasound Probe
improved even in the case where the number of prototype

vectors in MKNN is smaller. The effectiveness of the proposed Fig. 1 An ultrasound probe attached to the distal end of a
method has been examined by the actual experiments using the ;o heter, The ultrasound signal is transmitted from the probe

artificial data and the true IVUS data. : . .
and the reflected signal from the tissue is observed also by
Index Terms—intravascular ultrasound (IVUS), tissue char-  the probe.
acterization, multiple k-nearest neighbor.

m—

|. INTRODUCTION _terization, since th(_e c_haracterization results of MkNN are
. L . influenced by the distribution of the prototype vectors.
A Myoga@al infarction is caused b){ a fallure of plaque Hence, we propose in this paper an extended algorithm
bU|It'|nS|de the coronary artery. It is very important tQ¢ o multiple k-nearest neighbor (MkNN) method for an in-
charactg_rlzlg :che tissue of plaque in order to early prevephy ascylar ultrasound (IVUS)-based tissue characterization.
myocardial in arct|o.n [1]. o ) In the proposed algorithm, a weighted decision based on
In general, the tissue characterization is carried out bys gistances between the input vector and all the prototype

analysing the radio frequency (RF) signal obtained from the, 15 is employed instead of the majority decision in the

intravascular ultrasound (IVUS) method [2] using Cathetq'é\beling process of-nearest neighbor (kNN).

In our past works [3], [4], [5], we proposed a multiple g oyneriments show that the accuracy of tissue charac-
k-nearest neighbor (MkNN) method, that is an extensiqgyj,ation by the extended MKNN is good, even if a small
of the k-nearest nelghb(_)r (kNN) method, In order' to. 98lumber of the prototype vectors are selected at random.
better results when applied to the tissue characterization-g{. affectiveness of the proposed method is verified by the

coronary plaque. o artificial data and by the real IVUS data.
Although a good tissue characterization by MKNN had

been obtained in our previous works [3], [4], [5], it still |
remained a problem that MkNN takes a lot of computing USING MULTIPLE k-NEAREST NEIGHBOR

time for tissue characterization. The computing time for This chant h briefly the int | it d
characterization depends mainly on the number of prototype IS chapter: shows Driefly the intravascular uitrasoun

vectors in kNN, since the kNN has to calculate the distanc ¥US) method, the multlplek-ne_are_st neighbor (MkNN)
between the input vector and all the prototype vectors. method, and the tissue characterization by the IVUS method

On the other hand, it is necessary to adjust the numbérnY MKNN.
of prototype vectors to keep the accuracy of tissue charac-

A. IVUS method
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Fig. 2 An example of the B-mode image obtained by the

IVUS method. This is a real time ultrasound cross-sectiongjg. 3 Basic scheme for classification by MkNN using the

image of a blood vessel where a catheter probe is curreniformation not only in the feature space but also in the

rotating. observation space [3]. kNNs both in the feature space and in
the observation space are performed.

signal is first taken, and its envelop, and then finally its
logarithmic value is calculated. This transformed signal is

converted into 8-bit luminosity values. Those luminosity { 1 if lw; — 2 < r (k)

values in all radial directions of RF signals are used to obtain ¢ (z; w; | w; = w) = 0 otherwise

2
a tomographic cross sectional image of a coronary artery.
This image is called a B-mode image. Fig. 2 shows a sampwgere r(k) represents the Euclidean distance between the
image of this. input vectorz and thek-th nearest prototype vector.

The B-mode image is a real time ultrasound cross- In the first step, the prototype vectors in theh nearest
sectional image of a thin section of a blood vessel whefgighbor are determined by calculating the distances of
a catheter probe is currently rotating. In this study, the B=d.(1). After that, the class label of the input vectoris
mode image is constructed with 1,024 pixels in depth, a¢termined by a majority vote for the class labels of the

256 lines in radial direction. prototype vectors in thé-th nearest neighbor.
It is difficult however to see the conditions inside the blood
vessel only from this B-mode image. 2) KNN in the observation space
The kNN is used also in the observation space after
B. Multiple k-nearest neighbor determining the class labels of the input vectfws, } in the

The multiplek-nearest neighbor (MkNN) method is an exfeature space. Except for the calculations of the distances
tension of the traditionak-nearest neighbor (kNN) method.between the input vector and the prototype vectors in the
In MKNN, the class label is determined based on the informabservation space, other calculations are the same as Eqgs.(1)
tion not only in the feature space but also in the observatiamd (2).
space.

Fig. 3 shows a basic scheme for classification by MKNE. Tissue characterization by the multiptenearest neigh-
using both information in the feature space and in the obs@or

vation space. In the algorithm of MkNN, the classification |, yhe tissue characterization based on IVUS method by

by kNN in the feature space is first performed, and then thgjn g \MkNN, the power spectra calculated for the RF signals

classification by kNN in the observation space is followedby the short-time Fourier transform are employed as the

. rototype vectors in MKNN [8], [9].

1) kNN in the feature space P Th::‘yglass label of each prE)t]ot)[/p]e vector is known from the
Suppose that the feature vectous;(i =1,2,..,N) are findings of a medical doctor examining the corresponding

given, and let the class label; of each feature vector bedyed tissue looking through a microscope.

known. We use the feature vectors as the prototype vectorsn this work, the fibrous tissue, the lipid tissue, and the

in MKNN. fibrofatty tissue are classified. Concretely, the power spectra
When the input vector, whose class label is unknown,are calculated for each of the corresponding RF signal, i.e.,

is applied to MkNN, the class label of the input vectoiis  for the fibrous tissue, for the lipid tissue, and for the fibrofatty

determined as follows [7]: tissue.
N Fig. 4 shows the distributions of power spectral feature
| = arg maXZ5 (2w, | wi =w), (1) vectors for each tissue. These distributions are overlapping,
i=1 and it is difficult to separate them into 3 classes linearly.

(Advance online publication: 27 August 2012)
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5 X10 because the distribution of the prototype vectors in feature
space becomes sparse. Hence, it was needed to adjust the
250 o number of prototype vectors keeping the accuracy of the
tissue characterization.
20 L0 In the extended MkNN, a weighted decision, based on
o® ' the distances between the input vector and the prototype
ot + A ’ (reference) vectors, is employed instead of the majority
’ . ' decision [10], [11]. As a result, it is expected that the tissue
AR characterization dose not depend on the number and the
e o distribution of the prototype vectors.
' DR ’ ° In the classification of the input vector, the distances
‘ I ‘ ‘ between the input vector and the prototype vectors are
1 52 23 calculated, and they are employed as the weights for the
Feature Dimension 1 x10 weighted decision.

Fig. 4 The distributions of power spectral feature vector%énf;nsw?zgezgﬁgﬂ'g:gN’ Egs.(1) and (2) are replaced by

of each tissue. The feature vectors are obtained by Fourier
analysis for the corresponding RF signalsFibrous tissue,

Feature Dimention 2

Q

o: Lipid tissue,+: Fibrofatty tissue. | = arg ma iﬂﬂw w; | wi = w) 3)
= X ; W5 P = ’
100 ‘ ‘ ‘ ‘ Yoot
E\ 80 I i exp (—||:l:1 - wkH2/€2)a
2, E 6 (z3w; | wi = w) = it [l —wil| <r (k)
(] .
E 60| Lt ] 0 otherwise,
= + 4
2 .
E 40 ¢ + wheree is a decay parameter that is adjusted according to
g N the distribution of the prototype vectors.
+
S 207 + 1
+
-t + IV. EXPERIMENTS
0 0 1 2 3 4 5 We apply the normal MKNN and the extended (proposed)
x10° MKNN to two test data sets. One is the artificial data and the

Number of Prototype vectors .
P other is the real IVUS data for coronary plaque.

Fig. 5 The computing time for classification by MkNN
versus the number of prototype vectors. The computing tinpe Application to artificial data

increases in proportion to the number of prototype vectors. 1) Experimental settingsFig. 6 shows the observation

space and data structure. Observation space is a two-
ﬂimensional space with 5600 pixels. Each pixel in the

The computing time for classification depends mainly o b " . ianed f the th |
the number of prototype vectors in MKNN. Fig. 5 showf servation space IS assighed as one of Ine nree classes

the computing time for classification versus the number e regl, blue, and green classes), each of Wh'ch hf.is a two-
dimensional feature vector. Feature vectors are distributed as
prototype vectors.

e llows;
On the other hand, the accuracy of classification algg ' . o .
' : Class 1 (red): Gaussian distribution with mean (1.0, 1.0)
depends on the number of prototype vectors, since the clas and standard deviation (0.05, 0.05).

sification results by MkNN are influenced by the distribution Class 2 (green): Gaussian distribution with mean (1.0, 1.0)

of the data. o
. . . . and standard deviation (0.20, 0.20).
The purpose of this study is thus to innovate the algorithm Class 3 (blue): F distribution with# (100, 10) for both

in which the classification accuracy is not affected by the axes

number of prototype vectors.
The distribution of each class (red, blue, and green)
. TISSUE CHARACTERIZATION USING WEIGHTED overlaps with each other as shown in Fig. 7. The probability
MKNN density of each distribution is different. Prototype (reference)
. - vectors are selected at random.
In ‘our past tissue characierizaion works by We compare the results by MKNN and wMKNN (extended

MKNN (3], [.4]' [5], all the feature vector; observedeNN) for these data set. The correct classification rate
from each tissue were used as the candidates of R) is defined by:

prototype vectors. The representative vectors that were use '

as the prototype vectors were selected manually or selectegho — number of correctly classified data 100. (5)

according to the simple rules. The characterization results number of total classified data

thus depended on the selected prototype vectors. The mean of CCR is calculated for 100 trials. CCR with
Furthermore, the accuracy of tissue characterization I80 reference vectors and with 10 reference vectors for each

decreased if the number of prototype vectors becomes smali§ss are evaluated.

(Advance online publication: 27 August 2012)
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TABLE | Correct classification rates

Number ofreference vectors for each claé‘s MKNN [%] | wMKNN [%)]
100 94.5 88.1
10 77.5 85.1

Blue

B. Applicationto real IVUS data for coronary plaque

| I 1) Experimental settingsThe performances of the normal
Grtleen MKNN and the proposed wMKNN for tissue characterization
of coronary plaque are compared. In this experiment, RF
(a) Obseration Space signals are observed from two different sections of the blood

vessel. One is used as the training data, and the other is used
as the test data for classification.

The prototype vectors are selected from the training data.
The feature vectors used as the prototype vectors are the
power spectra that are calculated for each of the correspond-
ing RF signals reflected from each tissue, i.e., fibrous tissue,
lipid tissue, and fibrofatty tissue.

Thirty prototype vectors are selected at random from each
of three kinds of tissue for both cases of the normal MkNN

) ) ) and of the proposed wWMKNN. In addition, the width of
@ 1 pixel : 2-dimentional data window for the short-time Fourier transformatioris points
for both methods.
2) Experimental results:Fig. 10 shows the tissue char-
Fig. 6 Observation space and data structure. acterization results for the training data. Fig. 10 (a) shows
the tissue composition given by a medical doctor by exam-
ining the dyed tissue looking through a microscope. Fig.

(b) DataStructure

- ° o ’ 10 (b) shows the results of tissue characterization by the
Lo c ., normal MKNN. The number of prototype vectors is manually
N ‘ g °° o ° o adjusted to get the best accuracy of characterization. The
5 o number of prototype vectors for fibrous, lipid and fibrofatty
€15 &% o tissues are 850, 100, and 300, respectively.
§ Sl 4T, ‘ ° Fig. 10 (c) shows the results by the normal MKNN. Thirty
g oofj:tﬁ; ito o © prototype vectors are selected at random for each tissue.
E . f;*i?%%‘%{g%ﬁ*ooo ° OO Fig. 10 (d) shows the results by the proposed wMKNN.
o8 L Cecn o0 o The similar results to Fig. 10 (b) are obtained even if the
° o prototype vectors are selected at random and even more the
number of prototype vectors is smaller.

I I I I )
9] 05 1 15 2 25

Feature Dimension 1 It is observed from those results that the accuracy of

tissue characterization by the proposed wMKNN is kept good

Fig. 7 Distribution of feature vectors for the artificial dataeven if the number of prototype vectors is reduced and the

used in the experiments: Class 1 (red), +: Class 2 (green)prototype vectors are selected at random.

o: Class 3 (blue). Fig. 11 shows the tissue characterization results for the
test data. The characterization accuracy is a little bit behind
though compared with that of Fig.10. However, the superi-

2) Experimental results:Fig. 8 shows the classificationority of the proposed wMKNN over the normal MkNN still
results with 100 reference vectors for each class. Fig.can be seen.

(a) and (b) show the results of classification by the normal

MKNN and by the proposed wMkNN, respectively.

Fig. 9 shows the classification results with 10 reference

vectors for each class. Fig. 9 (a) shows the results of|n this study, we have proposed an extended algorithm of

classification by the normal MKNN. Fig. 9 (b) shows they multiple k-nearest neighbor (WMkNN), which is applied

results of classification by the proposed wMkNN. to an intravascular ultrasound (IVUS)-based tissue charac-

Table | shows the correct classification rates by eatérization of coronary plaque. In the proposed algorithm, a
method. CCR by the normal MKNN is considerably deweighted decision based on the distances between the input
creased with the number of the reference vectors. Howewarctor and the prototype (reference) vectors are employed
the proposed wMKNN can maintain the classification accinstead of the majority decision in the labeling process of
racy even the number of reference vectors becomes smak-nearest neighbor (KNN).

V. CONCLUSIONS

(Advance online publication: 27 August 2012)
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(a) MKNN (k=5, k’=9) (b) WMKNN (k=5, k’=9, £=0.05)

Fig. 8 Classification results. The number of reference vectors is 100 for each class. (a) Classification results by the normal
MKNN [3]. (b) Classification results by the proposed wMKNN.

(2) MKNN (k=5, k’=9) (b) WMKNN (k=5, k’=9, £=0.05)

Fig. 9 Classification results. The number of reference vectors is 10 for each class. (a) Classification results by the normal
MKNN [3]. (b) Classification results by the proposed wMKNN.

The experimental results show that the accuracy of tissyg] A. K. Ghosh, P. Chaudhuri, and C. A. Murthy, “On visualization and
characterization by the proposed method (WMkNN) is kept aggregation of nearest neighbor classifielSEE Trans. Pattern Anal.
. . Mach. Intell., vol. 27, pp. 1592-1602, 2005.
good even if the number of prototype vectors is reduced. [8] M. P. Moore, T. Spencer, D. M. Salter, P. P. Kearney, T. R. D. Shaw,
Future studies are to confirm further the effectiveness of I. R. Starkey, P. J. Fitzgerald, R. Erbel, A. Lange, N. W. McDiken,
the proposed method by applying to many other IVUS data, G. R. Sutherland, and K. A. A. Fox, “Characterisation of coronary

. . atherosclerotic morphology by spectral analysis of radiofrequency
and to find out the best feature vectors for the best tissue signal: in vitro intravascular ultrasound study with histological and

characterization accuracy. radiological validation,"Heart, vol. 79, pp. 459-467, 1997.
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Fig. 10 Tissue characterization results by the normal MKNN and by the proposed wMkNN for the training data. (a) The
tissue composition given by a medical doctor by examining the dyed tissue looking through a microscope. (b) The tissue
characterization results by the normal MkNN. The numbers of prototype vectors for fibrous, lipid and fibrofatty tissues
are 850, 100, and 300, respectively. (c) The tissue characterization results by the normal MKkNN. The number of prototype
vectors is 30 for each tissue. The prototype vectors are selected at random. (d) The tissue characterization results by the
proposed wMKNN. The number of prototype vectors is 30 for each tissue. The prototype vectors are selected at random.

Fig. 11 Tissue characterization results by the normal MKNN and by the proposed wMKNN for the test data. (a) The
tissue composition given by a medical doctor by examining the dyed tissue looking through a microscope. (b) The tissue
characterization results by the normal MkNN. The numbers of prototype vectors for fibrous, lipid and fibrofatty tissues
are 800, 130, and 450, respectively. (c) The tissue characterization results by the normal MkNN. The number of prototype
vectors is 30 for each tissue. The prototype vectors are selected at random. (d) The tissue characterization results by th
proposed wMKNN. The number of prototype vectors are 30 for each tissue. The prototype vectors is selected at random.
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