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Abstract—In this paper, we propose an extended algorithm of
the multiple k-nearest neighbor (MkNN), which is applied to an
intravascular ultrasound (IVUS)-based tissue characterization
of coronary plaque. In the proposed algorithm, a weighted
decision based on the distances between the input vector and the
prototype vectors is employed instead of the majority decision
in the labeling process of k-nearest neighbor (kNN). The fibrous
and lipid tissues were thus characterized more accurately than
ever. Furthermore, the accuracy of tissue characterization was
improved even in the case where the number of prototype
vectors in MkNN is smaller. The effectiveness of the proposed
method has been examined by the actual experiments using the
artificial data and the true IVUS data.

Index Terms—intravascular ultrasound (IVUS), tissue char-
acterization, multiple k-nearest neighbor.

I. I NTRODUCTION

A Myocardial infarction is caused by a failure of plaque
built inside the coronary artery. It is very important to

characterize the tissue of plaque in order to early prevent
myocardial infarction [1].

In general, the tissue characterization is carried out by
analysing the radio frequency (RF) signal obtained from the
intravascular ultrasound (IVUS) method [2] using catheter.
In our past works [3], [4], [5], we proposed a multiple
k-nearest neighbor (MkNN) method, that is an extension
of the k-nearest neighbor (kNN) method, in order to get
better results when applied to the tissue characterization of
coronary plaque.

Although a good tissue characterization by MkNN had
been obtained in our previous works [3], [4], [5], it still
remained a problem that MkNN takes a lot of computing
time for tissue characterization. The computing time for
characterization depends mainly on the number of prototype
vectors in kNN, since the kNN has to calculate the distances
between the input vector and all the prototype vectors.

On the other hand, it is necessary to adjust the number
of prototype vectors to keep the accuracy of tissue charac-
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Fig. 1 An ultrasound probe attached to the distal end of a
catheter. The ultrasound signal is transmitted from the probe
and the reflected signal from the tissue is observed also by
the probe.

terization, since the characterization results of MkNN are
influenced by the distribution of the prototype vectors.

Hence, we propose in this paper an extended algorithm
of a multiplek-nearest neighbor (MkNN) method for an in-
travascular ultrasound (IVUS)-based tissue characterization.
In the proposed algorithm, a weighted decision based on
the distances between the input vector and all the prototype
vectors is employed instead of the majority decision in the
labeling process ofk-nearest neighbor (kNN).

The experiments show that the accuracy of tissue charac-
terization by the extended MkNN is good, even if a small
number of the prototype vectors are selected at random.
The effectiveness of the proposed method is verified by the
artificial data and by the real IVUS data.

II. TISSUE CHARACTERIZATION BY IVUS METHOD

USING MULTIPLE k-NEAREST NEIGHBOR

This chapter shows briefly the intravascular ultrasound
(IVUS) method, the multiplek-nearest neighbor (MkNN)
method, and the tissue characterization by the IVUS method
using MkNN.

A. IVUS method

The ultrasound probe attached at the tip of the catheter is
inserted into a blood vessel. After that, the ultrasound signal
is transmitted forward from the probe and then the reflected
signal from the tissue is received while rotating the probe [6].
Fig. 1 shows the catheter in the blood vessel.

The ultrasound signal transmitted from the probe is called
a radio frequency (RF) signal. The intensity of the reflected
RF signal from the tissue depends on the characteristics of
the tissue and also on the location of the probe.

The RF signals are observed in all directions in the blood
vessel. Concretely, the absolute value of the sampled RF
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Fig. 2 An example of the B-mode image obtained by the
IVUS method. This is a real time ultrasound cross-sectional
image of a blood vessel where a catheter probe is currently
rotating.

signal is first taken, and its envelop, and then finally its
logarithmic value is calculated. This transformed signal is
converted into 8-bit luminosity values. Those luminosity
values in all radial directions of RF signals are used to obtain
a tomographic cross sectional image of a coronary artery.
This image is called a B-mode image. Fig. 2 shows a sample
image of this.

The B-mode image is a real time ultrasound cross-
sectional image of a thin section of a blood vessel where
a catheter probe is currently rotating. In this study, the B-
mode image is constructed with 1,024 pixels in depth, and
256 lines in radial direction.

It is difficult however to see the conditions inside the blood
vessel only from this B-mode image.

B. Multiple k-nearest neighbor

The multiplek-nearest neighbor (MkNN) method is an ex-
tension of the traditionalk-nearest neighbor (kNN) method.
In MkNN, the class label is determined based on the informa-
tion not only in the feature space but also in the observation
space.

Fig. 3 shows a basic scheme for classification by MkNN
using both information in the feature space and in the obser-
vation space. In the algorithm of MkNN, the classification
by kNN in the feature space is first performed, and then the
classification by kNN in the observation space is followed.

1) kNN in the feature space

Suppose that the feature vectorswi(i = 1, 2, .., N) are
given, and let the class labelωi of each feature vector be
known. We use the feature vectors as the prototype vectors
in MkNN.

When the input vectorx, whose class label is unknown,
is applied to MkNN, the class label of the input vectorx is
determined as follows [7]:

l = arg max
ω

N∑
i=1

δ (x;wi | ωi = ω) , (1)
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Fig. 3 Basic scheme for classification by MkNN using the
information not only in the feature space but also in the
observation space [3]. kNNs both in the feature space and in
the observation space are performed.

δ (x;wi | ωi = ω) =

{
1 if ∥wi − x∥ ≤ r (k) ,
0 otherwise,

(2)

where r(k) represents the Euclidean distance between the
input vectorx and thek-th nearest prototype vector.

In the first step, the prototype vectors in thek-th nearest
neighbor are determined by calculating the distances of
Eq.(1). After that, the class label of the input vectorx is
determined by a majority vote for the class labels of the
prototype vectors in thek-th nearest neighbor.

2) kNN in the observation space

The kNN is used also in the observation space after
determining the class labels of the input vectors{xn} in the
feature space. Except for the calculations of the distances
between the input vector and the prototype vectors in the
observation space, other calculations are the same as Eqs.(1)
and (2).

C. Tissue characterization by the multiplek-nearest neigh-
bor

In the tissue characterization based on IVUS method by
using MkNN, the power spectra calculated for the RF signals
by the short-time Fourier transform are employed as the
prototype vectors in MkNN [8], [9].

The class label of each prototype vector is known from the
findings of a medical doctor examining the corresponding
dyed tissue looking through a microscope.

In this work, the fibrous tissue, the lipid tissue, and the
fibrofatty tissue are classified. Concretely, the power spectra
are calculated for each of the corresponding RF signal, i.e.,
for the fibrous tissue, for the lipid tissue, and for the fibrofatty
tissue.

Fig. 4 shows the distributions of power spectral feature
vectors for each tissue. These distributions are overlapping,
and it is difficult to separate them into 3 classes linearly.
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Fig. 4 The distributions of power spectral feature vectors
of each tissue. The feature vectors are obtained by Fourier
analysis for the corresponding RF signals.◦: Fibrous tissue,
•: Lipid tissue,+: Fibrofatty tissue.
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Fig. 5 The computing time for classification by MkNN
versus the number of prototype vectors. The computing time
increases in proportion to the number of prototype vectors.

The computing time for classification depends mainly on
the number of prototype vectors in MkNN. Fig. 5 shows
the computing time for classification versus the number of
prototype vectors.

On the other hand, the accuracy of classification also
depends on the number of prototype vectors, since the clas-
sification results by MkNN are influenced by the distribution
of the data.

The purpose of this study is thus to innovate the algorithm
in which the classification accuracy is not affected by the
number of prototype vectors.

III. T ISSUE CHARACTERIZATION USING WEIGHTED

MKNN

In our past tissue characterization works by
MkNN [3], [4], [5], all the feature vectors observed
from each tissue were used as the candidates of the
prototype vectors. The representative vectors that were used
as the prototype vectors were selected manually or selected
according to the simple rules. The characterization results
thus depended on the selected prototype vectors.

Furthermore, the accuracy of tissue characterization is
decreased if the number of prototype vectors becomes small,

because the distribution of the prototype vectors in feature
space becomes sparse. Hence, it was needed to adjust the
number of prototype vectors keeping the accuracy of the
tissue characterization.

In the extended MkNN, a weighted decision, based on
the distances between the input vector and the prototype
(reference) vectors, is employed instead of the majority
decision [10], [11]. As a result, it is expected that the tissue
characterization dose not depend on the number and the
distribution of the prototype vectors.

In the classification of the input vector, the distances
between the input vector and the prototype vectors are
calculated, and they are employed as the weights for the
weighted decision.

In the extended MkNN, Eqs.(1) and (2) are replaced by
the following equations:

l = arg max
ω

N∑
i=1

ϕ (x;wi | ωi = ω) , (3)

ϕ (x;wi | ωi = ω) =

 exp
(
−∥xi −wk∥2/ϵ2

)
,

if ∥xi −wk∥ ≤ r (k)
0 otherwise,

(4)

where ϵ is a decay parameter that is adjusted according to
the distribution of the prototype vectors.

IV. EXPERIMENTS

We apply the normal MkNN and the extended (proposed)
MkNN to two test data sets. One is the artificial data and the
other is the real IVUS data for coronary plaque.

A. Application to artificial data

1) Experimental settings:Fig. 6 shows the observation
space and data structure. Observation space is a two-
dimensional space with 500×500 pixels. Each pixel in the
observation space is assigned as one of the three classes
(i.e., red, blue, and green classes), each of which has a two-
dimensional feature vector. Feature vectors are distributed as
follows;

Class 1 (red): Gaussian distribution with mean (1.0, 1.0)
and standard deviation (0.05, 0.05).

Class 2 (green): Gaussian distribution with mean (1.0, 1.0)
and standard deviation (0.20, 0.20).

Class 3 (blue): F distribution withF (100, 10) for both
axes.

The distribution of each class (red, blue, and green)
overlaps with each other as shown in Fig. 7. The probability
density of each distribution is different. Prototype (reference)
vectors are selected at random.

We compare the results by MkNN and wMkNN (extended
MkNN) for these data set. The correct classification rate
(CCR) is defined by:

CCR =
number of correctly classified data

number of total classified data
× 100. (5)

The mean of CCR is calculated for 100 trials. CCR with
100 reference vectors and with 10 reference vectors for each
class are evaluated.
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Fig. 6 Observation space and data structure.

Fig. 7 Distribution of feature vectors for the artificial data
used in the experiments.•: Class 1 (red), +: Class 2 (green),
◦: Class 3 (blue).

2) Experimental results:Fig. 8 shows the classification
results with 100 reference vectors for each class. Fig. 8
(a) and (b) show the results of classification by the normal
MkNN and by the proposed wMkNN, respectively.

Fig. 9 shows the classification results with 10 reference
vectors for each class. Fig. 9 (a) shows the results of
classification by the normal MkNN. Fig. 9 (b) shows the
results of classification by the proposed wMkNN.

Table I shows the correct classification rates by each
method. CCR by the normal MkNN is considerably de-
creased with the number of the reference vectors. However
the proposed wMkNN can maintain the classification accu-
racy even the number of reference vectors becomes small.

TABLE I Correct classification rates

Number ofreference vectors for each class MkNN [%] wMkNN [%]

100 94.5 88.1

10 77.5 85.1

B. Applicationto real IVUS data for coronary plaque

1) Experimental settings:The performances of the normal
MkNN and the proposed wMkNN for tissue characterization
of coronary plaque are compared. In this experiment, RF
signals are observed from two different sections of the blood
vessel. One is used as the training data, and the other is used
as the test data for classification.

The prototype vectors are selected from the training data.
The feature vectors used as the prototype vectors are the
power spectra that are calculated for each of the correspond-
ing RF signals reflected from each tissue, i.e., fibrous tissue,
lipid tissue, and fibrofatty tissue.

Thirty prototype vectors are selected at random from each
of three kinds of tissue for both cases of the normal MkNN
and of the proposed wMkNN. In addition, the width of
window for the short-time Fourier transformation is64 points
for both methods.

2) Experimental results:Fig. 10 shows the tissue char-
acterization results for the training data. Fig. 10 (a) shows
the tissue composition given by a medical doctor by exam-
ining the dyed tissue looking through a microscope. Fig.
10 (b) shows the results of tissue characterization by the
normal MkNN. The number of prototype vectors is manually
adjusted to get the best accuracy of characterization. The
number of prototype vectors for fibrous, lipid and fibrofatty
tissues are 850, 100, and 300, respectively.

Fig. 10 (c) shows the results by the normal MkNN. Thirty
prototype vectors are selected at random for each tissue.
Fig. 10 (d) shows the results by the proposed wMkNN.
The similar results to Fig. 10 (b) are obtained even if the
prototype vectors are selected at random and even more the
number of prototype vectors is smaller.

It is observed from those results that the accuracy of
tissue characterization by the proposed wMkNN is kept good
even if the number of prototype vectors is reduced and the
prototype vectors are selected at random.

Fig. 11 shows the tissue characterization results for the
test data. The characterization accuracy is a little bit behind
though compared with that of Fig.10. However, the superi-
ority of the proposed wMkNN over the normal MkNN still
can be seen.

V. CONCLUSIONS

In this study, we have proposed an extended algorithm of
a multiple k-nearest neighbor (wMkNN), which is applied
to an intravascular ultrasound (IVUS)-based tissue charac-
terization of coronary plaque. In the proposed algorithm, a
weighted decision based on the distances between the input
vector and the prototype (reference) vectors are employed
instead of the majority decision in the labeling process of
k-nearest neighbor (kNN).
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(a) MkNN (k=5, k’=9) (b) wMkNN (k=5, k’=9, ε=0.05)

Fig. 8 Classification results. The number of reference vectors is 100 for each class. (a) Classification results by the normal
MkNN [3]. (b) Classification results by the proposed wMkNN.

(a) MkNN (k=5, k’=9) (b) wMkNN (k=5, k’=9, ε=0.05)

Fig. 9 Classification results. The number of reference vectors is 10 for each class. (a) Classification results by the normal
MkNN [3]. (b) Classification results by the proposed wMkNN.

The experimental results show that the accuracy of tissue
characterization by the proposed method (wMkNN) is kept
good even if the number of prototype vectors is reduced.

Future studies are to confirm further the effectiveness of
the proposed method by applying to many other IVUS data,
and to find out the best feature vectors for the best tissue
characterization accuracy.
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Fig. 10 Tissue characterization results by the normal MkNN and by the proposed wMkNN for the training data. (a) The
tissue composition given by a medical doctor by examining the dyed tissue looking through a microscope. (b) The tissue
characterization results by the normal MkNN. The numbers of prototype vectors for fibrous, lipid and fibrofatty tissues
are 850, 100, and 300, respectively. (c) The tissue characterization results by the normal MkNN. The number of prototype
vectors is 30 for each tissue. The prototype vectors are selected at random. (d) The tissue characterization results by the
proposed wMkNN. The number of prototype vectors is 30 for each tissue. The prototype vectors are selected at random.
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Fig. 11 Tissue characterization results by the normal MkNN and by the proposed wMkNN for the test data. (a) The
tissue composition given by a medical doctor by examining the dyed tissue looking through a microscope. (b) The tissue
characterization results by the normal MkNN. The numbers of prototype vectors for fibrous, lipid and fibrofatty tissues
are 800, 130, and 450, respectively. (c) The tissue characterization results by the normal MkNN. The number of prototype
vectors is 30 for each tissue. The prototype vectors are selected at random. (d) The tissue characterization results by the
proposed wMkNN. The number of prototype vectors are 30 for each tissue. The prototype vectors is selected at random.
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