Stability, Nonlinear Oscillations and Bifurcation in a Delay-Induced Predator-Prey System with Harvesting

Debaldev Jana, Swapan Chakraborty and Nandadulal Bairagi

Abstract—A harvested predator-prey system that incorporates feedback delay in prey growth rate is studied. Considering delay as a parameter, we investigate the effect of delay on the stability of the coexisting equilibrium. It is observed that there exists a critical length of the delay parameter below which the coexistence equilibrium is stable and above which it is unstable. A Hopf bifurcation exists when delay crosses the critical value. By applying the normal form theory and the center manifold theorem, we determine the explicit formulae that demonstrate the stability and direction of the bifurcating periodic solutions. Computer simulations have been carried out to illustrate different analytical findings. Our simulation results indicate that the Hopf bifurcation is supercritical and the bifurcating periodic solutions are unstable for the considered parameter values. The system, however, can be stabilized from its unstable oscillatory state only by lowering the intrinsic growth rate of prey population.

Index Terms—predator-prey model, harvesting, delay, stability, oscillations, direction of Hopf bifurcation.

I. INTRODUCTION

The most studied topics in theoretical ecology is the predator-prey interaction and its possible outcomes. This is because of its all over existence in the natural world. Various mathematical models have been proposed from different biological point of views to study the interaction between prey and predator [1]–[3]. Harvesting is an old technique used for biological resource exploitation. However, overexploitation is the most responsible factor to the persistence of harvested stocks and causes not only economic loss but also changes the ecosystem structure and functioning [4]–[9]. Recently, Bairagi et al. [10] considered the following predator-prey model with harvesting:

$$\begin{align*}
\frac{dx}{dt} &= r x(1 - \frac{x}{k}) - \frac{\alpha x y}{a y + b} - d_0 x - \frac{\alpha x y}{a y + b}, \\
\frac{dy}{dt} &= \frac{a b x y}{a y + b} - d_0 y - \frac{\alpha x y}{a y + b},
\end{align*}$$

where \(x(t)\) and \(y(t)\) be, respectively, the prey and predator densities at time \(t\). It is assumed that the prey population grows logistically to its carrying capacity \(k\) with intrinsic growth rate \(r\), \(b_0\) and \(d_0\) be, respectively, the conversion efficiency and natural death rate of predator. Functional response of predator is assumed to follow ratio-dependent Type II form with maximum prey consumption rate \(\alpha\) and half-saturation constant \(a\). Predator is harvested following the Michaelis-Menten type catch rate with catchability coefficient \(q\) and harvesting effort \(E\). All parameters including \(b\) and \(l\) are assumed to be positive. Using Melnikov’s method, they observed that the system (1) exhibits heteroclinic bifurcations. They also showed that the system may exhibit monostability, bistability and tristability depending on the initial values of the system populations and the harvesting effort.

Delay is frequently used in a predator-prey model to represent the biological process more accurately. Predator-prey models with discrete delay exhibit different interesting dynamics, such as the existence of Hopf bifurcation, and Bogdanov-Takens bifurcation [11], [12]. An excellent review work of predator-prey models with single discrete delay can be seen in [13]. Simultaneous effects of harvesting and delay on predator-prey system were studied by several researchers [14]–[18]. The general observation is that the time delay makes a stable equilibrium unstable and harvesting, on the other hand, helps to regain the stability. In this study, we consider a discrete delay in the specific growth rate of prey to incorporate the effect of density dependence feedback mechanism which takes \(\tau\) units of time to respond to changes in the prey population [19]. Thus the model system (1) reduces to the following delay-induced predator-prey model with harvesting:

$$\begin{align*}
\frac{dx}{dt} &= r x(1 - \frac{x(t-\tau)}{k}) - \frac{\alpha x y}{a y + b} - d_0 x - \frac{\alpha x y}{a y + b}, \\
\frac{dy}{dt} &= \frac{a b x y}{a y + b} - d_0 y - \frac{\alpha x y}{a y + b}.
\end{align*}$$

The initial condition is

$$x(\phi) = \psi_1(\phi) \geq 0, \quad y(\phi) = \psi_2(\phi) \geq 0, \quad \phi \in (-\tau, 0].$$

Delay in the system (2) is based on the assumption that in the absence of predators the prey satisfies the delayed logistic equation [20]. The objective is to study the dynamic behavior of the system (2) and determine the direction and stability of the bifurcating periodic solutions, if any.

The organization of the paper is as follows: In Section II, we perform the local stability of the model system. Section III deals with the direction and stability of bifurcating periodic solutions. Rigorous numerical simulations of the model system are performed in the Section IV. Finally, a brief discussion is presented in the Section 4.

II. LOCAL STABILITY

Coexistence of species are given utmost importance in a predator-prey interaction and we are, therefore, only interested in the coexistence equilibrium of the system (2). The coexistence equilibrium point of the above system is given by \(E^*(x^*, y^*)\), where the equilibrium prey density \(x^*\) is given
by the positive root of the cubic equation
\[p_1 x^3 + p_2 x^2 + p_3 x + p_4 = 0 \]
with
\[
\begin{align*}
p_1 &= abd_1t^2, \\
p_2 &= \frac{t}{k} \left((ab_0 - d_0)l - ab_0r \left(2l + \frac{2kE}{k} \right) \right), \\
p_3 &= r \left[\frac{a bd_1 E (ar - \alpha)}{k} + \frac{a bd_1 E \alpha}{k} + b_0(l(ar - \alpha)} \right. \\
&\quad \left. + d_0l + \frac{a E}{k} \right] \quad \text{and} \\
p_4 &= E \left[- ab_0r(ar - 2\alpha) - q(ar - \alpha) \\
&\quad - bd_0(ar - \alpha) - \alpha^2 2bd_0 \right].
\end{align*}
\]
Observe that \(p_1 \) is always positive and \(p_4 \) is negative if \(ar > 2\alpha \). Thus, the above cubic equation has at least one positive root when \(ar > 2\alpha \). The equilibrium predator density is given by
\[
y^* = \frac{r x^* \left(1 - \frac{x^*}{k} \right)}{\alpha - ar \left(1 - \frac{x^*}{k} \right)}.
\]
Note that \(y^* \) will be feasible if \(\frac{k}{\alpha} (ar - \alpha) < x^* < k \).

To observe the number of feasible coexistence equilibrium points, we plot the prey and predator isoclines of the system (1) in the Fig. 1. This figure confirms that there exists two positive equilibrium points \(E^*(93.9826, 57.5527) \) and \(E_1(99.3691, 9.843) \) for the parameter set given in the Table 1. Eigenvalues evaluated at these equilibrium points show that the equilibrium point \(E^* \) has two negative eigenvalues and thus stable. The eigenvalues corresponding to the equilibrium point \(E_1 \) are of opposite signs and therefore unstable.

The rest of the paper deals with the stable equilibrium point \(E^*(x^*, y^*) \).

Let \(X(t) = x(t) - x^* \) and \(Y(t) = y(t) - y^* \) are the perturbed variables. Linearizing the system (2) at \(E^*(x^*, y^*) \), we get the linear system as follows:
\[
\begin{align*}
\frac{dX}{dt} &= \frac{ax^*y^*X}{(ay^* + x^*)^2} - \frac{axy^*X}{(ay^* + x^*)} - \frac{r x^* X(t-\tau)}{k} \\
\frac{dY}{dt} &= \frac{axy^*X}{(ay^* + x^*)} + \frac{axy^*Y}{(ay^* + x^*)} + \frac{a xy^*y^*}{(ay^* + x^*)^2} Y.
\end{align*}
\]

The characteristic equation of the corresponding variational matrix is given by
\[
\lambda^2 + A\lambda + B + (C\lambda + D)e^{-\lambda\tau} = 0, \tag{4}
\]

Fig. 1. The prey and predator isoclines of the model system (1). There exists two equilibrium points (shown by bullets), where prey and predator isoclines intersect. Equilibrium values and the corresponding eigenvalues are also mentioned. Parameters are as in the TABLE 1.

We now discuss two following cases.

Case 1: Instantaneous feedback mechanism (\(\tau = 0 \))

In the case of instantaneous feedback response of prey population, the value of \(\tau \) becomes zero. In this case, the equation (4) becomes
\[
\lambda^2 + (A + C)\lambda + (B + D) = 0. \tag{5}
\]
All roots of the equation (5) have negative real parts if and only if
\[
(H_1) \quad A + C > 0 \quad \text{and} \quad B + D > 0.
\]

Therefore, the equilibrium point \(E^*(x^*, y^*) \) is locally asymptotically stable when \(H_1 \) holds. Then the following theorem is true.

Theorem 1. The coexistence equilibrium \(E^*(x^*, y^*) \) of the system (1) is locally asymptotically stable in absence of delay if \(H_1 \) holds.

Case 2: Delayed feedback mechanism (\(\tau \neq 0 \))

We first reproduce some definitions given by \cite{21,22}.

Definition 1. The equilibrium \(E^* \) is called asymptotically stable if there exists a \(\delta > 0 \) such that
\[
\sup_{-\tau \leq \theta \leq 0} \left| \psi_1(\theta) - x^* \right|, \left| \psi_2(\theta) - y^* \right| < \delta
\]
implies that
\[\lim_{t \to \infty} (x(t), y(t)) = (x^*, y^*), \]
where \((x(t), y(t))\) is the solution of the system (2) which satisfies the prescribed initial condition.

Definition 2. The equilibrium \(E^*\) is called absolutely stable if it is asymptotically stable for all \(\tau \geq 0\) and conditionally stable if it is stable for \(\tau\) in some finite interval.

For the delay-induced system (2), the interior equilibrium \(E^*(x^*, y^*)\) will be asymptotically stable if all the roots of the corresponding characteristic equation (4) have negative real parts. But, the classical Routh-Hurwitz criterion cannot be used to discuss stability of the system since equation (4) is a transcendental equation and has infinitely many eigenvalues. To determine the nature of the stability, we require the sign of the real parts of the roots of the equation (4). We start with the assumption that \(E^*(x^*, y^*)\) is asymptotically stable in the case of non-delayed system (Case 1) and then we find conditions for which \(E^*(x^*, y^*)\) is still stable in presence of delay [23]. By Rouche’s Theorem [24] and the continuity in \(\tau\), the transcendental equation (4) has roots with positive real parts if and only if it has purely imaginary roots. From this, we shall be able to find conditions for all eigenvalues to have negative real parts.

Let
\[\lambda(\tau) = \xi(\tau) + i\omega(\tau), \]
where \(\xi\) and \(\omega\) are real. As the interior equilibrium \(E^*(x^*, y^*)\) of the non-delayed system is stable, we have \(\xi(0) < 0\). By continuity, if \(\tau > 0\) is sufficiently small, we still have \(\xi(\tau) < 0\) and \(E^*(x^*, y^*)\) is still stable. The change of stability will occur at some values of \(\tau\) for which \(\xi(\tau) = 0\), \(\omega(\tau) \neq 0\), i.e., \(\lambda\) will be purely imaginary. Let \(\tau_0\) be such that \(\xi(\tau_0) = 0\) and \(\omega(\tau_0) = \omega_0 \neq 0\), so that \(\lambda = i\omega(\tau_0) = i\omega_0\). In this case, the steady state loses stability and eventually becomes unstable when \(\xi(\tau)\) becomes positive. Now \(i\omega_0\) is a root of (4) if and only if
\[-\omega_0^2 + iA\omega_0 + B + (iC\omega_0 + D)e^{-\omega_0\tau_0} = 0.\]
Equating the real and imaginary parts of both sides, we get
\[D\cos \omega_0\tau_0 + C\omega_0 \sin \omega_0\tau_0 = \omega_0^2 - B, \]
\[C\omega_0 \cos \omega_0\tau_0 - D\sin \omega_0\tau_0 = -A\omega_0. \]
This leads to
\[\omega_0^4 - (C^2 - A^2 + 2B)\omega_0^2 + B^2 - D^2 = 0. \] (7)
This equation has no positive roots if the following conditions are satisfied:
\[(H_2) \quad A^2 - C^2 - 2B > 0 \]
and \(B^2 - D^2 > 0\).

Hence, all roots of the equation (7) will have negative real parts when \(\tau \in [0, \infty)\) if conditions of the Theorem 1 and \((H_2)\) are satisfied.

Let
\[(H_3) \quad B^2 - D^2 < 0. \]
If Theorem 1 and \((H_3)\) hold then the equation (7) has a unique positive root \(\omega_0^2\). Substituting \(\omega_0^2\) into (6), we have
\[\tau_n = \frac{1}{\omega_0} \cos^{-1} \left[\frac{(D - AC)\omega_0^2 - BD}{D^2 + C^2\omega_0} \right] + \frac{2n\pi}{\omega_0}, \quad n = 0, 1, 2, \ldots \]

Let,
\[(H_4) \quad C^2 - A^2 + 2B > 0, \]
\[B^2 - D^2 > 0 \quad \text{and} \quad (C^2 - A^2 + 2B)^2 > 4(B^2 - D^2). \]

If Theorem 1 and \((H_4)\) hold then \(\tau_0\) has two positive roots \(\omega_0^2\) and \(\omega_0^2\). Substituting \(\omega_0^2\) into (7), we get
\[\tau_{\pm} = \frac{1}{\omega_0} \cos^{-1} \left[\frac{(D - AC)\omega_0^2 - BD}{D^2 + C^2\omega_0^2} \right] + \frac{2n\pi}{\omega_0}, \quad n = 0, 1, 2, \ldots \]

If \(\lambda(\tau)\) be the root of (4) satisfying \(Re\lambda(\tau_0) = 0\) (respectively, \(Re\lambda(\tau_0) = 0\) and \(Im\lambda(\tau_0) = \omega_0\) (respectively, \(Im\lambda(\tau_0) = \omega_0\)), we get
\[\left[\frac{d}{d\tau} Re(\lambda) \right]_{\tau=\tau_0,\omega=\omega_0} > 0. \] (by \((H_2)\))

Similarly, we can show that
\[\left[\frac{d^2}{d\tau^2} Re(\lambda) \right]_{\tau=\tau_0,\omega=\omega_0} > 0 \]
and
\[\left[\frac{d^2}{d\tau^2} Re(\lambda) \right]_{\tau=\tau_0,\omega=\omega_0} < 0. \]

From Corollary (2.4) in Ruan and Wei [25], we have the following conclusions.

Theorem 2. Assume \(\tau \neq 0\) and conditions of the Theorem 1 are satisfied. Then the following conclusions hold:

(i) If \(H_2\) hold then the equilibrium \(E^*(x^*, y^*)\) is asymptotically stable for all \(\tau \geq 0\).

(ii) If \(H_3\) hold then the equilibrium \(E^*(x^*, y^*)\) is conditionally stable. It is locally asymptotically stable for \(\tau < \tau_0\) and unstable for \(\tau > \tau_0\). Furthermore, the system (1) undergoes a Hopf bifurcation at \(E^*(x^*, y^*)\) when \(\tau = \tau_0\), where
\[\tau_0 = \frac{1}{\omega_0} \cos^{-1} \left[\frac{(D - AC)\omega_0^2 - BD}{D^2 + C^2\omega_0^2} \right]. \]

(iii) If \(H_4\) hold then there is a positive integer \(m\) such that the equilibrium is stable when \(\tau \in [\tau_0, \tau_0 + \gamma]\), \(\tau \in [\tau_0 + \gamma, \tau_0 + 2\gamma]\), and unstable when \(\tau \in [\tau_0 + 2\gamma, \tau_0 + \gamma]\) and \(\tau \in [\tau_0 + \gamma, \tau_0 + 2\gamma]\). Further more, the system undergoes a Hopf bifurcation at \(E^*(x^*, y^*)\) when \(\tau = \tau_0 + k\gamma, \quad k = 0, 1, 2, \ldots\).

III. Direction and Stability of Hopf Bifurcation

In the previous section, we obtain the conditions under which a family of periodic solutions bifurcate from the co-existence equilibrium \(E^*(x^*, y^*)\) at the critical value \(\tau = \tau_0\). As pointed out in Hassard et al. [26], it is interesting to determine the direction, stability and period of the periodic solutions bifurcating from the positive equilibrium. Following the ideas of Hassard et al., we derive the explicit formulae for determining the properties of the periodic bifurcation at the critical value \(\tau_0\) by using the normal form and the center manifold theory. Throughout this section, we always assume that the system (2) undergoes a Hopf bifurcation at the positive equilibrium \(E^*(x^*, y^*)\) for \(\tau = \tau_0\) and then \(\pm i\omega_0\) is the corresponding purely imaginary roots of the characteristic equation at the positive equilibrium \(E^*(x^*, y^*)\).

Let \(x_1 = x - x^*, \quad x_2 = y - y^*, \quad \bar{x}_1 = x_1(rt), \quad \tau = \tau_0 + \mu\). Dropping the bars for simplification of notations, system (2)
is transformed into an functional differential equation (FDE) in $C = C([-1,0], \mathbb{R}^2)$ as
\[
\dot{x}(t) = L_\mu(x_t) + f(\mu, x_t),
\]
where $x(t) = (x_1, x_2)^T \in \mathbb{R}^2$ and $L_\mu : C \rightarrow R$, $f : R \times C \rightarrow R$ are given by
\[
L_\mu(\phi) = (\tau_0 + \mu) \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} \phi_1(0) \\ \phi_2(0) \end{pmatrix} + (\tau_0 + \mu) \begin{pmatrix} b_{11} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \phi_1(-1) \\ \phi_2(-1) \end{pmatrix},
\]
and
\[
f(\mu, \phi) = (\tau_0 + \mu) \begin{pmatrix} c_1 \\ c_2 \end{pmatrix},
\]
where,
\[
a_{11} = \frac{a x^+ y^+}{(a y^+ + x^+)^2}, \quad a_{12} = -\frac{a x^+ y^+}{(a y^+ + x^+)^2},
\]
\[
a_{21} = \frac{a x^+ y^+}{(b x^+ + y^+)^2}, \quad a_{22} = -\frac{a x^+ y^+}{(b x^+ + y^+)^2},
\]
\[
b_{11} = -\frac{e x^+(0) \phi_1(-1)}{k}, \quad c_1 = -\frac{e x^+(0) \phi_1(0)}{k}, \quad c_2 = -\frac{e x^+(0) \phi_2(0)}{\alpha}.
\]

By Riesz representation theorem, there exits a function $\eta(\theta, \mu)$ of bounded variation for $\theta \in [-1,0]$, such that
\[
L_\mu \phi = \int_{-1}^{0} d\eta(\theta, \mu) \phi(\theta) \quad \text{for} \quad \phi \in C.
\]
In fact, we can choose
\[
\eta(\theta, \mu) = (\tau_0 + \mu) \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \delta(\theta) - (\tau_0 + \mu) \begin{pmatrix} b_{11} & 0 \\ 0 & 0 \end{pmatrix} \delta(\theta + 1),
\]
where δ is the Dirac delta function. For $\phi \in C^1([-1,0], \mathbb{R}^2)$, define
\[
A(\mu)\phi = \begin{cases} \frac{d\phi(\theta)}{d\theta}, & \theta \in [-1,0), \\ 0, & \theta = 0 \end{cases},
\]
and
\[
R(\mu)\phi = \begin{cases} 0, & \phi(\theta), \theta \in [-1,0) \\ f(\mu, \phi), & \theta = 0. \end{cases}
\]
Then system (8) is equivalent to
\[
\dot{x}(t) = A(\mu)x_t + R(\mu)x_t,
\]
where $x_t(\theta) = x(t + \theta)$ for $\theta \in [-1,0]$. For $\psi \in C^1([0,1], \mathbb{R}^2)^*$, define
\[
A^*\psi(s) = \begin{cases} -\frac{d\psi(s)}{ds}, & s \in [0,1] \\ \int_{-1}^{0} d\eta(\mu, s)\psi(t), & s = 0 \end{cases},
\]
and a bilinear inner product
\[
\langle \psi(s), \phi(\theta) \rangle = \psi(0)\phi(0) - \int_{-1}^{0} \int_{0}^{1} \psi(\xi - \theta) d\eta(\theta) \phi(\xi) d\xi,
\]
where $\eta(\theta) = \eta(\theta, 0)$. Then $A(0)$ and A^* are adjoint operators. By the discussion in section II, we know that $\pm i\omega_0 T_0$ are eigenvalues of $A(0)$. Thus, they are also eigenvalues of A^*. We first need to compute the eigenvalues of $A(0)$ and A^* corresponding to $i\omega_0 T_0$ and $-i\omega_0 T_0$, respectively. Suppose that $q(\theta) = (1, \beta)^T e^{i\omega_0 T_0 \theta}$ is the eigenvector of $A(0)$ corresponding to $i\omega_0 T_0$, then $A(0)q(\theta) = i\omega_0 T_0 q(\theta)$. It follows from the definition of $A(0)$ and (9), (11) and (12) that
\[
\tau_0 \left(i\omega_0 - a_{11} - b_{11} e^{-i\omega_0 T_0} - a_{21} \right) q(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.
\]
Thus, we can easily obtain
\[
q(0) = (1, \beta)^T,
\]
where
\[
\beta = i\omega_0 - \frac{a_{11} x^+ y^+}{(a y^+ + x^+)^2} + \frac{a_{21} x^+ y^+}{(b x^+ + y^+)^2}.
\]
Similarly, let $q^*(s) = D(1, \beta)^T e^{-i\omega_0 T_0 s}$ is the eigenvector of A^* corresponding to $-i\omega_0 T_0$. By the definition of A^* and (9), (10) and (11), we can compute
\[
q^*(s) = D(1, \beta)^T e^{-i\omega_0 T_0 s}.
\]
In order to assure $\langle q^*(s), q(\theta) \rangle = 1$, we need to determine the value of D. From (14), we have
\[
\langle q^*(s), q(\theta) \rangle = \int_{-1}^{0} e^{-i\omega_0 T_0 (\xi - \theta)} d\xi \int_{-1}^{0} e^{i\omega_0 T_0 (\xi - \theta)} d\xi = \int_{-1}^{0} e^{-i\omega_0 T_0 \xi} d\xi \int_{-1}^{0} e^{i\omega_0 T_0 \xi} d\xi = 1,
\]
Thus, we can choose D as
\[
D = \frac{1}{1 + \beta^* - \frac{a_{11} x^+ y^+}{(a y^+ + x^+)^2} - \frac{a_{21} x^+ y^+}{(b x^+ + y^+)^2}}.
\]
In the remainder of this section, we use the same notations as in [27]. We first compute the coordinates to describe the center manifold C_0 at $\mu = 0$. Define
\[
\dot{z}(t) = q^*(t), \quad W(t, \theta) = x_t(\theta) - 2\Re e \{ z(t) q(\theta) \}.
\]
On the center manifold C_0, we have
\[
W(t, \theta) = W(z(t), \tilde{z}(t), \theta),
\]
where
\[
W(z, \bar{z}, \tilde{z}) = W_{20}(\theta) \frac{z^2}{2} + W_{11}(\theta) z \bar{z} + W_{02}(\theta) \frac{\bar{z}^2}{2} + W_{30}(\theta) \tilde{z}^3 + \ldots
\]
and Z and \bar{z} are local coordinates for the center manifold C_0, in the direction of q^* and \bar{q}. Note that W is real if x_t is real. We only consider real solutions. For solution $x_t \in C_0$ of (13), since $\mu = 0$, we have
\[
\tilde{z}(t) = i\omega_0 T_0 z + q^*(0) f(0, W(z, \bar{z}, 0) + 2\Re e \{ zq(\theta) \}) \quad \text{def} \quad i\omega_0 T_0 z + q^*(0) f_0(z, \bar{z}).
\]
We rewrite this equation as

\[
\dot{z}(t) = i\omega_0\tau_0 z(t) + g(z, \bar{z}),
\]

where

\[
g(z, \bar{z}) = \bar{q}^* \left(y_0(z, \bar{z}) \right) + g_02 z^2 + g_21 z^2 \bar{z} + \ldots.
\] (17)

It follows from (15) and (16) that

\[
x_i(\theta) = W(t, \theta) + 2\text{Re}\{\bar{z}(t)q(t)\}
\]

\[
= W_0(0)\frac{z_i^2}{2} + W_{11}(\theta)z\bar{z}
\]

\[
+ W_{02}(\theta)\frac{z_i^2}{2} + (1, \bar{\beta})T e^{i\omega_0\tau_0\theta} z
\]

\[
+ (1, \bar{\beta})T e^{-i\omega_0\tau_0\theta} \bar{z} + \ldots.
\] (18)

It follows together with (10) that

\[
g(z, \bar{z}) = \bar{q}^* \left(y_0(z, \bar{z}) \right) + g_02 z^2 + g_21 z^2 \bar{z}
\]

\[
+ \left(-\bar{W}_{12}(0)\frac{z_i^2}{2} + W_{11}(0)z\bar{z} \right)
\]

\[
W_{02}(1)\frac{z_i^2}{2} + \left(\beta_0 - 1 \right)\tau_0D_{\alpha}\frac{z_i^2}{2} + W_{11}(1)(-1)z\bar{z}
\]

\[
+ W_{02}(1)(-1)\frac{z_i^2}{2} + \ldots
\]

\[
+ \left(\beta_0 - 1 \right)\tau_0D_{\alpha}\frac{z_i^2}{2}
\]

\[
+ \left(-\bar{W}_{12}(0)\frac{z_i^2}{2} + W_{11}(0)z\bar{z} + W_{02}(0)\frac{z_i^2}{2} \right)
\]

\[
+ \left(\beta + \bar{\beta} + W_{12}(0)\frac{z_i^2}{2} + \ldots \right)
\]

\[
= \frac{-\tau_0D_{\beta}q_{l}}{b^2E} \left(\beta + \bar{\beta} + W_{12}(0)\frac{z_i^2}{2} + \ldots \right)
\]

\[
W_{11}(2)(0)z\bar{z} + W_{02}(2)(0)\frac{z_i^2}{2} + \ldots.
\] (19)

Comparing the coefficients with (17), we have

\[
g_{20} = 2\tau_0D_{\beta}q_{l} \left(\frac{z_i^2}{2} - \frac{\alpha}{2a} W_{20}(0) \right)
\]

\[
+ \beta \left(\frac{\alpha_0}{2a} W_{20}(0) - \frac{\alpha}{2a} W_{20}(0) - \frac{\beta q l}{b^2E} \right) \cdot \frac{1}{k}.
\]

\[
g_{11} = 2\tau_0D_{\beta} q_{l} \left(\frac{z_i^2}{2} - \frac{\alpha}{2a} W_{11}(0) \right)
\]

\[
+ \beta \left(\frac{\alpha_0}{2a} W_{11}(0) - \frac{\alpha}{2a} W_{11}(0) - \frac{\beta q l}{b^2E} \right) \cdot \frac{1}{k}.
\]

\[
g_{02} = 2\tau_0D_{\beta} q_{l} \left(\frac{z_i^2}{2} - \frac{\alpha}{2a} W_{02}(0) \right)
\]

\[
+ \beta \left(\frac{\alpha_0}{2a} W_{02}(0) - \frac{\alpha}{2a} W_{02}(0) - \frac{\beta q l}{b^2E} \right) \cdot \frac{1}{k}.
\]

\[
g_{21} = -\frac{\tau_0D_{\beta} q_{l}}{k} \left(\frac{W_{11}(1)}{2} \right)
\]

\[
+ W_{20}(1)(-1) + \frac{W_{11}(0)e^{-i\omega_0\tau_0}}{2} e^{-i\omega_0\tau_0
\]

\[
\times \left\{ \frac{W_{11}(2)(0)}{2} + \frac{W_{02}(2)(0)}{2} \right\},
\] (20)

Since there are \(W_{20}(\theta) \) and \(W_{11}(\theta) \) in \(g_{21} \), we still need to compute them.

From (13) and (15), we have

\[
W = \begin{cases}
AW - 2\text{Re}\{\bar{q}^* (0) f_{0}(\theta)\}, & \theta \in [-1, 0), \\
AW - 2\text{Re}\{\bar{q}^* (0) f_{0}(\theta)\} + f_{0}, & \theta = 0,
\end{cases}
\]

\[
def
AW + H(z, \bar{z}, \theta).
\] (21)

Here

\[
H(z, \bar{z}, \theta) = H_{20}(\theta) \frac{z_i^2}{2} + H_{11}(\theta)z\bar{z}
\]

\[
+ H_{02}(\theta) \frac{z_i^2}{2} + \ldots
\] (22)

Substituting the corresponding series into (21) and comparing the coefficients, we obtain

\[
(A - 2i\omega_0\tau_0) W_{20}(\theta) = -H_{20}(\theta),
\]

\[
AW_{11}(\theta) = -H_{11}(\theta).
\] (23)

From (21), we know that for \(\theta \in [-1, 0) \),

\[
H(z, \bar{z}, \theta) = -q^* (0) f_{0}(\theta) - q^* (0) f_{0}(\theta)
\]

\[
= -q (z, \bar{z}) q(\theta) - \bar{g}(z, \bar{z}) q(\theta).
\] (24)

Comparing the coefficients with (22), we have

\[
H_{20}(\theta) = -g_{202}(\theta) - \bar{g}_{202}(\theta)
\] (25)

and

\[
H_{11}(\theta) = -g_{111}(\theta) - \bar{g}_{111}(\theta).
\] (26)

From (23), (25) and the definition of \(A \), it follows that

\[
\bar{W}_{20}(\theta) = 2i\omega_0\tau_0 W_{20}(\theta) + g_{202}(\theta) + \bar{g}_{202}(\theta).
\]

Notice that \(q(\theta) = (1, \bar{\beta})T e^{i\omega_0\tau_0\theta} \), hence

\[
W_{20}(\theta) = \frac{2g_{022}(\theta)}{\omega_0\tau_0} e^{i\omega_0\tau_0\theta}
\]

\[
+ \frac{2g_{111}(\theta)}{\omega_0\tau_0} e^{i\omega_0\tau_0\theta} + \frac{2g_{202}(\theta)}{\omega_0\tau_0} q_{l} e^{-i\omega_0\tau_0\theta} + E_{1} e^{i\omega_0\tau_0\theta},
\] (27)

where \(E_{1} = (E_{1}^{(1)}, E_{1}^{(2)}) \in \mathbb{R}^2 \) is a constant vector. Similarly, from (23) and (26), we obtain

\[
W_{11}(\theta) = \frac{-i\omega_0\tau_0}{\omega_0\tau_0} q_{l} e^{i\omega_0\tau_0\theta} + \frac{i\omega_0\tau_0}{\omega_0\tau_0} q_{l} e^{-i\omega_0\tau_0\theta} + E_{2},
\] (28)

where \(E_{2} = (E_{2}^{(1)}, E_{2}^{(2)}) \in \mathbb{R}^2 \) is a constant vector. In what follows, we shall seek appropriate \(E_{1} \) and \(E_{2} \). From the definition of \(A \), we obtain

\[
\int_{-1}^{0} d\eta(\theta) W_{20}(\theta) = 2i\omega_0\tau_0 W_{20}(0) - H_{20}(0)
\] (29)

and

\[
\int_{-1}^{0} d\eta(\theta) W_{11}(\theta) = -H_{11}(0),
\] (30)

where \(\eta(\theta) = \eta(0, \theta) \). By (21), we have

\[
H_{20}(0) = -g_{202}(0) - \bar{g}_{202}(0)
\]

\[
+ \frac{2g_{111}(0)}{\omega_0\tau_0} e^{-i\omega_0\tau_0\theta} + \frac{2g_{202}(0)}{\omega_0\tau_0} W_{11}(0)
\] (31)
and
\[H_{11}(0) = -g_{11} q(0) - \bar{g}_{11} \bar{q}(0) + 2\tau_0 \left(\frac{\rho(\tau_{\bar{q}}(0) + \phi(\tau_{\bar{q}}(0)))}{k} \right) - \frac{\alpha}{2\pi} W_{11}^{(1)}(0). \] (32)

Substituting (27) and (31) into (29) and noticing that
\[(i\omega_0 \tau_0 I - \int_{-1}^{0} e^{i\omega_0 \tau_0 \theta} d\theta) \bar{q}(0) = 0 \]
and
\[(i\omega_0 \tau_0 I - \int_{-1}^{0} e^{i\omega_0 \tau_0 \theta} d\theta) \bar{q}(0) = 0, \]
we obtain
\[\left(2i\omega_0 \tau_0 I - \int_{-1}^{0} e^{i\omega_0 \tau_0 \theta} d\theta \right) E_1 = 2\tau_0 \left(\frac{\rho(\theta_{\bar{q}}(0))}{k} \right) \theta_{\bar{q}}(0) - \frac{\alpha}{2\pi} W_{20}^{(1)}(0). \]

This leads to
\[\left(2i\omega_0 - a_{11} - b_{11} e^{-2i\omega_0 \tau_0} a_{12} - a_{21} \right) E_1 = 2 \left(\frac{\rho(\theta_{\bar{q}}(0))}{k} \right) \theta_{\bar{q}}(0) - \frac{\alpha}{2\pi} W_{20}^{(1)}(0). \]

It follows that
\[E_1^{(4)} = \frac{2}{A} \left[a_{11} - b_{11} e^{-2i\omega_0 \tau_0} a_{12} - a_{21} \right] \bar{q}(0) - \frac{\alpha}{2\pi} W_{20}^{(1)}(0), \]
and
\[E_1^{(2)} = \frac{2}{B} \left[a_{11} - b_{11} e^{-2i\omega_0 \tau_0} a_{12} - a_{21} \right] \bar{q}(0) - \frac{\alpha}{2\pi} W_{11}^{(1)}(0), \]
where
\[A = \left| \begin{array}{ccc} 2i\omega_0 - a_{11} - b_{11} e^{-2i\omega_0 \tau_0} a_{12} - a_{21} \\ -a_{21} \end{array} \right| \]

Similarly, substituting (28) and (32) into (30), we get
\[\left(-a_{11} - b_{11} e^{-2i\omega_0 \tau_0} a_{12} - a_{21} \right) E_2 = 2 \left(\frac{\rho(\theta_{\bar{q}}(0))}{k} \right) \theta_{\bar{q}}(0) - \frac{\alpha}{2\pi} W_{11}^{(1)}(0). \]

It follows that
\[E_2^{(1)} = \frac{2}{B} \left[a_{11} - b_{11} e^{-2i\omega_0 \tau_0} a_{12} - a_{21} \right] \bar{q}(0) - \frac{\alpha}{2\pi} W_{11}^{(1)}(0), \]
and
\[E_2^{(2)} = \frac{2}{B} \left[a_{11} - b_{11} e^{-2i\omega_0 \tau_0} a_{12} - a_{21} \right] \bar{q}(0) - \frac{\alpha}{2\pi} W_{11}^{(1)}(0), \]
where
\[B = \left| \begin{array}{ccc} -a_{11} & -b_{11} & -a_{12} \\ -a_{21} & -a_{22} & -a_{22} \end{array} \right| \]

Thus, we can determine \(W_{20}(\theta) \) and \(W_{11}(\theta) \) from (27) and (28). Furthermore, \(g_{21} \) in (20) can be expressed by the parameters and delay. Thus, we can compute the following values:
\[c_1(0) = \frac{i}{2\omega_0 \tau_0} \left(g_{20} g_{11} - 2 |g_{11}|^2 - \frac{|g_{21}|^2}{3} + g_{21} \right), \]
\[\mu_2 = -\frac{\text{Re}\{c_1(0)\}}{\text{Re}\{\tilde{c}_1(0)\}}, \]
\[\beta_2 = 2\text{Re}\{c_1(0)\}, \]
\[T_2 = -\frac{\text{Im}\{c_1(0)\} + \mu_2 \text{Im}\{\tilde{c}_1(0)\}}{\omega_0 \tau_0}, \]
which determine the qualitites of bifurcating periodic solutions in the center manifold at the critical value \(\tau_0 \) and we state the following theorem.

Theorem 3. \(\mu_2 \) determines the direction of the Hopf bifurcation: if \(\mu_2 > 0 \) \((\mu_2 < 0) \) then the Hopf bifurcation is supercritical (subcritical) and the bifurcating periodic solutions exit for \(\tau > \tau_0 \) \((\tau < \tau_0) \). \(\beta_2 \) determines the stability of the bifurcating periodic solutions: the bifurcating periodic solutions are stable (unstable) if \(\beta_2 < 0 \) \((\beta_2 > 0) \). \(T_2 \) determines the period of the bifurcating periodic solutions: the period increases (decreases) if \(T_2 > 0 \) \((T_2 < 0) \).

IV. Numerical Results

In this section, we give some numerical simulations to illustrate the analytical results observed in the previous sections. For illustration purpose, we consider the parameter values as in the TABLE 1. Initial value is considered as (12, 5) for each simulation and it is indicated by empty circle and the coexistence equilibrium \(E^* \) is shown by bullet. When \(\tau = 0 \), the parameter set satisfies all conditions of the Theorem 1 and therefore trajectories eventually reach to the coexistence equilibrium point \(E^* \) (93.9826, 57.5527), indicating stability of the system (2) around the coexistence equilibrium (Fig. 2).

When \(\tau \neq 0 \), one can compute from Theorem 2(ii), \(\omega_0 = 0.9401 \) and \(\tau_0 = 1.6613 \). Therefore, the coexistence equilibrium \(E^*(x_1, y_1) \) is locally asymptotically stable for \(\tau < \tau_0 = 1.6613 \) and unstable for \(\tau > \tau_0 = 1.6613 \). Time evolutions of the system (2) for \(\tau = 1.5 \) is shown.

![Fig. 2. These figures show that the coexistence equilibrium point E* (93.9826, 57.5527) is locally asymptotically stable when τ = 0. Fig. (a) is the time evolutions of the model system (2) and Fig. (b) is the corresponding phase plane. Parameters are as in the TABLE 1.](https://example.com/fig2)

(Revised online publication: 30 August 2012)
Fig. 3. Conditional stability of the system (2). Figs. in the first panel (a-c) and in the second panel (d-f) depict the time evolutions and phase portraits of the system (2) for $\tau = 1.5(< \tau_0 = 1.6613)$ and $\tau = 1.7(> \tau_0 = 1.6613)$, respectively. Figs. (a) – (c) show that the system is stable when the delay is less than its critical value and Figs. (d) – (f) depict that the system is unstable when the delay exceeds its critical value. Parameters are as in the TABLE 1.

Fig. 4. Bifurcation diagrams of the system (2) with respect to τ. Fig. (a) is drawn in the three-dimensional space (x, y, τ). Fig. (b) is its projection on the two-dimensional plane (x, τ) and Fig. (c) is the same on the (y, τ) plane. These figures show that the coexistence equilibrium is stable for $\tau < 1.6613$, unstable for $\tau > 1.6613$ and a Hopf bifurcation exists at $\tau = \tau_0 = 1.6613$. Other parameters are as in the TABLE 1.

in the Figs. 3(a) and 3(b) for prey and predator populations, respectively. The corresponding phase diagram is depicted in the Fig. 3(c). These figures confirm that the system is locally asymptotically stable when the length of delay remains below its critical value τ_0. Similar figures for the delay $(\tau = 1.7)$ higher than its critical value are plotted in the Figs. 3(d)-3(f). These figures show that populations fluctuate around the coexistence equilibrium when length of delay exceeds its critical value, depicting the instability of the system.

System behavior can be demonstrated more prominently if we plot the bifurcation diagram in the three-dimensional space (τ, x, y). Fig. 4(a) shows that the coexistence equilibrium is stable for $\tau < 1.6613$ (shown by black solid line) but the instability sets in when $\tau > 1.6613$ (shown by colored cycles). Observe that the amplitude of oscillations increases with the length of delay. The behavior of each population with varying τ can be observed if we take the projection of the three-dimensional figure on the two-dimensional plane. Figs. 4(b) and 4(c) depict the bifurcation diagrams of the prey and predator populations in the (τ, x) and (τ, y) planes, respectively.

Using Theorem 3, one can determine the values of μ_2, β_2 and T_2 as $\mu_2 = 0.00065853$, $\beta_2 = 0.0034$ and $T_2 = 0.0063$. Since $\mu_2 > 0$ and $\beta_2 > 0$, the Hopf bifurcation is supercritical and unstable. Also, period of the bifurcating periodic solution increases with τ as $T_2 > 0$.

To verify the sensitivity of the system to other parameters,
we perform extensive numerical simulations with respect to each parameter. It is observed that the system is sensitive only to the parameter \(r\), the intrinsic growth rate of prey population. Oscillations can be reduced completely and the system returns to stable state if the value of \(r\) is reduced. Figs. 5(a) and 5(b) show that trajectories converge to the coexistence equilibrium \(E^*\) when \(r\) is lowered to 0.9 from 1, keeping \(\tau\) above its critical value. To observe the interrelationship between \(r\) and \(\tau\), we have determined the stability region in \((r, \tau)\) parameter plane (Fig. 5(c)). The line separating the stable and unstable regions is the Hopf bifurcation line. This figure indicates that the system can tolerate longer delay for lower value of \(r\). Bifurcation diagrams of prey population (Fig. 5(d)) and predator population (Fig. 5(e)) indicate that both populations go to extinction when \(\tau = 0\). Population densities then stay in stable state for longer higher values of \(r\) before it becomes unstable at \(\tau = 0.985\).

V. DISCUSSION

In this paper, we have studied the effects of delay on a predator-prey interaction with predator harvesting. The delay is proposed in the density-dependent prey growth term on the assumption that a fixed time \(\tau\) is elapsed by the prey population before it affects on the per capita growth rate. This study, in fact, is an extension of the work of Bairagi et al. [10] where they studied the system in absence of delay. We have obtained sufficient conditions on the system parameters for which the delay-induced system is asymptotically stable around the coexistence equilibrium for all values of the delay parameter and if the conditions are not satisfied, then there exists a critical value \(\tau_0\) of the delay parameter below which the system is stable and above which the system is unstable. By applying the normal form theory and the center manifold theorem, the explicit formulae which determine the stability and direction of the bifurcating periodic solutions have been determined. Our analytical and simulation results show that when \(\tau\) passes through the critical value \(\tau_0\), the coexistence equilibrium \(E^*\) loses its stability and a Hopf bifurcation occurs, i.e., a family of periodic solutions bifurcate from \(E^*\). Also, the amplitude of oscillations increases with increasing \(\tau\). Thus, the quantitative level of abundance of system populations depends crucially on the delay parameter if the feedback delay exceeds the critical value \(\tau_0\). For the considered parameter values, it is observed that the Hopf bifurcation is supercritical and the bifurcating periodic solutions are unstable. From management point of view, it is important to maintain the system population at stable state for ecosystem-based sustainable harvesting. Our simulation studies show that the unstable oscillatory system caused due to higher feedback delay can be made stable only when the biological growth rate of prey \((r)\) is lowered. The system is not sensitive to other parameters including the harvesting effort, \(E\). Thus, our study says against the traditional concept [14]–[16] that time delay makes a stable equilibrium unstable and harvesting helps to regain the stability.

REFERENCES

M r. Debaldev Jana was born at Tamluk on 13 January, 1984. He received his B.Sc and M.Sc degree in Mathematics from Jadavpur University, Kolkata in 2006 and 2008 respectively. He has submitted his Ph.D. Thesis in 2012 under the guidance of Dr. Nandadulal Bairagi. His research interests includes mathematical ecology, pattern formation, fractional differential equation etc.
Mr. Swapan Chakraborty is working as a teacher in Mathematics at Baruipara High School, Halisahar, 24 Parganas (N), West Bengal, India. He has submitted his Ph.D. work in Jadavpur University under the joint supervision of Dr. Samares Pal and Dr. Nandadulal Bairagi. He has published five research articles in international journals of repute. His fields of interest are mathematical ecology, ecoepidemiology and bioeconomic harvesting.

Nandadulal Bairagi (1967) did his M.Sc. and Ph.D. from Jadavpur University, Kolkata, India. He joined as a faculty of Mathematics Department of Jadavpur University in 2001. He is now Associate Professor and Coordinator of the Centre for Mathematical Biology and Ecology. He is the Founder Secretary of Biomathematical Society of India. He has published many papers in different fields of biomathematics. His Research interests include ecology, epidemiology, bioeconomic harvesting, physiology and system biology.