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Abstract—In this paper a corotational finite element 

formulation is employed to derive the equations of motion for a 
three dimensional rotating Euler beam with constant angular 
velocity. The steady state deformation and natural frequency of 
the infinitesimal free vibration measured from the position of 
the corresponding steady state deformation are investigated for 
rotating Euler beams with different setting angle. The 
governing equations for linear vibration are obtained by the 
first order Taylor series expansion of the equation of motion at 
the position of steady state deformation. Numerical examples 
are studied to demonstrate the accuracy of the proposed 
method and to investigate the effects of the steady twist 
deformation on the natural frequency of rotating beams with 
different setting angle. 
 

Index Terms—Rotating beam, Corotational formulation, 
Setting angle, Natural frequency.  
 

I. INTRODUCTION 

Rotating beams are often used as a simple model for 
propellers, turbine blades, and satellite booms.  Rotating 
beam differs from a non-rotating beam in having additional 
centrifugal force and Coriolis effects on its dynamics. It is 
well known that the spinning elastic bodies sustains a steady 
state deformations induced by constant rotation [1]. For 
doubly symmetric rotating beams with setting angle other 

than 0 and 90 , that steady state deformations include axial 
deformation and twist deformation. The bending vibration, 
torsional vibration, and axial vibration of rotating beams are 
coupled due to the Coriolis effects [2] and the steady state 
deformation [3].  However, to the authors’ knowledge, the 
steady state deformation and its effects on the bending, 
torsional, and axial vibration of doubly symmetric rotating 

beams with setting angle other than 0 and 90 are not 
reported in the literature. The objective of this paper is to 
derive the equations of motion for a rotating doubly 
symmetric Euler beam with constant angular velocity using a 
corotational finite element formulation. The steady state 
deformation and natural frequency of the infinitesimal free 
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vibration measured from the position of the corresponding 
steady state deformation are investigated using numerical 
examples. 

 

II. FINITE ELEMENT FORMULATION 

A. Description of Problem 

Consider a doubly symmetric uniform Euler beam of 
length TL  rigidly mounted with a setting angle   on the 

periphery of rigid hub with radius R rotating about its axis 
fixed in space at a constant angular velocity   as shown in 
Fig. 1. The axis of the rotating hub is perpendicular to the 
beam axis. The beam sustains a steady state axial and 
torsional deformation induced by constant rotation. In this 
study, large displacement and rotation with small strain are 
considered in the steady state deformation. The vibration of 
the beam is measured from the position of the steady state 
deformation, and only infinitesimal free vibration is 
considered. The kinematics of the beam element presented in 
[4] and the co-rotational finite element formulation proposed 
in [4, 5] are employed here. In the following only a brief 
description of the beam element is given. 

Fig. 1. Rotating beam, (a) front view, (b) side view 

 

B. Basic Assumptions 

The following assumptions are made in derivation of the 
beam element behavior: (1) The beam is prismatic and 
slender, and the Euler-Bernoulli hypothesis is valid. (2) The 
cross section of the beam is doubly symmetric. (3) The unit 
extension of the centroid axis of the beam element is uniform. 
(4) The cross section of the beam element does not deform in 
its own plane and strains within this cross section can be 
neglected.  

C. Coordinate Systems 

In order to describe the system, we define three sets of 
right handed rectangular Cartesian coordinate systems: 

1. A rotating global set of coordinates, G
iX  (i = 1, 2, 3) 
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(see Figs. 1 and 2); the coordinates rotate about the hub axis 
at a constant angular speed   as shown in Fig. 1. The origin 
of this coordinate system is chosen to be the intersection of 
the hub and the centroid axis of the undeformed beam. The 

GX1  axis are chosen to coincide with the centroid axis of the 

undeformed beam, and the GX 2  and GX3  axes are chosen to 

be the principal directions of the cross section of the beam at 
the undeformed state. The nodal coordinates, nodal 
deformation displacements, nodal velocity, nodal 
acceleration, and equations of motion of the system are 
defined in this coordinates. 

2. Element cross section coordinates, S
ix  (i = 1, 2, 3) (see 

Fig. 2); a set of element cross section coordinates is 
associated with each cross section of the beam element. The 
origin of this coordinate system is rigidly tied to the centroid 

of the cross section. The Sx1  axes are chosen to coincide with 

the normal of the unwrapped cross section and the Sx2  and 
Sx3  axes are chosen to be the principal directions of the cross 

section. 
3. Element coordinates, ix  (i = 1, 2, 3) (see Fig. 2); a set of 

element coordinates is associated with each element, which is 
constructed at the current configuration of the beam element.  
The coordinates rotate about the hub axis at a constant 
angular speed  . The origin of this coordinate system is 
located at node 1, and the 1x  axis is chosen to pass through 

two end nodes of the element; the 2x  and 3x  axes are 

determined by the method proposed in [6]. The position 
vector, deformations, velocity, acceleration, internal nodal 
forces, stiffness matrices, and inertia matrices of the elements 
are defined in terms of these coordinates  

D. Kinematics of Beam Element 

In this study only the doubly symmetric cross section is 
considered. Let Q (Fig. 2) be an arbitrary point in the beam 
element, and P be the point corresponding to Q on the 
centroid axis. The position vector of point Q in the 
undeformed and deformed configurations may be expressed 
as [4]: 

 
Fig. 2. Coordinate systems 
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where ),( txx p , ),( txv and ),( txw  are the 1x , 2x and 3x  

coordinates of point P, respectively, in the deformed 
configuration, ),(,1,1 txxx    is the twist rate of the 

deformed centroid axis, ),( zy  is the Saint Venant warping 

function for a prismatic beam of the same cross section, and 

ie  and S
ie  (i = 1, 2, 3) denote the unit vectors associated with 

the ix  and S
ix  axes, respectively. Note that ie  and S

ie  are 

coincident in the undeformed state. The relationship 

between ie  and S
ie  is given in [6] and not repeated here. Here, 

the lateral deflections of the centroid axis, ),( txv and ),( txw , 

and the rotation about the centroid axis, x,1 , are assumed to 

be the Hermitian polynomials of x. 
The relationship among ),( txxp , ),( txv , and ),( txw , and 

x may be given as [5] 
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where 1u  is the displacement of node 1 in the 1x  direction. 

Note that due to the definition of the element coordinate 
system, the value of 1u  is equal to zero. However, the 

variation and time derivatives of 1u  are not zero. 

Making use of the assumption of uniform unit extension, 

c  and the axial displacements of the centroid axis may be 

calculated using (3) and the current chord length of the beam 
element. 

The absolute velocity and acceleration vectors of point Q 
in the beam element may be expressed as 
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where r is the position vector of point Q given in (2) referred 
to the current moving element coordinate system, the symbol 
(˙) denotes time derivative, Ω  is the vector of angular 
velocity referred to the current inertia element coordinates, 

}cossin0{ GΩ  is the he angular velocity of the 

hub referred to the global coordinates, GEA  is the 

transformation matrix between the current global coordinates 
and the current element coordinates, oa  is the absolute 

acceleration of point o, the origin of the current element 
coordinates, oX  is coordinates of point o referred to the 

current global coordinates, R is the radius of the hub.  
)( rΩΩ  and rΩ 2  are centripetal acceleration and 

Coriolis acceleration, respectively.  r  and r  are the velocity 
and acceleration of point Q relative to the current moving 
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element coordinates. 

E. Element Nodal Force Vector, and Element Matrices 

The element proposed here has two nodes with seven 
degrees of freedom per node. The nodal parameters are 
chosen to be iju  ( jj uu 1 , jj vu 2 , jj wu 3 ), the ix  (i = 

1, 2, 3) components of the translation vectors ju  at node j (j 

= 1, 2), ij , the ix  (i = 1, 2, 3) components of the rotation 

vectors j  at node j (j = 1, 2), and j , the twist rate of the 

centroid axis at node j. Here, the values of j  are reset to 

zero at current configuration. Thus, ij , the variation of ij , 

represents infinitesimal rotations about the ix  axes [6], and 

the generalized nodal forces corresponding to ij  are ijm , 

the conventional moments about the ix  axes. The 

generalized nodal forces corresponding to iju , the 

variations of iju , are ijf , the forces in the ix  directions. The 

generalized nodal forces corresponding to j , the 

variations of j , are bimoment jB . 

The element nodal force vector is obtained from the virtual 
work principle and the d’Alembert principle in the current 
element coordinates. The virtual work principle requires that  
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where },,{ jjjj wvu  u , },,{ 321 jjjj   , 

},,{ 1
*

jjjj vw  θ , },,{ 321 jjjj ffff , 

},,{ 321 jjjj mmmm , },,{ 321

jjjj ffff , 

},,{ 321


jjjj mmmm  (j = 1, 2),  21  , β and 

},{ 21 BBB . Df and If are element deformation nodal 

force vector and inertia nodal force vector, respectively. V is 
the volume of the undeformed beam element, i1  (i = 1, 2, 3) 

are the variation of i1  in (12) corresponding to q . Note 

that because i1  are function of q , intW  may be 

expressed by  fqt . D
f  and I

f  are generalized 

deformation nodal force vector and inertia nodal force vector 
corresponding to q . i1  (i = 1, 2, 3) are the second 

Piola-Kirchhoff stress. For linear elastic material, 1111  E , 

1212 2  G , and 1313 2  G , where E is Young’s 

modulus and G is the shear modulus.   is the density, r is 

the variation of r  in (2). a is the absolute acceleration given 
in (4).  The higher order terms of nodal parameters in the 
element nodal forces are neglected by consistent second 
order linearization in this study. 

The relation between q and q , and the relation 

between f and f  may be expressed as [4] 

 

qTq    ,    fTf t  (13) 

 
where f may be calculated using (2-12).  

The element matrices considered are element tangent 
stiffness matrix k, mass matrix m, centripetal stiffness matrix 

k , and gyroscopic matrix c.  The element matrices may be 

obtained by differentiating the element nodal force vectors in 
(13) with respect to nodal parameters, and time derivatives of 
nodal parameters, The element matrices may be expressed as 
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F. Equations of Motion  

The nonlinear equations of motion for a rotating beam with 
constant angular velocity may be expressed by  
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where φ , DF , and IF  are unbalanced force vector, 

deformation nodal force vector, and inertia nodal force vector 

of the structural system, respectively.  IF  and DF  are 
assembled from the element nodal force vectors, which are 
calculated first in the current element coordinates and then 
transformed from element coordinate system to global 
coordinate system before assemblage using standard 

procedure.  Q


 is the nodal displacement vector of the 

rotating beam, Q


 and Q


 are the nodal velocity vector and 

the nodal acceleration vector of the rotating beam, 
respectively, sQ  is the steady state nodal displacement 

vector induced by constant rotation speed , )(tQ  is the 

time dependent nodal displacements vector caused by the 
free vibration of the rotating beam.  Here only infinitesimal 
vibration is considered. 

G. Governing Equations for Steady State Deformation  

For the steady state deformations, 0Q )(t .  Thus (15) 

can be reduced to nonlinear steady state equilibrium 
equations and expressed by 
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where )( s
D
s QF , and )(2

s
I
s QF  are the deformation nodal 

force vector, and the inertia nodal force (the centrifugal force) 
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vector of the structural system corresponding to the steady 
state nodal displacement vector sQ , respectively. Note that 

)(2
s

I
s QF  is deformation dependent. Thus )(2

s
I
s QF  

should be updated at each new configuration. 
Here, an incremental-iterative method based on the 

Newton-Raphson method is employed for the solution of 
nonlinear steady state equilibrium equations at different 
rotation speed . 

H. Governing Equations for Free Vibration Measured 
From The Position of Steady State Deformation  

Substituting (16) into (15), and setting the first-order 
Taylor series expansion of the unbalanced force vector φ  

around sQ  to zero, one may obtain the governing equations 

for linear free vibration of the rotating beam measured from 
the position of the steady state deformation as follows. 

 

0QKKQCQM   )( 2  (18) 

 
where M , C , K , and K  are mass matrix, gyroscopic 

matrix, tangent stiffness matrix, and centripetal stiffness 
matrix of the rotating beam, respectively.  M , C , K , and 

K  are assembled from the element mass matrix, 

gyroscopic matrix, tangent stiffness matrix, and centripetal 
stiffness matrix first in the current element coordinates and 
then transformed from element coordinate system to global 
coordinate system before assemblage using standard 
procedure. 

We shall seek a solution of (18) in the form 
 

ti
IR ei )( QQQ   (19) 

 

where 1i ,  is natural frequency of rotating beam, and 

RQ  and IQ  are real part and imaginary part of the vibration 

mode. 
Substituting (19) into (18), one may obtain a set of 
homogeneous equations expressed by 
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Equation (20) is a quadratic eigenvalue problem.  For a 

nontrivial Z , the determinant of matrix H in (20) must be 
equal to zero.  The value of K which make the determinant 
vanish are called eigenvalue of matrix H.  The bisection 
method is used here to find the eigenvalue. 

III. NUMERICAL STUDIES  

To investigate the effect of angular speed on the natural 
frequency of rotating Euler beams with different setting 
angles, the beam of elliptical cross section as shown in Fig. 3 
is considered.  The twist inertia moment corresponding to the 
centrifugal force induced by the constant rotation may be 

expressed by )cos()sin()(2
sszy IIm   , 

where s  is the steady state twist angle of the rotating beam, 

yI  and zI  are moment of inertia about the major axis and 

the minor axis of the cross section, respectively. The ratio of 

yI  and zI  is 25 for the elliptical cross section considered 

here.  For convenience, the following dimensionless 
variables are used here: 

TL

R
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s
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E
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E
LK T
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where su  is the steady state axial displacement of the 

rotating beam. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Elliptical cross section of the rotating beam. 
 

In practice, rotating structures are designed to operate in 
the elastic range of the materials. The maximum steady state 

axial strain of elastic rotating beam is )5.0(2
max  rk [2], 

which occur at the root of the rotating beam with different 
setting angle  . The dimensionless radius of the rotating hub 

0r , and the maximum dimensionless angular speed 
1.0k  are considered here.  In this section, iK  denotes that 

the dimensionless natural frequency of the rotating beam is 
the ith natural frequency at 0k ; iB and iC  denote that the 

corresponding vibration modes are the ith lateral vibration 

modes in the GX 2  and GX 3  directions, respectively at 0k ; 

iD  denotes that the corresponding vibration mode is the ith 

twist vibration mode about the GX1 axis at 0k . 

The results are obtained using 10 and 20 equal elements 
for cases 10aLT  and 50, respectively. The dimensionless 

natural frequencies iK (i = 1-4) for different setting angle at 

different angular speed are tabulated in tables I and II. The 
results given in [7] are also shown in Table I and II for 
comparison. To investigate the effect of the steady state twist 
deformation s  on the natural frequency of rotating Euler 

beams, cases with twist angle restrained are also studied for 
45 at 1.0k . The results are also shown in tables I and 

II. It can be seen that the difference between the lower 
dimensionless natural frequencies for the cases with and 
without considering the twist angle s  is insignificant for 

case 10aLT , but is remarked for case 50aLT . These 

may be partially attributed to that the twist angle s  of the 

rotating beam increases with increase of aLT .  However, it 

3
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seems that the effect of the twist angle s  on the higher 

natural frequencies of the rotating beam is not significant for 
all cases studied here. 

 
TABLE I 

DIMENSIONLESS FREQUENCIES FOR ROTATING BEAM 
( )10/,5/  aLba T ) 

k  


 

(deg) 
1K  

(B1) 
2K  

(C1) 
3K  

(B2) 
4K  

(D1) 

0 0 0.03515 0.17479 0.22000 0.38751

0.01 0 
15 
30 
45 
60 
75 
90 

0.03542 
0.03552 
0.03577 
0.03612 
0.03647 
0.03672 
0.03681 

0.17512
0.17510
0.17505
0.17498
0.17490
0.17485
0.17483

0.22123 
0.22125 
0.22129 
0.22135 
0.22140 
0.22144 
0.22146 

0.38754
0.38755
0.38760
0.38766
0.38771
0.38776
0.38777

0.05 0 
15 
30 
45 
60 
75 
90 

0.04065 
0.04253 
0.04736 
0.05344 
0.05909 
0.06305 
0.06447 

0.18291
0.18248
0.18126
0.17955
0.17775
0.17638
0.17586

0.24905 
0.24939 
0.25034 
0.25161 
0.25284 
0.25373 
0.25406 

0.38818
0.38858
0.38967
0.39113
0.39257
0.39360
0.39397

0.1 0 
15 
30 
45 
45* 
60 
75 
90 

0.04996 
0.05489 
0.06704 
0.08200 
0.08652 
0.09647 
0.10756 
0.11192 

0.20515 
0.20388
0.20020
0.19452 
0.19252
0.18772
0.18155
0.17888

0.32036 
0.32154 
0.32463 
0.32860 
0.32817 
0.33232 
0.33491 
0.33583 

0.39016 
0.39190
0.39645
0.40225 

- 
0.40766
0.41138
0.41270

* Twist angle is restrained 

 
TABLE II 

DIMENSIONLESS FREQUENCIES FOR ROTATING BEAM 
( 50/,5/  aLba T ) 

 

k  
  
(deg) 

1K  

(B1) 
2K  

(C1) 
3K  

(B2) 
4K  

(B3) 

0 0 0.00703 0.03515 0.04407 0.12338

0.01 0 
0 [7] 
15 
30 
45 
60 
75 
90 

0.00815 
0.00815 
0.00852 
0.00948 
0.01069 
0.01182 
0.01261 
0.01290 

0.03681 
0.03681
0.03672
0.03649
0.03615
0.03580
0.03552
0.03542

0.04990 
0.04990 
0.04996 
0.05015 
0.05040 
0.05064 
0.05082 
0.05089 

0.13001 
0.13001
0.13003
0.13010
0.13020
0.13030
0.13037
0.13039

0.05 0 
15 
30 
45 
60 
75 
90 

0.01495 
0.01693 
0.02166 
0.02746 
0.03328 
0.05396 
0.05220 

0.06447
0.06398
0.06252
0.06020
0.05718
0.03828
0.04065

0.12360 
0.12426 
0.12606 
0.12850 
0.13093 
0.13270 
0.13335 

0.23500
0.23536
0.23633
0.23765
0.23896
0.23992
0.24028

0.1 0 
15 
30 
45 
45* 
60 
75 
90 

0.02033 
0.02309 
0.02952 
0.03691 
0.07344 
0.04356 
0.10290 
0.10208 

0.11191
0.11136
0.10981
0.10752 
0.08652
0.10498
0.04824
0.04995

0.23214 
0.23346 
0.23708 
0.24213 
0.24276 
0.24737 
0.25141 
0.25295 

0.40896
0.40987
0.41228
0.41540 
0.41515
0.41834
0.42040
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The distributions of the dimensionless steady state axial 

displacement sU  and twist angle s  at different 

dimensionless angular speed for setting angle 45  are 

depicted in Fig. 4. The variation of dimensionless natural 

frequency with dimensionless angular speed is depicted in 
Fig. 5.  It can be seen from Fig. 4 that the tip twist angle is 

about rad2108.3  for case 50aLT  at 1.0k .  It can 

be seen from Fig. 5 that the effect of the setting angle and 
angular speed on the natural frequencies of the torsional 
mode 1D  is not significant. 
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Fig. 4. The steady state deformation of rotating beam. 
            (a/b =5, LT/a = 50) 
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Fig. 5. Variation of natural frequency with angular speed 

(a/b =5, LT/a = 50) 
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IV. CONCLUSIONS 

In this paper, the steady state deformation and the natural 
frequency of infinitesimal free vibration measured from the 
position of the corresponding steady state deformation are 
investigated using corotational finite element formulation for 
the rotating Euler beams with different setting angles, 
slenderness ratios and angular speeds of the hub.  

The element deformation and inertia nodal forces are 
systematically derived by the virtual work principle, the 
d’Alembert principle, and consistent linearization of the fully 
geometrically nonlinear beam theory in the current element 
coordinates. The equations of motion of the system are 
defined in terms of an inertia global coordinate system, which 
is coincident with a rotating global coordinate system rigidly 
tied to the rotating hub, while the total strains in the beam 
element are measured in an inertia element coordinate system, 
which is coincident with a rotating element coordinate 
system constructed at the current configuration of the beam 
element. The rotating element coordinates rotate about the 
hub axis at the angular speed of the hub. The results of 
numerical examples show that the geometrical nonlinearities 
that arise due to steady state twist angle and axial 
deformations should be considered for the natural 
frequencies of the rotating beams with different setting angle. 
It seems that the effect of the twist angle on the lower 
dimensionless natural frequencies of lateral vibration is 
remarked for slender beam with large ratio between moment 
of inertia about the major axis of the cross section and that of 
the minor axis. 
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