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Free Vibration Analysis of Rotating Euler Beam
by Finite Element Method

Kuo Mo Hsiao, Wen Yi Lin, and Fumio Fuijii

Abstract—In this paper a corotational finite element
formulation is employed to derive the equations of motion for a
three dimensional rotating Euler beam with constant angular
velocity. The steady state deformation and natural frequency of
the infinitesimal free vibration measured from the position of
the corresponding steady state deformation are investigated for
rotating Euler beams with different setting angle. The
governing equations for linear vibration are obtained by the
first order Taylor series expansion of the equation of motion at
the position of steady state deformation. Numerical examples
are studied to demonstrate the accuracy of the proposed
method and to investigate the effects of the steady twist
deformation on the natural frequency of rotating beams with
different setting angle.

Index Terms—Rotating beam, Corotational formulation,
Setting angle, Natural frequency.

I. INTRODUCTION

Rotating beams are often used as a simple model for
propellers, turbine blades, and satellite booms. Rotating
beam differs from a non-rotating beam in having additional
centrifugal force and Coriolis effects on its dynamics. It is
well known that the spinning elastic bodies sustains a steady
state deformations induced by constant rotation [1]. For
doubly symmetric rotating beams with setting angle other

than 0°and 90°, that steady state deformations include axial
deformation and twist deformation. The bending vibration,
torsional vibration, and axial vibration of rotating beams are
coupled due to the Coriolis effects [2] and the steady state
deformation [3]. However, to the authors’ knowledge, the
steady state deformation and its effects on the bending,
torsional, and axial vibration of doubly symmetric rotating

beams with setting angle other than 0° and 90° are not
reported in the literature. The objective of this paper is to
derive the equations of motion for a rotating doubly
symmetric Euler beam with constant angular velocity using a
corotational finite element formulation. The steady state
deformation and natural frequency of the infinitesimal free
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vibration measured from the position of the corresponding
steady state deformation are investigated using numerical
examples.

Il. FINITE ELEMENT FORMULATION

A. Description of Problem

Consider a doubly symmetric uniform Euler beam of
length Ly rigidly mounted with a setting angle S on the

periphery of rigid hub with radius R rotating about its axis
fixed in space at a constant angular velocity Q as shown in
Fig. 1. The axis of the rotating hub is perpendicular to the
beam axis. The beam sustains a steady state axial and
torsional deformation induced by constant rotation. In this
study, large displacement and rotation with small strain are
considered in the steady state deformation. The vibration of
the beam is measured from the position of the steady state
deformation, and only infinitesimal free vibration is
considered. The kinematics of the beam element presented in
[4] and the co-rotational finite element formulation proposed
in [4, 5] are employed here. In the following only a brief
description of the beam element is given.
Fig. 1. Rotating beam, (a) front view, (b) side view
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B. Basic Assumptions

The following assumptions are made in derivation of the
beam element behavior: (1) The beam is prismatic and
slender, and the Euler-Bernoulli hypothesis is valid. (2) The
cross section of the beam is doubly symmetric. (3) The unit
extension of the centroid axis of the beam element is uniform.
(4) The cross section of the beam element does not deform in
its own plane and strains within this cross section can be
neglected.

C. Coordinate Systems

In order to describe the system, we define three sets of
right handed rectangular Cartesian coordinate systems:

1. A rotating global set of coordinates, XiG (i=1,273)
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(see Figs. 1 and 2); the coordinates rotate about the hub axis
at a constant angular speed Q as shown in Fig. 1. The origin
of this coordinate system is chosen to be the intersection of
the hub and the centroid axis of the undeformed beam. The

XlG axis are chosen to coincide with the centroid axis of the

undeformed beam, and the XZG and Xg?‘ axes are chosen to

be the principal directions of the cross section of the beam at
the undeformed state. The nodal coordinates, nodal
deformation  displacements, nodal velocity, nodal
acceleration, and equations of motion of the system are
defined in this coordinates.

2. Element cross section coordinates, xf’ (i=1,2,3) (see
Fig. 2); a set of element cross section coordinates is
associated with each cross section of the beam element. The
origin of this coordinate system is rigidly tied to the centroid
of the cross section. The x; axes are chosen to coincide with

the normal of the unwrapped cross section and the x2S and

x§ axes are chosen to be the principal directions of the cross

section.
3. Element coordinates, x; (i=1,2, 3) (see Fig. 2); a set of

element coordinates is associated with each element, which is
constructed at the current configuration of the beam element.
The coordinates rotate about the hub axis at a constant
angular speed Q . The origin of this coordinate system is
located at node 1, and the x; axis is chosen to pass through

two end nodes of the element; the x, and x; axes are

determined by the method proposed in [6]. The position
vector, deformations, velocity, acceleration, internal nodal
forces, stiffness matrices, and inertia matrices of the elements
are defined in terms of these coordinates

D. Kinematics of Beam Element

In this study only the doubly symmetric cross section is
considered. Let Q (Fig. 2) be an arbitrary point in the beam
element, and P be the point corresponding to Q on the
centroid axis. The position vector of point Q in the
undeformed and deformed configurations may be expressed
as [4]:

Fig. 2. Coordinate systems

r =X, (X, t)e; +V(x,t)ey + W(X, e + 6, ,er + ye3 +ze5 (2)

where X, (x,t) , v(x,t) and w(x,t) are the X, X, and X,
coordinates of point P, respectively, in the deformed
configuration, 6, =6, ,(x,t) is the twist rate of the
deformed centroid axis, w(y,z) isthe Saint Venant warping
function for a prismatic beam of the same cross section, and

e¢; and eiS (i=1, 2, 3) denote the unit vectors associated with

the x; and x° axes, respectively. Note that e; and e’ are

coincident in the undeformed state. The relationship
betweene; and e is given in [6] and not repeated here. Here,
the lateral deflections of the centroid axis, v(x,t) and w(x,t),
and the rotation about the centroid axis, &, , , are assumed to
be the Hermitian polynomials of x.

The relationship among X, (x,t), v(x,t), and w(x,t), and

X may be given as [5]
X 2 2 292
xp(x,t)=u1+jO [+ £5)2 —v% — w2 T¥2dx 3)

where u, is the displacement of node 1 in the x, direction.
Note that due to the definition of the element coordinate
system, the value of u; is equal to zero. However, the
variation and time derivatives of u, are not zero.

Making use of the assumption of uniform unit extension,
&, and the axial displacements of the centroid axis may be
calculated using (3) and the current chord length of the beam
element.

The absolute velocity and acceleration vectors of point Q
in the beam element may be expressed as

a:a0+er+Qx(er)+29xi‘+i‘ 4)
a,=Qx(Qxrpp) (5)
Q=ALQg (6)
Fao = AGETAG ()
rpoc ={R+X,,0,0} (8)

where r is the position vector of point Q given in (2) referred
to the current moving element coordinate system, the symbol
() denotes time derivative, Q is the vector of angular
velocity referred to the current inertia element coordinates,
Qs =0{0 sing cosp} is the he angular velocity of the

hub referred to the global coordinates, Agg is the
transformation matrix between the current global coordinates
and the current element coordinates, a, is the absolute
acceleration of point o, the origin of the current element
coordinates, X, is coordinates of point o referred to the
current global coordinates, R is the radius of the hub.
Qx(Qxr) and 2Qxr are centripetal acceleration and

Coriolis acceleration, respectively. r and r are the velocity
and acceleration of point Q relative to the current moving
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element coordinates.

E. Element Nodal Force Vector, and Element Matrices

The element proposed here has two nodes with seven
degrees of freedom per node. The nodal parameters are
Chosen tO be Uij (Ulj :u]', u2j :Vj’ U3j :Wj)’ the Xi (l =

1, 2, 3) components of the translation vectors u; at node j (j
=1,2), ¢, the x (i =1, 2, 3) components of the rotation
vectors ¢; at node j (j = 1, 2), and f3; , the twist rate of the
centroid axis at node j. Here, the values of ¢; are reset to
zero at current configuration. Thus, ¢ , the variation of ¢; ,

represents infinitesimal rotations about the x; axes [6], and
the generalized nodal forces corresponding to og; are my,
The
the

the conventional
generalized nodal forces corresponding to du

moments about the x; axes.

ij o

variations of u; , are f;;, the forces in the x; directions. The

ij ij
generalized nodal forces corresponding to op; , the
variations of S;, are bimoment B; .

The element nodal force vector is obtained from the virtual
work principle and the d’Alembert principle in the current
element coordinates. The virtual work principle requires that

éWext = &ltf = éWint

9
= .[V (6115811 + 20'125812 + 20’135813 + p5rta)dV = &]}gfg ( )
f:fD+fI :{fllml!vamZvB} (10)
f, =f0 +f, ={f’, m? ], mj, B}

849 ={0uy, 607, dinz, 07, P} (11)
oq ={ouy, 6y, Su,, &b, P}

1 1 1
&1 = E(r,txr,x -1, €12 = Er,txr,y - &3 = Er,txr,Z' (12)

501 :{5911,—&/],&/’1} y

& ; ={64,60;.645;}
f; ={f, f55, f3;} 1
m; ={m;j,m,;,mg;} , ff ={f5 1, 5} ,
m{ ={mfj,mg;,m} G = 1, 2), B=1{56, 56} and
B={B,,B,}. fP and f' are element deformation nodal

force vector and inertia nodal force vector, respectively. V is
the volume of the undeformed beam element, 6¢; (i=1, 2, 3)

are the variation of g in (12) corresponding to 5q, . Note
that because oJg; are function of dq, , SW;, may be
expressed by oqLf, . £ and f) are generalized

deformation nodal force vector and inertia nodal force vector
corresponding to 8q, . oy (i = 1, 2, 3) are the second

Piola-Kirchhoff stress. For linear elastic material, oy, = Egyq
o, =2Gg, , and o043 =2Gg3 , where E is Young’s
modulus and G is the shear modulus. p is the density, or is

the variation of r in (2). a is the absolute acceleration given
in (4). The higher order terms of nodal parameters in the
element nodal forces are neglected by consistent second
order linearization in this study.

The relation between oq and Jq, , and the relation

between f and f, may be expressed as [4]
&y =Tydq, f=Tyf, (13)
where f, may be calculated using (2-12).

The element matrices considered are element tangent
stiffness matrix k, mass matrix m, centripetal stiffness matrix
kq , and gyroscopic matrix ¢. The element matrices may be
obtained by differentiating the element nodal force vectors in
(13) with respect to nodal parameters, and time derivatives of
nodal parameters, The element matrices may be expressed as

| | |
L Y | of

- =——, e=—— (14)
aq oq Q°6q Qdq

F. Equations of Motion

The nonlinear equations of motion for a rotating beam with
constant angular velocity may be expressed by

¢=F°(Q)+F'(©2,Q0,Q.Q)=0
Q=0Q;s+Q(t)

(15)
(16)

where ¢ , FP , and F' are unbalanced force vector,
deformation nodal force vector, and inertia nodal force vector

of the structural system, respectively. F' and FP are
assembled from the element nodal force vectors, which are
calculated first in the current element coordinates and then
transformed from element coordinate system to global
coordinate system before assemblage using standard

procedure. Q is the nodal displacement vector of the

rotating beam, Q and Q are the nodal velocity vector and
the nodal acceleration vector of the rotating beam,
respectively, Qg is the steady state nodal displacement

vector induced by constant rotation speed Q, Q(t) is the
time dependent nodal displacements vector caused by the
free vibration of the rotating beam. Here only infinitesimal
vibration is considered.
G. Governing Equations for Steady State Deformation

For the steady state deformations, Q(t)=0. Thus (15)

can be reduced to nonlinear steady state equilibrium
equations and expressed by

¢ =F2(Qs) + Q°F (Q5) =0 (17)

where FSD (Qs), and QZFS' (Qs) are the deformation nodal
force vector, and the inertia nodal force (the centrifugal force)
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vector of the structural system corresponding to the steady
state nodal displacement vector Qg , respectively. Note that

Q%F! (Qs) is deformation dependent. Thus Q2F!(Qs)

should be updated at each new configuration.

Here, an incremental-iterative method based on the
Newton-Raphson method is employed for the solution of
nonlinear steady state equilibrium equations at different
rotation speed Q.

H. Governing Equations for Free Vibration Measured
From The Position of Steady State Deformation

Substituting (16) into (15), and setting the first-order
Taylor series expansion of the unbalanced force vector ¢
around Qg to zero, one may obtain the governing equations

for linear free vibration of the rotating beam measured from
the position of the steady state deformation as follows.

MQ+QCQ+ (K + Q°Ko)Q =0 (18)
where M, C, K, and K are mass matrix, gyroscopic
matrix, tangent stiffness matrix, and centripetal stiffness
matrix of the rotating beam, respectively. M, C, K, and
Ko are assembled from the element mass matrix,
gyroscopic matrix, tangent stiffness matrix, and centripetal
stiffness matrix first in the current element coordinates and
then transformed from element coordinate system to global
coordinate system before assemblage using standard
procedure.
We shall seek a solution of (18) in the form

Q=(Qr +iQ) )" (19)
wherei = \/—_1 w is natural frequency of rotating beam, and
Qg and Q, are real part and imaginary part of the vibration

mode.
Substituting (19) into (18), one may obtain a set of
homogeneous equations expressed by

HZ=0
2 2
| K+Q°Kg -oM
oQC

(20)
aQCt

H 2 2
K+Q%Kq - 0*M

(1)

Equation (20) is a quadratic eigenvalue problem. For a
nontrivial Z , the determinant of matrix H in (20) must be
equal to zero. The value of K which make the determinant
vanish are called eigenvalue of matrix H. The bisection
method is used here to find the eigenvalue.

I1l. NUMERICAL STUDIES

To investigate the effect of angular speed on the natural
frequency of rotating Euler beams with different setting
angles, the beam of elliptical cross section as shown in Fig. 3
is considered. The twist inertia moment corresponding to the
centrifugal force induced by the constant rotation may be

expressed by mszZ(Iy —1;)sin(B + ¢s)cos(B + ¢s)

where ¢ is the steady state twist angle of the rotating beam,
Iy and I, are moment of inertia about the major axis and

the minor axis of the cross section, respectively. The ratio of
Iy and I, is 25 for the elliptical cross section considered

here.  For convenience, the following dimensionless
variables are used here:

=R u =Y k=QLTJZ, K:wLT\/Z,
Ly Ly E E

where ug is the steady state axial displacement of the
rotating beam.

X3
b=0.01m
f alb=5
a L /a=10,50
| w2 E=210Gpa
S
v=03

p = T7850kg /m°

b
Fig. 3. Elliptical cross section of the rotating beam.

In practice, rotating structures are designed to operate in
the elastic range of the materials. The maximum steady state

axial strain of elastic rotating beam is sy = kz(r +0.5) [2],

which occur at the root of the rotating beam with different
setting angle S . The dimensionless radius of the rotating hub

r=0, and the maximum dimensionless angular speed
k =0.1 are considered here. In this section, K; denotes that

the dimensionless natural frequency of the rotating beam is
the ith natural frequency at k =0; Bjand C; denote that the

corresponding vibration modes are the ith lateral vibration
modes in the XZG and Xff directions, respectively at k =0;
D; denotes that the corresponding vibration mode is the ith

twist vibration mode about the Xle axisat k =0.

The results are obtained using 10 and 20 equal elements
for cases Ly /a=10 and 50, respectively. The dimensionless

natural frequencies K; (i = 1-4) for different setting angle at

different angular speed are tabulated in tables | and Il. The
results given in [7] are also shown in Table I and Il for
comparison. To investigate the effect of the steady state twist
deformation ¢, on the natural frequency of rotating Euler

beams, cases with twist angle restrained are also studied for
B =45 at k =0.1. The results are also shown in tables I and

I. 1t can be seen that the difference between the lower
dimensionless natural frequencies for the cases with and
without considering the twist angle ¢ is insignificant for

case Lt /a=10, but is remarked for case Ly /a =50. These
may be partially attributed to that the twist angle ¢ of the
rotating beam increases with increase of Ly /a. However, it
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seems that the effect of the twist angle ¢ on the higher
natural frequencies of the rotating beam is not significant for

frequency with dimensionless angular speed is depicted in
Fig. 5. It can be seen from Fig. 4 that the tip twist angle is

all cases studied here.

TABLEI
DIMENSIONLESS FREQUENCIES FOR ROTATING BEAM

(alb=5,L; /a=10))

B K1 Ky Ks Ky
K (deg) (BY) (5h) (B2) (D1)
0 0 0.03515 0.17479 0.22000 0.38751
001 O 0.03542 0.17512 0.22123 0.38754
15 0.03552 0.17510 0.22125 0.38755
30 0.03577 0.17505 0.22129 0.38760
45 0.03612 0.17498 0.22135 0.38766
60 0.03647 0.17490 0.22140 0.38771
75 0.03672 0.17485 0.22144 0.38776
90 0.03681 0.17483 0.22146 0.38777
005 0 0.04065 0.18291 0.24905 0.38818
15 0.04253 0.18248 0.24939 0.38858
30 0.04736 0.18126 0.25034 0.38967
45 0.05344 0.17955 0.25161 0.39113
60 0.05909 0.17775 0.25284 0.39257
75 0.06305 0.17638 0.25373 0.39360
920 0.06447 0.17586 0.25406 0.39397
0.1 0 0.04996 0.20515 0.32036 0.39016

15 0.05489 0.20388 0.32154 0.39190
30 0.06704 0.20020 0.32463 0.39645
45 0.08200 0.19452 0.32860 0.40225
45* 0.08652 0.19252 0.32817 -

60 0.09647 0.18772 0.33232 0.40766
75 0.10756 0.18155 0.33491 0.41138
90 0.11192 0.17888 0.33583 0.41270

* Twist angle is restrained

TABLE I
DIMENSIONLESS FREQUENCIES FOR ROTATING BEAM

(alb=5,L;/a=50)

B K, K, Ka Kq
K (e (BY (1) (B2) (B3)
0 0 0.00703 0.03515 0.04407 0.12338
001 O 0.00815 0.03681 0.04990 0.13001
0[7] 0.00815 0.03681 0.04990 0.13001
15 0.00852 0.03672 0.04996 0.13003
30 0.00948 0.03649 0.05015 0.13010
45 0.01069 0.03615 0.05040 0.13020
60 0.01182 0.03580 0.05064 0.13030
75 0.01261 0.03552 0.05082 0.13037
90 0.01290 0.03542 0.05089 0.13039
005 0 0.01495 0.06447 0.12360 0.23500
15 0.01693 0.06398 0.12426 0.23536
30 0.02166 0.06252 0.12606 0.23633
45 0.02746 0.06020 0.12850 0.23765
60 0.03328 0.05718 0.13093 0.23896
75 0.05396 0.03828 0.13270 0.23992
90 0.05220 0.04065 0.13335 0.24028
0.1 0 0.02033 0.11191 0.23214 0.40896

15 0.02309 0.11136 0.23346 0.40987
30 0.02952 0.10981 0.23708 0.41228
45 0.03691 0.10752 0.24213 0.41540
45% 0.07344 0.08652 0.24276 0.41515
60 0.04356 0.10498 0.24737 0.41834
75 0.10290 0.04824 0.25141 0.42040
90 0.10208 0.04995 0.25295 0.42114

* Twist angle is restrained

about 3.8x10?rad for case Lt /a=50 at k=0.1. It can
be seen from Fig. 5 that the effect of the setting angle and
angular speed on the natural frequencies of the torsional
mode Dy is not significant.

4 |k T T T
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Fig. 4. The steady state deformation of rotating beam.
(a/b =5, Ly/a = 50)
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Fig. 5. Variation of natural frequency with angular speed
(a/b =5, Ly/a = 50)
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IV. CONCLUSIONS

In this paper, the steady state deformation and the natural
frequency of infinitesimal free vibration measured from the
position of the corresponding steady state deformation are
investigated using corotational finite element formulation for
the rotating Euler beams with different setting angles,
slenderness ratios and angular speeds of the hub.

The element deformation and inertia nodal forces are
systematically derived by the virtual work principle, the
d’Alembert principle, and consistent linearization of the fully
geometrically nonlinear beam theory in the current element
coordinates. The equations of motion of the system are
defined in terms of an inertia global coordinate system, which
is coincident with a rotating global coordinate system rigidly
tied to the rotating hub, while the total strains in the beam
element are measured in an inertia element coordinate system,
which is coincident with a rotating element coordinate
system constructed at the current configuration of the beam
element. The rotating element coordinates rotate about the
hub axis at the angular speed of the hub. The results of
numerical examples show that the geometrical nonlinearities
that arise due to steady state twist angle and axial
deformations should be considered for the natural
frequencies of the rotating beams with different setting angle.
It seems that the effect of the twist angle on the lower
dimensionless natural frequencies of lateral vibration is
remarked for slender beam with large ratio between moment
of inertia about the major axis of the cross section and that of
the minor axis.
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