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Abstract—Observers are widely used to generate residuals
for fault diagnosis processes. However the generated residuals
are not only influenced by faults but also by disturbances and
model uncertainties. In order to avoid false alarm and achieve a
high fault detection rate disturbances and model uncertainties
have to be considered in the fault detection and isolation
(FDI) processes. In rotor systems the predominant disturbances
and model uncertainties are forces excited by unbalances and
gyroscopic effect which result in a rotary frequency dependent
system behavior. The effect of unbalance forces and gyroscopic
effect appear in a sinusoidal form with rotor rotary frequency.
The disturbances and model uncertainties can be generally
represented using unknown inputs and the signals of unknown
inputs are sinusoidal. To take advantage of this characteristic of
rotor systems augmented observers that account for sinusoidal
unknown inputs are designed in this work. The augmented
observer for sinusoidal signals can be used to estimate the
distribution matrix of unknown inputs or to generate the
residual for fault detection. In case that the faults (e.g. rotor disc
wear) acting on the rotor are also sinusoidal, the augmented
observer can be applied for fault isolation and identification.
Different configurations of the observers are introduced in this
paper according to their applications.

Index Terms—fault detection, fault diagnosis, observers, ro-
tors, unbalances, unknown inputs.

I. INTRODUCTION

OBSERVERS based fault detection and isolation (FDI)
methods are widely used in technical processes. The

quality of the generated residuals determines the FDI per-
formances, however the residuals are not only influenced
by faults but also by disturbances and model uncertainties.
In order to achieve better FDI performances disturbances
and model uncertainties have to be attenuated or decoupled
on the residuals i.e. the designed observers as residual
generators have to be robust against disturbances and model
uncertainties. In rotor systems unbalances are inevitable and
their distributions on the rotor shaft can not be detected to
full extent. Forces excited by unbalances in rotating shaft
are major disturbances in rotor systems. In cases of rotor
with large discs, the gyroscopic effect cannot be neglected
and the system behavior varies dependent on the rotor rotary
frequency. If a rotor model is built for a constant rotary
frequency, the gyroscopic effect can be considered as model
uncertainty [1]. Observers e.g. Luenberger observer and
Kalman filter [2] designed on the basis of the constant linear
time invariant (LTI) model are not applicable for other rotary
frequencies. If the gyroscopic matrix is modeled, an observer
dependent on the rotary frequency can be constructed. But
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the gyroscopic matrix is often not available or can not be
modeled accurately. In these cases alternative methods have
to be found to take the gyroscopic effect into account.

In the last decades model based FDI methods dealing
with disturbances and model uncertainties have been widely
investigated [3], [4]. Wantanabe and Himelblau introduced
the idea of unknown inputs observer (UIO) in [5]. Since
then, different authors further developed the method and
methods to describe disturbances and model uncertainties as
unknown inputs are investigated [6], [7]. The UIO is able to
estimate the system states and outputs accurately despite the
presence of unknown inputs. The generated residuals are thus
decoupled from unknown inputs. Besides the UIO approach,
other methods such as eigenstructure assignment [8], [9] and
null space based methods [10], [11] are developed for FDI
with the aim to decouple unknown inputs in residual genera-
tion processes. Besides the methods that decouple unknown
inputs, methods to attenuate the influence of disturbances
and model uncertainties and enhance the influence of faults
on the residuals at the same time by means of optimization
[12] e.g. using LMI [13] or genetic algorithm [14] are also
investigated.

Most of the methods introduced above are designed under
the assumption that no information about the unknown inputs
is available. In rotor systems exited by unbalances, the pre-
dominant disturbances e.g. unbalance forces are sinusoidal
with rotor rotary frequency. The influence of gyroscopic
effect, which results in a rotary frequency dependent system
behavior, also acts on the rotor system in a sinusoidal way
[1]. Instead of describing the gyroscopic effect as a rotary
frequency dependent term in the model, it can be considered
as sinusoidal disturbance moments acting on the system [15].
Often the rotor rotary frequency can be measured, thus if the
unbalance forces and gyroscopic effect are represented by
unknown inputs, the unknown inputs are sinusoidal signals
with known frequency. Augmented observers introduced in
this paper utilize this characteristic of the unknown inputs
and consider the influences of unknown inputs in the observer
structure [16]. It can be used both for the FDI purpose and
for the estimation of the unknown input distribution matrix.

In section II the structure of the augmented observer which
account for the effect of sinusoidal unknown inputs is intro-
duced. Different configurations of the augmented observer
for the purpose of fault detection and for fault isolation
and identification are presented in section III. In section IV
a method using augmented observer to estimate unknown
inputs distribution matrix, which represents how the dis-
turbances and model uncertainties influence the system, is
introduced. The accuracy of the estimates dependent on the
sensor number is discussed. In order to test the functionality
of the augmented observer, we apply the observer both on
the basis of simulation and on the basis of measurements of
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a rotor test rig in section VI. The results are discussed in the
section before a conclusion is made in section VII.

II. DESIGN OF AUGMENTED OBSERVER

A. Rotor model

In this work we consider a class of rotor systems with the
state space representation:

ẋ = A(Ω)x+Bu+ Ẽd̃

y = Cx, (1)

where x denotes the system states, u the control input, y the
sensor signals and d̃ the disturbances, i.e. unbalance forces
working on the rotor. A(Ω), B, C, Ẽ are system matrices
with appropriate dimensions, where A(Ω) is dependent on
the rotor rotary frequency Ω because of gyroscopic effect.
The model (1) is controllable and observable for whole rotary
frequency range.

The major focus of this work is to detect input faults
(e.g. rotor disc wear) that is influenced by the gyroscopic
effect and periodical with the rotor rotary frequency. These
faults are not simply distinguishable from the influences of
gyroscopic effect and unbalance forces. The system under
the consideration of faults reads:

ẋ = A(Ω)x+Bu+ Ẽd̃+ Ff

y = Cx, (2)

where f is the faults to be detected and F is its input
matrix. It has to be pointed out that the augmented observers
introduced in this work are also applicable for FDI of output
faults and multiplicative faults. Multiplicative faults can be
transformed into additive faults [12]. Output faults e.g. sensor
faults are not influenced by gyroscopic effect and are often
simple to be separated from the influence of unknown inputs
in frequency domain. Thus the detection of output faults are
not explicitly presented in this paper.

For the FDI processes some limitations of the model are
considered according to the knowledge of the rotor system:

• The unbalances cannot be detected to full extent, thus
the disturbance term Ẽd̃ in equation (1) is supposed to
be unknown.

• If a physical model for the rotor is available, the
gyroscopic effect can be modeled as in equation (1).
If the model is to be identified, the gyroscopic effect is
hard to identify because of its dependence on rotary
frequency. Without loss of generality, it is assumed
that gyroscopic effect is not modeled and only models
at specific rotor rotary frequencies are assumed to be
available.

• The rotor rotary frequency is supposed to be measured.
The design of the augmented observer is based on a model

of non-rotating rotor

ẋ = Ax+Bu+ Ff

y = Cx
(3)

with A = A(0). Since unbalance forces and gyroscopic effect
only appear in rotating rotor, the model of non-rotating rotor
is simple to be identified or simple to be built physically.
Thereby, the gyroscopic effect and unbalance forces are
not included in the model, for FDI purpose they can be

represented together using unknown inputs d with their
distribution matrix E [15], [1]. The model is then extended
to

ẋ = Ax+Bu+ Ed+ Ff

y = Cx.
(4)

For the design of augmented observer, the distribution
matrix E of unknown inputs has to be modeled or estimated.
The knowledge about the amplitudes and phases of unknown
inputs d is not necessary, while the frequency of the unknown
inputs i.e. the rotor rotary frequency has to be known.

B. Augmented state space model and observer

The augmented observer introduced in this work and in
[16] is based on the idea of disturbance observer [17],
[18], which introduces extra states in the system model to
describe the influences and behavior of disturbances. If the
disturbances can be described using a disturbance model:

ẋd = Adxd

d = Cdxd, (5)

the augmented structure of the system reads

ẋB =

[
A ECd

0 Ad

]
xB +

[
B
0

]
u

y =
[
C 0

]
xB = CBxB , (6)

with the augmented system states vector

xB =

[
x
xd

]
. (7)

The matrices Ad and Cd are respective matrices for the
disturbance model and the matrix E describes how the
disturbances influence the plant. If the augmented model is
used for unknown inputs, the matrix E is set to unknown
input distribution matrix.

Since we use the unknown inputs to represent unbalance
forces and gyroscopic effect, their signals are sinusoidal with
same frequency and different amplitudes and phase angles
i.e.

xB =

δ1 sin(Ωt+ θ1)
δ2 sin(Ωt+ θ2)

...

 , (8)

where Ω is the frequency of the unknown inputs and
δ1, δ2, . . . and θ1, θ2, . . . are the amplitude and phase angles
of the unknown inputs. Two different structures can be used
for the disturbance model. If the disturbance states vector xd
in equation (5) is written as

xd =

[
d

ḋ

]
, (9)

a disturbance model can be built as

ẋd =

[
0 I
−Ω2I 0

]
︸ ︷︷ ︸

Ad

xd

d =
[
I 0

]︸ ︷︷ ︸
Cd

xd. (10)
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Another option for disturbance model uses a complemen-
tary vector of unknown inputs

d̂ =

δ1 cos(Ωt+ θ1)
δ2 cos(Ωt+ θ2)

...

 . (11)

If the disturbance states vector is set as

xd =

[
d

d̂

]
, (12)

the disturbance model is then in the form of

ẋd =

[
0 −ΩI

ΩI 0

]
︸ ︷︷ ︸

Ad

xd

d =
[
I 0

]︸ ︷︷ ︸
Cd

xd. (13)

On the basis of the augmented system model in equation
(6), observers (e.g. Luenberger observer) can be designed.
The observers are called augmented observer in this pa-
per. Both of the disturbance models can be applied to
the augmented model and the augmented system has to
be observable. The structure of an augmented observer is
presented in Fig. 1, where ŷ is the observed outputs vector
K is the feedback term of the observer and r is the residual
vector.

System	  

Augmented	  
system	  model	  

𝑑 

𝐾	  
𝑟 

𝑦 

𝑦  

𝑓 

𝑢 

− 

+ 

Fig. 1. Scheme of augmented observer

C. Observability of augmented observer

Both of the disturbance models (10) and (13) have the
same output matrix Cd. Applying the matrix Cd to equation
(6), the augmented system model reads

ẋB =

[
A

[
E 0

]
0 Ad

]
︸ ︷︷ ︸

AB

xB +

[
B
0

]
︸︷︷︸
BB

u

y =
[
C 0

]
xB = CBxB , (14)

Lemma II.1. If (A,C) is an observable pair and E is of
full column rank, equation (14) is observable only if

rank(E) ≤ rank(C), (15)

i.e. rank(E) must be equal to or smaller than the number
of linearly independent measurements.

Proof: Assume that rank(A) = n and rank(E) = p,
according to the observability criterion of Hautus [19] the
system (14) is observable if and only if

rank

(
λiI −AB

CB

)
= n+ 2p (16)

for all eigenvalues λi of AB ∈ R(n+2p)×(n+2p). The system
matrix AB with

det(λiI −AB) = det(λiI −A) · det(λiI −Ad) (17)

has at least p pairs of eigenvalues at λi = ±iΩ for det(λiI−
Ad) = 0. Thus in case of λi = ±iΩ, λiI −AB will be row
rank deficient with rank(±iΩI−AB) ≤ n+p. Thus rank(C)
must be greater than or equal to rank(E) = p, in order to
satisfy condition (16).

According to Lemma II.1 the augmented observer can
often not be applied in systems with large number of
disturbances, the applicability is limited by the available
sensor number. In order to apply augmented observer, there
must be at least so many sensors available as the number
of the considered unknown inputs; otherwise the rank of
matrix E has to be reduced. One possible method to reduce
the rank of matrix E is to use the technique of singular
value decomposition. The matrix E can be reduced as a
set of singular vectors corresponding to the most significant
singular values [3], [15].

III. AUGMENTED OBSERVER FOR FDI

The augmented system vector xB can therefore be ob-
served with a designed augmented observer under the con-
dition that the augmented system is observable. In the
considered scenario the system vector x and disturbance
states vector xd are observed and E describes the influence
of disturbance states vector xd on real system vector x (see
augmented system model in equation (6)). Thus, theoretically
the estimated system states vector x is accurate under the
influences of the unknown inputs. The generated residuals

r = y − ŷ (18)

would be zero under the influence of unknown inputs since
there is no difference between the estimated observer outputs
ŷ and the system outputs y. Hence, the unknown inputs have
no impacts on the residuals ideally, in real systems their
impacts on the residuals will be strongly attenuated . Faults
with the input matrix F 6= E will be detected easily, because
the deviation of the residuals by faults is reasonably higher
than the deviation of the residuals by unknown inputs. A
major class of the faults in rotor systems, like rotor disc
wear, show a sinusoidal oscillation. An augmented system
model with the structure

ẋB =

[
A

[
E F

]
Cd

0 Ad

]
xB +

[
B
0

]
u

y = CBxB (19)

can be designed for fault isolation and identification. The
augmented states vector xB is extended to include the
respective sinusoidal fault f . An augmented observer based
on model (19) enables the direct observation of the sinusoidal
fault f . Observed fault signals can be used to accomplish
fault isolation and identification.
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IV. ESTIMATION OF THE UNKNOWN INPUT DISTRIBUTION
MATRIX USING AUGMENTED OBSERVER

Information about the disturbances and model uncertain-
ties might be insufficient or not available. In such a case
the unknown input distribution matrix E has to be estimated
by means of measurements. In rotor systems the augmented
observer is applicable to estimate the distribution matrix E
of the sinusoidal unknown inputs.

For the estimation of the matrix E an augmented system
model is used:[

ẋ
ẋd1

]
=

[
A

[
H 0

]
0 Ad1

] [
x
xd1

]
+

[
B
0

]
u

y =
[
C 0

] [ x
xd1

]
. (20)

The disturbance model (10) or (13) can be used for Ad1
.

Observability of the augmented system (20) is affected by
the choice of matrix H . In ideal case (i.e. there are enough
sensors available to fulfill the observability condition) the
matrix H can be set to H = I . Comparing to the system
model (14) the disturbance vector reads

d1 := Ed =
[
H 0

]
xd1

. (21)

If an augmented observer is applied to (20), the disturbance
vector d1 can be estimated directly. The estimated vectors
d1(k) for discrete time steps k are the result of a mapping
of unknown inputs d(k) by matrix E. The distribution matrix
E can then be estimated as a vector space in which all the
vectors d1(k) lie.

The observability condition rank(C) ≥ rank(A) for H =
I is in many cases not fulfilled for rotor systems with high
system order. Thus the matrix H has to be chosen properly,
so that the equation (20) is observable and the estimation
of E is as accurate as possible. Note that the frequency
range of unknown inputs is limited from 0 to maximal rotor
rotary frequency. In the state space representation of the
rotor system the eigenforms corresponding to eigenvalues
with negative imaginary parts (i.e. negative eigenfrequencies)
are not excited significantly, they can be neglected without
introducing too much error. The modes corresponding to
eigenfrequencies that are much higher than the maximum
rotary frequency usually have less influence than the low
frequency ones on the system outputs. Thus influences of
the high frequency modes can often also be neglected. Thus
the matrix H can be chosen as

H =
[
e1, e2, · · · , eq

]
, (22)

with q ≤ rank(C) and e1, e2, · · · , eq are eigenvectors
corresponding to the eigenvalues with low positive imaginary
parts.

A set of states vectors xd1
(k) for discrete time steps

k can be observed using an observer on the basis of the
augmented system model and the disturbance vectors d1(k)
can be calculated as

d1(k) := Ed(k) ≈
[
H 0

]
xd1

(k). (23)

The solution E = H is mathematically possible for this
problem, but for the FDI purpose it is practically not appli-
cable. Otherwise part of the faults would be represented by
the unknown inputs and can thus not be detected. In order

to achieve a high fault detection rate, the matrix E is to
be estimated with fewer columns. For state space control a
matrix E with fewer columns means less computing time
and thus is also advantageous.

For N time steps of a measurement, a set M of vectors
d1(k) is calculated:

M =
[
d1(1), d1(2), · · · , d1(N)

]
. (24)

Using singular value decomposition M is decomposed as

M = U
[
diag(σ1, σ2, · · · , σn), 0

]
V T . (25)

The matrices U and V are left and right singular matrices and
σ1, σ2, · · · , σn are the singular values with σ1 ≥ σ2 ≥ · · · ≥
σn. The desired low rank approximation of E is obtained by
keeping a few of the most significant singular values [3] i.e.:

E = U [diag(σ1, σ2, · · · , σp)] , (26)

with p ≤ n and σ1 � σp+1 ≥ σn.

V. TEST RIG

Active bearing planes 

Drive 

Passive bearing 

Shaft 

Sensor planes 

Sensor plane 1 

Catcher bearing 

Test bed Piezo stack actuators 

Disk spring for prestress 

Force sensor 

Ball bearing 

Ball bearing 

#3 #2 

Sensor plane 2 

Balancing ring 

Fig. 2. Rotor test rig

The augmented observer is tested on a rotor test rig at the
Institute for Mechatronic Systems in Mechanical Engineering
at the Technische Universität Darmstadt. Fig. 2 shows a cut-
away view of the test rig. The main part of the test rig is a
rotor, which has scaled similarity to medium-sized low pres-
sure engine shafts. The rotor has a length of about 1100mm,
a main diameter of 35mm and a maximum rotational speed
of 300Hz. Two out of the three bearings of the test rig are
equipped with piezo stack actuators to influence the rotor
vibrations. Due to the bearing configuration with 3 bearings
the alignment of the bearings was given a high priority during
buildup of the test rig. Since piezo stack actuator only push
and not pull, the actuators are prestressed with about 7kN
by disk springs with a low stiffness compared to the actuator
stiffness. One piezo of each active bearing is horizontal and
one is vertical, the springs are located on the opposite side of
each actuator. The actuators have a maximal displacement of
120µm and a blocking force Fblock of 14kN. Voltages from
0 to 1000 Volts can be applied. We choose a offset voltage
of 500 Volts to enable positive and negative input signals. To
avoid torsional or bending forces on the actuators modified
axial bearings are implemented between the bearing cup
and the piezo stack actuators, see Fig. 3. For high dynamic
amplification of the control output modified E-481 amplifiers
from Physik Instrumente are chosen.
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Force sensor 

Rotor 

Axial bearing  
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Piezo stack actuator 

Active bearing frame 

Disk spring  
for prestress 

Bearing cup 

Fig. 3. Active bearing configuration

Most of the vibrations in the system are caused by unbal-
ance of the rotor and have the same frequency as the rotation.
Implemented sensors to evaluate rotor vibrations are eddy
current displacement sensors to measure radial displacement
of the rotor shaft and force transducers in the bearings in a
position where the applied forces are about the same as in
the actuators. For data acquisition from the force transducer
an analog amplifier and a 3.3kHz first order analog low pass
filter is used.

Four eddy current sensors in two sensor planes measure
the radial displacement of the rotor shaft and four force
sensors measure the forces at the active bearings. The sensors
of each plane are positioned rectangular to each other and
thus the whole orbit of the rotor can be measured. To avoid
aliasing the signals from sensors are filtered with 4kHz first
order analog low pass filters before digitalization. For data
acquisition and output signal generation a dSpace ds1103
real time system is used.

The rotor can be considered a high-speed turning flexible
rotor, since there are two natural bending eigenfrequencies,
at about 110Hz and 240Hz, in the operating range up to
30Hz. A 5.1kW AC motor that is coupled to the shaft can
accelerate or decelerate the rotor through the whole operating
range within 30 seconds.

Because of the rotor disc the gyroscopic effect is not
negligible. The dependence of the resonances on rotary speed
is presented in Fig. 4. The points and crosses indicate the
resonances of measured transfer functions at different rotary
speeds.

For the purpose of FDI, a multiple inputs and multiple
outputs (MIMO) model of the non-rotating rotor is identified.
Since the unbalance forces and gyroscopic effect do not ap-
pear on non-rotating rotors, the rotor is only exited by control
inputs during the identification process. The identification
is simple comparing to the identification of a rotating rotor
model. Sweep excitations of the control inputs are used for
the identification. Using a subspace method, the model is
identified with an order of 16.
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Fig. 4. Measured campbell diagram

VI. APPLICATION

A. Application of augmented observer for fault detection

The identified model for non-rotating rotor describes the
system behavior without disturbances and model uncertain-
ties. After balancing of the test rig, the residual unbalance
still results in vibration of the rotor. The forces induced
by residual unbalance is considered as disturbances on the
test rig. As presented in section V, the gyroscopic effect is
not negligible and is thus considered as model uncertainty.
In order to achieve a higher FDI performance, the residual
unbalance and gyroscopic effect have to be considered in
the FDI process. As presented in section II we represent
both disturbances and model uncertainties as unknown inputs
and their distribution matrix are estimated by means of
measurements of the test rig.

We use the augmented observer introduced in section IV to
estimate the distribution matrix E of unknown inputs. Since
8 sensors are available and the identified state space model
has an order of 16, only the eigenforms corresponding to
the positive eigenfrequencies are considered in the estima-
tion process, vibrations of the eigenforms corresponding to
negative eigenfrequencies are neglected. Investigation shows
that choice of the dimension of matrix E is dependent on
the considered frequency range. If the rotor is running at a
constant rotary frequency, an estimate of E with 2 columns
is enough to represent the influences of the unknown inputs.
In order to consider the influence of residual unbalance and
gyroscopic effect for a large rotary frequency range, the
matrix E has to be estimated with more columns. In this
case measurements at different rotary frequencies in the con-
sidered range are needed. At each rotary frequency a matrix
Em with (m = 1 . . .) is estimated using augmented observer
to represent both gyroscopic effect and unbalances at this
rotary frequency. According to equations (24), (25) and (26)
the estimates of Em are proportional to the amplitude of
unknown inputs. Since the rotor excitations (i.e. unbalance
forces) used for the estimation are proportional to Ω2, the
Em are weighted with 1/Ω2 and then combined in EM with

EM =
[
E∗

1 , E∗
2 , . . .

]
, (27)

where matrices E∗
m are weighted matrices of Em. Using

the singular value decomposition technique presented in (25)
and (26), EM is approximated by a E-matrix with desired
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dimension; e.g. for a rotary speed range from 0rpm to
9000rpm, the matrix E has to be estimated with 6 columns.

Although it is possible to represent the disturbances and
model uncertainties for a large rotary frequency range, a
matrix E with less columns is in general simple to handle and
often result in better FDI performance. Considering matrix
E as a vector space, the mapping of faults vector f on E
is also decoupled from the residuals. Thus a matrix E with
large dimension often result in reduced faults responses on
the residuals.

0.5 0.52 0.54 0.56 0.58 0.6
−0.2

0

0.2
Sensor signals

Se
ns

or
 1

0.5 0.52 0.54 0.56 0.58 0.6
−0.1

0

0.1

Se
ns

or
 3

0.5 0.52 0.54 0.56 0.58 0.6
−2

0

2

Se
ns

or
 5

0.5 0.52 0.54 0.56 0.58 0.6
−0.5

0

0.5

Se
ns

or
 7

time in s

Fig. 5. Measured sensor signals, solid line: sensor signals without fault,
dashed line: sensor signals with fault

As an example for FDI, an extra mass is brought to the
rotor on the second balancing ring on the right hand side of
Fig. 2. The induced unbalance by the mass equals 74gmm
and it is considered as fault in this example. The identified
model of non-rotating rotor is used as basis model for the
FDI process and the fault is to be detected at a rotary speed
of 15800rpm. The control inputs are not excited in both
estimation of E and FDI process. The sampling frequency
of the measurements is 10000Hz. The measurements are
filtered by a digital low pass filter with cut off frequency
at 800Hz. A 2-column unknown inputs distribution matrix
E is estimated on the basis of measurements of the rotating
rotor at 15800rpm in steady stats without faults.

The signals of the sensors on 4 sensor planes in horizontal
direction are presented in figure 5. Sensor 1 and sensor 3
refer to the displacement sensors on sensor planes 1 and 2 in
horizontal direction; sensor 5 and 7 refer to the force sensors
collocated with actuators in horizontal direction, see Fig. 2.
In this paper, the sensor signals and residuals are normalized
values and are thus without unit. The signals of sensors
in vertical direction are similar and are thus not presented
here. It can be seen, that the fault (i.e. the extra mass)

results in a phase shift and a reduced vibration amplitude
at this frequency. Actually the fault enhances vibrations in
most of the rotary frequency range and is thus not used
in the balancing process. We consider the fault and rotary
frequency as a kind of worst case for fault detection in
order to show the functionality of the augmented observer for
FDI application. At other rotary frequencies, where the fault
enhances vibration, better FDI performance is achievable
using augmented observer.

An augmented observer is built for fault detection. The
feedback term K (see Fig. 1) of the observer is designed
by means of pole placement and the poles are reallocated
in a region which is 10 times faster than the poles of the
identified system. The generated residuals corresponding to
the horizontal sensors using the augmented observer are
presented in Fig. 6. It can be seen that the influences of the
unknown inputs on residuals are much smaller than these
of the fault. The fault is then simple to be detected by
monitoring the vibration amplitudes.
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Fig. 6. Residuals generated by augmented observer, solid line: residuals
without fault, dashed line: residuals with fault

B. Feasibility test of augmented observer for fault isolation

Since the input matrix of the fault is not identified in the
system model, fault isolation is not possible using augmented
observer. To present the feasibility of the augmented observer
for fault isolation and identification, a finite element model
of a rotor presented in Fig. 7 is used. The residual unbal-
ances are simulated as unbalances continuously distributed
in both axial and circumferential directions. Two additional
unbalances in point form are considered as faults. The first
one is on the rotor disc (fault 1) and the second one is in
the middle of the rotor (fault 2). 8 displacement sensors on
4 sensor planes are used for the measurement. The finite
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element model is reduced to 8 modes i.e. with order 16
in state space representation for the simulation. In the FDI
process the rotor is simulated at 6000rpm.
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Fig. 7. Configuration of the rotor test rig

An augmented observer is constructed with the augmented
model (19). The unknown input distribution matrix E is
estimated by means of simulated signals. The time domain
diagnosis is presented in Fig. 8. Fault 1 takes place at
10s and fault 2 takes place at 20s. The fault amplitude is
understood as amplitude of unbalance forces and can be
directly observed in the augmented system vector. Both faults
are simply detectable and can be clearly separated. Even the
unbalance forces are accurately estimated.
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Fig. 8. Observed fault amplitude by means of augmented observer

VII. CONCLUSION

Design of augmented observers which considers sinusoidal
disturbances is presented in this paper. It can be applied
for the purpose of fault detection and isolation and for the
estimation of unknown input distribution matrix in rotor
systems. Two major problems are discussed in the FDI
process of a rotor system, i.e. the gyroscopic effect and
unbalance forces working on the shaft. Their influences on

the rotor system can be considered together as unknown
inputs working on the shaft. Since the unknown inputs are
sinusoidal, their distribution matrix can be estimated using
augmented observer. Applying the augmented observer a
residual generator, the unknown inputs are observed and their
impacts on the system are considered, thus robust FDI against
unknown inputs is achieved.

As an example, an unbalance in a rotor test rig is con-
sidered as fault. Using the augmented observer for fault
detection on the basis of an identified model of the non-
rotating rotor achieves good result. Since the input matrix of
faults is not identified in the model, the fault isolation was not
possible on the basis of the identified model. The feasibility
test of the augmented observer for fault isolation is thus done
on the basis of simulation. In the future work, a model with
fault input matrix is to be built and the application of the
augmented observer for fault isolation will be tested on the
test rig.
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ellierung von Flugtriebwerken”.

REFERENCES

[1] Z. Wang, A. Wahrburg, and S. Rinderknecht, “Consideration
of gyroscopic effect in fault detection and isolation for
unbalance excited rotor systems,” International Journal of
Rotating Machinery, vol. 2012, p. 14, 2012. [Online]. Available:
http://www.hindawi.com/journals/ijrm/2012/640794/

[2] W. S. Levine, The Control Handbook, B. Raton, Ed. Crc Pr Inc,
2010.

[3] J. Chen and R. J. Patton, Robust Model-Based Fault Diagnosis for
Dynamic Systems. Kluwer Academic Publishers, 1999.

[4] R. J. Patton and J. Chen, Issues of Fault Diagnosis for Dynamic
Systems. Springer, 2000, ch. Uncertainty modeling and robust fault
diagnosis for dynamic systems, pp. 189–209.

[5] K. Watanabe and D. M. Himmelblau, “Instrument fault detection in
systems with uncertainties,” International Journal of Systems Science,
vol. 13, no. 2, pp. 137–158, 1982.

[6] R. J. Patton, H. Y. Zhang, and J. Chen, “Modelling of uncertainties for
robust fault diagnosis,” in Proceedings of the 31st IEEE Conference
on Decision and Control, Tucson, Arizona, 1992, pp. 921–926.

[7] R. J. Patton and J. Chen, “Optimal unknown input distribution matrix
selection in robust fault diagnosis,” Automatica, vol. 29, no. 4, pp.
837–841, 1993.

[8] R. Patton and J. Chen, “A robust parity space approach to fault
diagnosis based on optimal eigenstructure assignment,” in Proc. of the
IEE Int. Con.: Control91. Edinburgh: Peregrinus Press, IEE Conf.
Pub. No. 332, 1991, pp. 1056–1061.

[9] R. J. Patton and J. Chen, “Robust fault detection using eigenstructure
assignment: A tutorial consideration and some new results,” in Proc.
of the 30th IEEE Conf. on Decision & Control, Brighton, UK, 1991,
pp. 2242–2247.

[10] A. Varga, “On designing least order residual generators for fault detec-
tion and isolation,” in Proceedings of 16th International Conference
on Control Systems and Computer Science, Bucharest, Romania, 2007,
pp. 323–330.

[11] A. Varga, “On computing nullspace bases - a fault detection perspec-
tive,” in Proc. IFAC 2008 World Congress, Seoul, South Korea, 2008,
pp. 6295–6300.

[12] S. X. Ding, Model-based Fault Diagnosis Techniques. Springer, 2008.
[13] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix

Inequalities in System and Control Theory. SIAM, 1994.
[14] A. Konak, D. W. Coit, and A. E. Smith, “Multi-objective optimization

using genetic algorithms: A tutorial,” reliability engineering & system
safety, vol. 91, pp. 992–1007, 2006.

Engineering Letters, 21:1, EL_21_1_02

(Advance online publication: 9 February 2013)

 
______________________________________________________________________________________ 



[15] Z. Wang, R. S. Schittenhelm, and S. Rinderknecht, “Observer design
for unbalance excited rotor systems with gyroscopic effect,” in Proc.
of IEEE International Conference on Mechatronics and Automation,
2012.

[16] Z. Wang, R. S. Schittenhelm, and S. Rinderknecht, “Augmented
observer for fault detection and isolation (FDI) in rotor systems,”
in Lecture Notes in Engineering and Computer Science: Proceedings
of The World Congress on Engineering and Computer Science 2012,
vol. 1, San Francisco, USA, 24-26 October 2012, pp. 336–341.

[17] C. D. Johnson, “Optimal control of the linear regulator with constant
disturbances,” IEEE Transactions on Automatic Control, vol. 13, no. 4,
pp. 416–421, 1968.

[18] C. D. Johnson, “Further study of the linear regulator with disturbances
- the case of vector disturbances satisfying a linear differential equa-
tion,” IEEE Transactions on Automatic Control, vol. 15, no. 2, pp.
222–228, 1970.

[19] M. L. J. Hautus, “Controllability and observability conditions of linear
autonomous systems,” Indagationes Mathematicae, vol. 31, pp. 443–
448, 1969.

Engineering Letters, 21:1, EL_21_1_02

(Advance online publication: 9 February 2013)

 
______________________________________________________________________________________ 




