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Abstract—The key issue for an efficient and reliable multi-
objective evolutionary algorithm is the ability to converge to the
True Pareto Front with the least number of objective function
evaluations, while covering it as much as possible. To this
purpose, in a previous paper performance comparisons showed
that the Genetic Diversity Evolutionary Algorithm (GeDEA)
was at the same level of the best state-of-the-art MOEAs due to
it intrinsic ability to properly conjugate exploitation of current
non-dominated solutions and the exploration of the search
space. In this paper, an improved version, namely the GeDEA-
II, is proposed which features a novel crossover operator, the
Simplex-Crossover, and a novel mutation operator, the Shrink-
Mutation.

GeDEM operator was left unchanged and completed using
the non-dominated-sorting based on crowding distance. The
comparison among GeDEA-II and GeDEA, as well as with
three other modern elitist methods, on different extremely
multidimensional test problems, clearly indicates that the per-
formance of GeDEA-II is, at least in these cases, superior. In
addition, authors aimed at putting in evidence the very good
performance of GeDEA-II even in extremely multidimensional
landscapes. To do this, four test problems were considered, and
the GeDEA-II performance tested as the number of decision
variables was increased. In particular, ZDT test functions
featured a number of decision variables ranging from the
original proposed number up to 1000, whereas on DTLZ the
decision variables were increased up to 100 times the original
proposed number. Results obtained contribute to demonstrate
further the GeDEA-II breakthrough performance.

Index Terms—Evolutionary algorithms, Simplex Crossover,
Shrink Mutation, Pareto optimality, multi objective optimiza-
tion, Empirical - Comparison.

I. INTRODUCTION

In the past, several of MOEAs were proposed, e.g.,
Multi Objective Genetic Algorithm (MOGA) [1], Niched
Pareto Genetic Algorithm (NPGA) [2] and Non-dominated
Sorting Genetic Algorithm (NSGA) [3], which demonstrated
the capability of evolutionary multi-objective optimization
(EMO) algorithms to approximate the set of optimal trade-
offs in a single optimization run. These approaches did
not incorporate elitism explicitly, but a few years later the
importance of this concept in multi-objective search was
recognized and supported experimentally [4]. A couple of
elitist MOEAs, which soon became state-of-the-art, were
Strength Pareto Evolutionary Algorithm (SPEA) [5], [6] and
Pareto Archived Evolution Strategy (PAES) [7]. SPEA, an
acronym for Strength Pareto Evolutionary Algorithm, was
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among the first techniques that were extensively compared
to several existing evolution-based methods [6], [4]. Later
on, further progress has been made and the new proposed
methods, featuring different diversity preservation mecha-
nisms, for instance NSGA-II [8], PESA [9] and SPEA2 [10]
were shown to outperform SPEA and NSGA on certain test
problems. GeDEA [11] algorithm, strictly designed around
the genetic diversity preservation mechanism called GeDEM,
proved to be able to compete and, in some cases, to outper-
form, the aforementioned EAs as far as speed of convergence
and covering uniformity of the Pareto Front are concerned.
In fact, the common drawback of all of the previously
mentioned MOEAs is the huge amount of objective function
evaluations (or number of generations) required to reach and
sufficiently cover the Pareto Front.

To try to overcome this common weakness, during the
last decade several authors started hybridizing evolutionary
algorithms (EAs) with local search (LS) operators, giving
rise to the so-called Memetic Algorithms (MAs), (see [12]
for a review, [13] for a collection of recent algorithmic and
theoretical work, and [14] for a comprehensive bibliography).

In [15], authors proposed a hybridized version of NSGA-
II, coupled with a classical Sequential Quadratic Program-
ming (SQP) procedure to achieve better performance. As
clearly claimed by the authors in [16], “the main drawback
of this approach is that SQP requires calculating the function
gradient and the optimum step length at every iteration,
an operation that can be costly for a practical engineering
problem”. A valid alternative to the time-consuming calcu-
lation of gradient information is constituted by the direct
local search method. Among the direct search methods, the
Simplex method proposed for the first time by the authors
in [17] and subsequently improved by the authors in [18], is
one of the most popular methods due to its simplicity and
ease of encoding.

In [19], the authors worked out an hybrid method, called
continuous hybrid algorithm, performing the exploration with
a Genetic Algorithm (GA), and the exploitation with a
Nelder-Mead Simplex algorithm.

In [20], the authors integrated Nelder-Mead simplex search
method [18] with genetic algorithm in order to combine the
local search capabilities of the former, and the exploratory
behavior of the latter.

Moreover, several works were presented, with the purpose
to extend these concepts to multi-objective problems.

Authors in
Recently, in [21] an hybrid Simplex MOEA has been

proposed, which uses three subsets to evolve simultaneously.
The first two subsets are constituted by individuals calculated
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via simplex-based local search method to achieve faster con-
vergence and better diversity, whereas the third one gathers
together individuals generated by means of ordinary genetic
operators to avoid premature convergence.

In [16], authors proposed their version of hybrid MOEA,
which starts with a randomly generated population with
a user-defined size. Using this initial population, a few
generations of NSGA-II are carried on. The local search
is activated only after all the individuals of the current
population are located at the first non-domination front.
When activated, the local search operates only on a subset of
the current population. The selected solutions in the current
population are then replaced by the improved solutions found
by the local search, creating a locally improved population.
The locally improved population is used then as an initial
population for the next few generations by NSGA-II. Once
again, the individuals created by means of the local search
and those ones created with the variation operators of the
MOGA are created at two different moments, and merged
together into the final population.

In spite of the different frameworks, in all the previously
mentioned works, the local search, based on the Simplex
algorithm, and the global exploration based on the EA, are
performed separately, in a sequential manner, that is, a point
of the search space is calculated via either the first or the
latter.

In the authors’ opinion, the previously mentioned exam-
ples of hybridization with local search often degrade the
global search ability of MOEAs. Moreover, local search
based on the Nelder and Mead requires additional and several
functions evaluations.

In this paper, GeDEA-II is presented, aiming at reducing
the potential weaknesses of its predecessor and competitors,
while retaining its superior performance, that is, a good
balance between exploration and exploitation. In this work,
a different approach is proposed to combine the EA-based
global search and the Simplex theory, since global explo-
ration and local search are intimately related and performed
simultaneously, in such a way they take advantage from each
other. In details, the individuals created by the proposed
algorithm via the Simplex-based crossover, undergo mutation
in a subsequently step, so as to promote global search capa-
bilities of the algorithm. Moreover, important modifications
have been brought about to the original Simplex theory, in
order to enhance further the local search capabilities without
penalizing the exploration of the search space.

The main differences of GeDEA-II in comparison with
GeDEA regard its new Tournament-Selection operator,
its new Simplex-Crossover operator, and its new Shrink-
Mutation operator. The diversity preserving mechanism, the
Genetic Diversity Evaluation Method (GeDEM) already used
in the GeDEA release, was retained in GeDEA-II and left
unchanged due to its superior performance.

The paper is structured as follows. Section II presents a
brief description of the main characteristics of the competi-
tors MOEAs. In Section III, the main characteristics of the
GeDEA are presented to prepare the ground for the GeDEA-
II, whose framework is introduced and described in detail in
Section IV. Finally, in Section V a systematic comparison
between GeDEA-II and other state-of-the-art MOEAs is
presented, following the guidelines proposed in [4], and then

we describe our experimental results.

II. MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS AND
THE PROBLEM OF DIVERSITY PRESERVATION

Nowadays, two features are demanded of an efficient and
robust MOEA, which are:

1) To perform the optimization reducing at a minimum the
overall optimization time;

2) To perform multiple runs while achieving the same
results.

The first feature is important when considering a MOEA
actual application to a real-world engineering problem, where
overall computational time is significant. The second feature
is referred to as repeatability, and it is important in order
to judge the efficiency of the EA under investigation. As
discussed in Section V-D, GeDEA-II proves to have both
these characteristics.

In the following, the authors briefly analyze the consti-
tutive framework of the respective MOEAs, along with the
strategies implemented to promote diversity. For comprehen-
sive overviews of evolutionary approaches to multi-objective
optimization the reader is referred to the following more
specific studies [22], [23].

Many EAs for multi-objective optimization have been
proposed [4], [22], [9]. Probably, the most popular MOEAs
today are the Strength Pareto Evolutionary Algorithm 2
(SPEA2) [10] and the Non-dominated Sorting Genetic
Algorithm-II [8], which have been used for comparison in
the Experimental results Section. As clearly stated in [24],
the two algorithms similarly maintain a separate population
of size N (current population, or offspring population) and a
fixed-capacity archive (previous population, or parent popula-
tion), often (as in NSGA-II) also dimensioned N. In each gen-
eration, the current and the previous populations are merged
together, and undergo the process of elite preservation. The
population constituting the new generation is filled by taking
the best-ranked solutions from the merged list. Rank conflicts
are resolved via a diversity metric. Individuals are also
subject to tournament selection, crossover, and mutation
to form the population for the next generation. The main
difference between the two is the way elite preservation is
applied. NSGA-II invokes a procedure called non-dominated
sorting. Non-dominated sorting assigns domination ranks to
each individual solution in a population, in such a manner
that solutions are assigned lower ranks than the ones they
dominate. The non-dominated sorting procedure incorporates
a diversity preservation mechanism, introduced in Section
IV-C, which estimates the density of solutions in the ob-
jective space, and the crowded comparison operator, which
guides the selection process towards a uniformly spread
Pareto frontier.

SPEA2 on the other hand, as clearly stated in [5], incorpo-
rates a fine-grained fitness assignment strategy which takes
into account for each individual the number of individuals
that dominate it and the number of individuals by which it
is dominated. It then uses a nearest neighbor density esti-
mation technique which guides the search more efficiently,
and finally performs an enhanced archive truncation that
guarantees the preservation of boundary solutions.
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Another interesting multi-objective evolutionary algorithm
is the Indicator-Based Evolutionary Algorithm (IBEA), pro-
posed in [25]. It is a MOEA that calculates fitness values
by comparing individuals on the basis of a quality indicator.
Thereby, no particular diversity preservation techniques such
as fitness sharing, clustering, etc. is necessary.

III. GENETIC DIVERSITY EVOLUTIONARY ALGORITHM
(GEDEA)

As GeDEA (Genetic Diversity Evolutionary Algorithm)
forms the basis for GeDEA-II, we give a brief summary
of the algorithm here. For a more detailed description, the
interested reader is referred to [11]. The Genetic Diversity
Evolutionary Algorithm (GeDEA) is a framework that is
strictly designed around GeDEM to exalt its characteristics.
Some of the design choices follow from the basic features
of GeDEM (e.g., the replacement of clones, the use of
an elitist strategy), the others are inspired by the will to
make things as simple as possible, and neither introducing
arbitrary parameters nor using sophisticated heuristics. To
briefly introduce the GeDEM principle, it is worth to con-
ceptually go back to the beginning of Section 2, where it
was explained that the multi-objective optimization process
has two objectives, which are themselves conflicting: the
convergence to the Pareto-optimal set and the maintenance
of genetic diversity within the population. The basic idea
of GeDEM is to actually use these objectives during the
evaluation phase and to rank the solutions with respect to
them, emphasizing the non-dominated solutions as well as
the most genetically different.
When the GeDEM is applied, the actual ranks of the
solutions are determined maximizing (i) the ranks scored
with respect to the objectives of the original MOOP, the
non-dominated solutions having the highest rank, and (ii)
the values assigned to each individual as a measure of
its genetic diversity, calculated according to the chosen
distance metric, i.e. the (normalized) Euclidean distance in
the decision variable space. The structure of GeDEA follows
the main steps of a (µ + λ) Evolution Strategy [26]. The
evolution, however, is considered at its genotypic level, with
the traditional binary coding of the decision variables. In the
following the framework of the GeDEA is recalled for clarity.
• Step 1: An initial population of µ individuals is gener-

ated at random.
• Step 2: A mating pool of 2λ individuals is formed, each

individual having the same probability of being selected.
• Step 3: λ offspring are generated by crossover. Some

bits of the offspring are also randomly mutated with a
probability pmut.

• Step 4: The whole population of µ + λ individuals is
checked to discover possible clones. These clones are
removed and replaced with new randomly generated
individuals (this is done to encourage the exploration
of the search space and also to have the algorithm
evaluate, for convenience, new λ different offspring
every generation; still the occurrence of clones birth is
not so frequent if clones are removed generation after
generation). This task is accomplished every generation,
just before the objective functions evaluation, in order
to prevent the same individual is evaluated more than
once.
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Fig. 1. Approximate Pareto-optimal set reached by GeDEA-II, GeDEA,
IBEA, NSGA-II and SPEA2 provided with the same evolutionary operators,
on ZDT1 test function.

• Step 5: The objective function values of the µ + λ
individuals are evaluated and the non-dominated sorting
procedure presented in [27] is performed to assign the
ranks to the solutions according to the objectives of the
MOOP.

• Step 6: The whole population of µ + λ individuals is
processed to determine the value of the distance-based
genetic diversity measure for each individual.

• Step 7: GeDEM is applied according to the ranks scored
in Step 5 and the values of the diversity measure as-
signed in Step 6. The non-dominated sorting procedure
presented in [27] is used again to assign the ranks.

• Step 8: The best µ solutions among parents and off-
spring, according to the ranks assigned in Step 7 by
GeDEM, are selected for survival and the remaining λ
are eliminated.

• Step 9: If the maximum number of generations is
reached then stop, else go to Step 2.

While GeDEA-II shares with its predecessor the same
framework, it is presented in this work in a real-coded fash-
ion. Hence, it features the same parameters representation
of the competitor algorithms already presented in Section
II. Moreover, this choice was made in view of using it
for solving real-world engineering optimization problems.
In order to prove the efficiency of the (µ + λ) Evolution
Strategy, whose steps are strictly followed in GeDEA-II,
a comparison with the competitor algorithms framework
was performed. For each algorithm, the same crossover,
mutation and selection operators were exploited, that is the
SBX Crossover [28], the Polynomial Mutation (implemented
as described in [29]) and the Tournament Selection [30]
operators, respectively. Results of these comparisons are
depicted in Fig. 1. The results presented here refer to the
ZDT1 bi-objective test problem, which involves 30 decision
variables, and is thoroughly described in V-A. Results hint
that the GeDEA-II framework provides remarkable results
in terms of both convergence and Pareto set coverage, and
therefore underlies the good performance of the algorithm
itself.
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IV. GENETIC DIVERSITY EVOLUTIONARY
ALGORITHM-II (GEDEA-II)

GeDEA proved to be an efficient algorithm, able to explore
widely the search space, while exploiting the relationships
among the solutions. In order to enhance GeDEA algorithm
performance further, several main features were added to the
previous GeDEA version, yet retaining its constitutive frame-
work. The main innovation is the novel crossover function,
namely the Simplex-crossover, which takes place in lieu the
previous Uniform crossover. Novel selection and mutation
operators were also developed. The first one, namely the
Tournament-selection operator, allows exploring the design
space more effectively. The second one, namely the Shrink-
mutation, allows exploring more effectively the design space.
The remaining steps characterizing GeDEA algorithm, in
particular the GeDEM, were left unchanged.

The latter was integrated with the Non-Dominating sorting
procedure based on the crowding distance. The following
sections present a detailed overview of the work already
described in [31].

A. The SIMPLEX Crossover

In many EAs, a recombination with two parents is com-
monly used to produce offspring. At the end of the 90’s,
in several studies the use of more than two parents for
recombination in EAs have been reported [32], [33], [34].

In [35], the simplex crossover (SPX) was proposed, a
new multi-parent recombination operator for real-coded GAs.
The experimental results with test functions used in their
studies showed that SPX works well on functions having
multimodality and/or epistasis with a medium number of
parents: 3 parents on a low dimensional function or 4 parents
on high dimensional functions. However, the authors did
not consider the application of the SPX to multi-objective
problems. Moreover, they did not consider the possibility to
take into account the fitness of the objective function/s as
the driving force of the simplex. Therefore, we decided to
integrate in the GeDEA-II the SPX with these and further
new distinctive features.

Before introducing the SPX exploited in the GeDEA-II,
some words are spent to elucidate the Simplex algorithm,
whose first release was presented in [17]. A simplex in
n-dimensions is a construct consisting of n+1 solutions
xk, k = 1, 2, . . . , n+ 1 [18]. In a two dimensional plane,
this corresponds to a triangle. The solutions are evaluated
in each step and the worst solution w, i.e., the one with
the highest fitness value, is identified. The centroid, M,
of the remaining points is computed as M = 1

n

∑
x xk

(k identifying the two best solutions) and a new solution
r, replacing w, is obtained by reflection, r =M+(M−w).
In the Nelder and Mead version of the simplex algorithm,
further operators are considered, such as expansion, internal
contraction and external contraction. However, they are not
taken into account in this work, since this choice would
result in additional functions evaluations, as well as add
complexity to the algorithm. In Fig. 2, the reflection step of
the Nelder and Mead simplex algorithm is depicted, applied
to a problem in R2.

w is the worst point, to be replaced by point r. M is the
centroid between the two other points, x1 and x2.

��

��� ��

�

��

Fig. 2. The reflection step of the simplex algorithm applied to a problem
in R2.

GeDEA-II utilizes the Simplex concept as the crossover
operator, in order to speed-up the evolution process, as stated
below. As a matter of fact, crossover function plays an
important role in the EAs, since it combines two individuals,
or parents, to form a new individual, or child, for the
next generation. Since the Simplex is itself an optimization
algorithm, the generated children are expected to feature
best fitness values when compared to the parents. Unlike
the SPX presented in [35], the SPX exploited in GeDEA-II
requires only two parents to form a new child. This choice
was motivated by the following considerations. First of all, it
is reminded here that two is the minimum number required to
form a simplex. Second, from linear algebra, it can be easily
demonstrated1 that, given k vectors, there can be found more
couples of mutually linearly independent vectors than can
be done when considering triplets (or, in general, n-tuples)
of independent vectors. As a straightforward consequence,
it follows that this statement is even more true if not inde-
pendence but only diversity (that is, at least one component
different from a vector to another one) is required. Therefore,
every time a new child is created, this characteristic of the
SPX ensures that this child comprises genes different from
those of the other children, and allows the greatest design
space exploration, due to the diversity of the parents. These
two parents are selected according to the selection procedure
from the previous population, and combined following the
guidelines of the simplex algorithm. Let assume p1, p2 being
the two parent vectors, characterized by different, multiple
fitness values, the child vector Child is formed according to
the reflection move described in [18]:

Child := (1 +Refl) ·M−Refl · p2 (1)

where Child is the new formed child and Refl is the reflection
coefficient.

It is assumed that p1 is the best fitness individual among
the two chosen to form the Child, whereas p2 the worst one.
Below the strategy followed to decide every time the best
and the worst individual is highlighted.

1Let us consider three vectors in R3 design space, namely ~a=(1,0,0),
~b=(0,1,0), and ~c=(0,0,1). There can be found three couples of linearly
independent vectors, that is [~a,~b], [~a,~c] and [~b,~c] but only a triplet of
mutually and simultaneously independent vectors, that is the triplet [~a,~b,~c].
This simple demonstration remains valid when extended to the Rn space.
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M is the centroid of p1, calculated in the following
manner:

M :=

(
1

n

)
· (p1) (2)

where n is the number of the remaining individual,
excluded the worst one. A dedicated discussion will be
done concerning this coefficient, and reported below. Refl
coefficient is set equal to a random number (refl ∈ [0, 1]),
unlike the elemental Simplex theory, which assumes a value
equal to 1 for the Refl coefficient. This choice allows to
create a child every time distant in a random manner from
the parents, hence to explore more deeply the design space.

Moreover, unlike the Simplex algorithm theory, it was
decided to switch from 1 to 2 the coefficient n in Eq. (2).

In order to establish if differences on performance exist
between the two crossover configurations, that is the one with
n=1 and the one with n=2, minimization experiments on the
test suite presented in V-A were performed. The GeDEA-II
was executed equipped with the two crossover configurations
30 times, the population size and the number of generations
being specified in Section V-B. The guidelines given in
[36] were strictly followed. However, since these are multi-
objective test problems, the best fitness value was replaced
with the best hypervolume value (see Section V-C for more
elucidations) of that particular run. Table I shows our results.
The performance measures used are the following:
• A performance: average of the hypervolume indicator

calculated at the end of each run;
• B performance: greater hypervolume indicator found;
• σ: standard deviation;

The Student parameter T in this table represents the result
of a t-Test (at a 0.05 level of significance) as follows:
• T is introduced to ascertain if differences in A perfor-

mance for the best crossover operator area significant
when compared with the one of the other crossover
configuration in the respective test problem.

In these columns, the crossover with the best A perfor-
mance value is marked with (∗∗), and the direction of any
significant differences is denoted either by a (+) sign for an
improvement in A performance or an approximate sign (∼=)
if non-significant difference exists between the two averages.

First of all, the n=2 configuration performs the best almost on
all the test problems, and the standard deviation demonstrates
that the repeatability of its performance is high level when
compared to that of the other configuration.

Second, some test problems exist where the difference of
the performance is not significant.

Third, the results analyzed as a whole show that when
the coefficient n is 2, the SPX operator favors exploitation
without penalizing exploration of the design space, and helps
reaching the final approximation set, while covering it in a
satisfactory manner.

Table II shows the percentages in which each crossover
operator has obtained the best A performance on all the test
functions. Its columns have the following meaning, according
to the guidelines given in [36]:
• Best average/best t-test: percentage of test functions in

which the crossover configuration has obtained the best

TABLE I
STATISTICAL COMPARISON BETWEEN THE TWO SPX CONFIGURATIONS.

RESULTS FOR THE ZDT AND DTLZ TEST SUITES.

Coefficient n = 2
A B σ T

ZDT1 1.1048 1.1063 0.0011 **
ZDT2 0.6204 0.6502 0.1100 **
ZDT3 1.1085 1.1103 0.0015 **
ZDT4 10.7612 11.1671 0.3928 **
ZDT6 7.4321 7.4441 0.0277 **
KUR 82.5799 83.2329 0.5201 *

DTLZ1 35.1480 35.7413 1.4350 **
DTLZ2 10.6261 10.6519 0.0171 **
DTLZ3 186.6339 188.2572 3.5181 **
DTLZ4 4.6273 4.6638 0.0255 **
DTLZ5 0.6398 0.6511 0.0048 **
DTLZ6 8.5188 8.5291 0.0112 **
DTLZ7 1.8662 1.9086 0.0221 **

Coefficient n = 1
A B σ T

ZDT1 0.7545 0.8627 0.0775 +
ZDT2 0.2492 0.3953 0.0746 +
ZDT3 0.9332 1.0037 0.0476 +
ZDT4 9.7198 10.4062 2.6585 ∼=
ZDT6 4.2096 5.1145 0.5140 +
KUR 82.0038 83.5124 1.2317 ∼=

DTLZ1 17.7558 26.4431 5.2643 +
DTLZ2 10.4655 10.5520 0.0568 +
DTLZ3 110.7428 156.1789 42.8868 +
DTLZ4 4.5029 4.6010 0.0619 +
DTLZ5 0.5673 0.6044 0.0214 +
DTLZ6 5.9904 8.5244 2.0642 +
DTLZ7 1.5801 1.9013 0.6277 ∼=

A performance (∗∗ in A column) and the application
of the t-test confirms that it is significantly the best
(plus sign (+) in the T column associated with the
other crossover configuration); it is denoted with Roman
number I in Table II.

• Best average/similar t-test: this column shows the same
information as the previous one but the other crossover
features no difference in A performance, according to
the t-test (the other crossover configuration has a (∼=)
sign in the T column); it is denoted with Roman number
II in Table II.

• Total best: percentage of test functions in which the
crossover achieves the best A performance, without
considering the t-test. This percentage is calculated as
the sum of the previous two columns; it is denoted with
Roman number III in Table II.

• Similar t-test/no best average: percentage of test func-
tions in which the crossover configuration shows, after
the application of the t-test, non-significant differences
in A performance regarding the best value ((∼=) sign in
the T column); it is denoted with Roman number IV in
Table II.

• Total best/similar: percentage of test functions in which
the crossover configuration achieves either the best A
behavior or the one similar to the best. This percentage
is the result of the sum of the two previous columns. it
is denoted with Roman number V in Table II.
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TABLE II
ANALYSIS FOR THE SPX OPERATORS PROVIDED WITH n=2 AND n=1

COEFFICIENT

I II III IV V
Coefficient n=2 76.9 % 23.0 % 100 % 0 % 100 %
Coefficient n=1 0.0 % 0.0 % 0.0 % 23.1 % 23.1 %

Results presented in Table II confirm the preceding anal-
ysis, which shows the best performance achieved by n=2
configuration.

The information about the fitness values is the key issue of
this version of crossover: unlike the SPX operator presented
in [35], this characteristic allows the crossover process to
create a new individual, which is expected to be better than
the parents. This new crossover operator was expected to
combine both exploration and exploitation characteristics.
In fact, the new formed child comprises the genes of two
parents, that means a good exploration of the design space.
However, it explores a design space region opposite to that
covered by the parent number 2, that means it explores a
region potentially not covered so far. In the early stages of
the evolution, this means that child moves away from regions
covered from bad parents, while exploring new promising
ones.

Since the Simplex algorithm is itself a single-objective
optimizer, a strategy was implemented to adapt it to a multi-
objective algorithm. To deeply exploit the characteristics of
the simplex, at each generation the mean of each objective
function, extended to all the µ individuals, is computed. This
mean is then compared to the one characterizing the previous
generation, and the objective function featuring the greatest
difference is selected as the fitness function used within the
Simplex algorithm to decide every time the best and the worst
individual. This choice was made after several experiments,
which showed how a correct balance between exploration
of the search space and the convergence to the P.F. can be
achieved by means of a switching among multiple objective
functions, each time selecting the most promising one.

Algorithm 1 presents the pseudo-code related to the ap-
plication of the SPX in a multi-objective context, extended
to the most general case involving M objective functions. It
it assumed that all of the objectives are to be minimized. At
each generation ignr, the mean of each objective function
mean is calculated. Based on these values, the percentage
variations PV are subsequently derived. At this point, the
two selected parents are sorted according to these values,
and the child created according to Eqs. 1 and 2. This choice
guarantees that the objective function characterized by the
greatest difference is selected every time, therefore ensuring
the highest convergence rate to the PF. For test problem
involving more than two objective functions, the objective
function considered to form the new child is chosen randomly
in order to enhance the design space exploration of the
crossover, required in highly dimensional objective spaces.

During evolution, GeDEA-II makes use exclusively of the
SPX until half of the generations has been reached. After
that, SPX is used alternatively with the SBX with a switching
probability of 50 percent. This choice is motivated by the will

1Here SM refers to the Shrink Mutation operator introduced in Section
IV-B

2Hereafter o.f. stands for objective function

Algorithm 1 Application of SPX in a multi objective context.
1: Set M = number of objectives
2: Set µ = number of parents
3: Set ignr = current generation
4: for i = 1→M do
5: Mean = 0
6: for j = 1→ µ do
7: MEAN(i)(ignr) = Mean(i)(ignr) +√

odfit(j)2

8: end for
9: end for

10: for i = 1→M do
11: PVi =

MEAN(i)(ignr−1)−MEAN(i)(ignr)

MEAN(i)(ignr−1)

12: end for
13: Set count = 1
14: while count ≤= µ do
15: Choose two parents, p1 and p2, according to SM 1

16: for i = 1→M do
17: oldfit(i, 1) = ith o. f.

2 of parent p1
18: oldfit(i, 2) = ith o. f. of parent p2
19: end for
20: Set A = maxi∈M (PVi)
21: Find index k ∈M correspondent to A
22: Set OLDFIT = [oldfit(k, 1), oldfit(k, 2)]
23: if oldfit(k, 1) ≤ oldfit(k, 2) then
24: Set M =

(
1
n

)
· p1

25: Child = (1 +Refl) ·M −Refl · p2
26: else
27: Set M =

(
1
n

)
· p2

28: Child = (1 +Refl) ·M −Refl · p1
29: end if
30: Set offpsring(count, :) = Child
31: count = count+ 1
32: end while

of improving further the distribution and uniformity of the
candidate solutions on the Approximate Pareto-optimal set.

B. The Shrink Mutation

As far as mutation is concerned, a new Shrink-mutation
operator is introduced in the GeDEA-II.

In the literature, this kind of mutation strategy is referred
to as Gaussian mutation [37], and conventional implemen-
tations of Evolutionary Programming (EP) and Evolution
Strategies (ES) for continuous parameter optimization using
Gaussian mutations to generate offspring are presented in
[26] and [38], respectively.

In general, mutation operator specifies how the genetic
algorithm makes small random changes in the individuals in
the population to create mutation children. Mutation provides
genetic diversity and enables the genetic algorithm to search
a broader space. Unlike the previous version of mutation
featuring GeDEA algorithm, where some bits of the offspring
were randomly mutated with a probability pmut, here the
mutation operator adds a random number taken from a
Gaussian distribution with mean equal to the original value of
each decision variable characterizing the entry parent vector.
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The shrinking schedule employed is:

Shrinki := Shrinki−1 ·
(
1− ignr

ngnr

)
(3)

where Shrinki is a vector representing the current mutation
range allowed for that particular design variable, ignr rep-
resents the current generation and ngnr the total number of
generations. The shape of the shrinking curve was decided
after several experimental tests. The fact that the variation
is zero at the last generation is also a key feature of
this mutation operator. Being conceived in this manner, the
mutation allows to deeply explore the design space during
the first part of the optimization, while exploiting the non-
dominated solutions during the last generations. Once the
current variation range has been calculated, one decision
variable of a selected child is randomly selected, and mutated
according to the following formula:

Childmut := Childcross + [Shrinki] (4)

Unlike crossover operator, which generates all the offspring,
mutation is applied only on a selected part of the offspring.
Before starting offspring mutation, offspring population is
randomly shuffled to prevent locality effects. After that, a
pre-established percentage (fixed to 40% for all of the test
problems) of the individuals are selected for mutation. The
initial Shrink factor is set equal to the whole variation range
of the design variables. This mutation operator was found to
be powerful especially in multi-objective problems requiring
a huge exploration of the design space.

C. Diversity preservation

As underlined in Sections 2 and 3, maintaining the genetic
diversity within the population is mandatory for a robust
EA. To this purpose, in GeDEA-II two diversity preservation
mechanism are used, namely the GeDEM, already employed
in GeDEA [11] and the Non-Dominated Sorting [8]. Both
of the two mentioned mechanism are adopted since in
authors’ opinion each of them has unique features which
can take benefit from each other. To make this assertion
clearer, it is worth to briefly go back to the mathematical
definition of GeDEM and non-dominated sorting based on
crowding distance. The definition of dominance used in the
non-dominated sorting procedure performed by GeDEM is:

Vector u = (ranku; distu) dominates vector v =
(rankv; distv)
if and only if

(ranku > rankv) ∧(distu ≥ distv)

On the contrary, the definition of dominance used in the
non-dominated sorting based on crowding distance is:

Vector u = (ranku; distu) dominates vector v =
(rankv; distv)
if and only if

(ranku > rankv) ∨[(ranku = rankv) ∧(distu≥ distv)]

Clearly, the logical operator is the great difference be-
tween the aforementioned diversity mechanisms, which en-
tails the slightly different behavior of the two algorithms.
In particular, GeDEM tends to create less non-dominated

individuals, since both the rank and the diversity conditions
are to be fulfilled simultaneously. Therefore, the evolution
process results faster. On the other hand, non-dominated
sorting based on crowding distance tends to create more non-
dominated individuals, which results in a better Pareto front
coverage. In order to take advantage of both the characteris-
tics, in GeDEA-II the diversity preservation is accomplished
by means of GeDEM, in the first three quarters of the
generations, whereas in the remainder of the generations the
Non-Dominated Sorting mechanism is exploited.

V. COMPARISON WITH OTHER MULTIOBJECTIVE
EVOLUTIONARY ALGORITHMS

In order to judge the performance of the GeDEA-II,
a comparison with other different state-of-the-art multi-
objective EAs was performed. SPEA-2 [10], NSGA-II [8]
and IBEA [25] were chosen as competitors, and their perfor-
mance against GeDEA-II was measured on two test problems
featuring the characteristics that may cause difficulties in
converging to the Pareto-optimal front and in maintaining
diversity within the population [39]: discrete Pareto fronts,
and biased search spaces. In addition, their performance
was tested also on two more recent and more challenging
benchmark test functions chosen among the scalable Test
Problems presented in [40]. The four test functions, the
methodology and the metric of performance used in the
comparison are briefly recalled in the following for easy
reference.

A. Test Functions

Here only four test problems are presented due to layout
constraints. The original version of ZDT3 and ZDT6 pre-
sented in [4] featured 30 and 10 decision variables, respec-
tively. Here we propose them with 100 decision variables.
As regards DTLZ3, the number of variables suggested in
[40] is 12. Here we propose it with 22 decision variables,
respectively. As regards DTLZ7, we increased the number of
decision variables from the original one equal to 22, up to
100.

B. Methodology

The methodology used in [4] is strictly followed. GeDEA-
II and competitors are executed 30 times on each test
function. There are different parameters associated with the
various algorithms, some common to all and some specific to
a particular one. In order to make a fair comparison among all
the algorithms, most of these constants are kept the same. In
GeDEA-II, GeDEA and in competitors’ algorithms, the pop-
ulation size is set to 100. In the following, the parameters of
the competitors MOEA are reported following the terminol-
ogy used in PISA implementation2. The individual mutation

2Individual mutation probability (probability that a certain individual
undergoes mutation); individual recombination probability (probability that
a certain pair of individuals undergoes recombination); variable mutation
probability (probability that a certain variable in a given individual is
mutated); variable swap probability (probability that a certain pair of vari-
ables is swapped during recombination); variable recombination probability
(probability that the SBX recombination operator is used for a given pair
of variables; this decision is independent from variable swap probability);
ηmutation (distribution index for mutation operator); ηrecombination

(distribution index for recombination operator).
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probability is always 1 and the variable mutation probability
is fixed at 1/n, n being the number of the decision variables
of the test problem considered. The individual recombination
probability along with the variable recombination probability
are set to 1. The variable swap probability is set to 0.5.
ηmutation is always set to 20 and ηrecombination is fixed
to 15. For IBEA algorithm, tournament size is always set
to 2, whereas additive epsilon is chosen as the indicator.
Scaling factor kappa is set to 0.05, and rho factor is fixed
to 1.1. For both NSGA-II and SPEA2, tournament size is
given a value equal to 2. NSGA-II, SPEA2 and IBEA are
run with the PISA3 implementation [41], with exactly the
same parameters and variation operators. The number of
generations was intentionally reduced in order to test the
convergence properties of the investigated algorithms, and
contribute to justify the different results reported here, when
compared to those presented in the original papers [4], [40].

TABLE III
ORIGINAL AND PROPOSED NUMBER OF GENERATIONS FOR THE ZDT

AND DTLZ TEST PROBLEMS.

Number of generations
Original version prob-
lems

Proposed test problems

ZDT3 250 40
ZDT6 250 30

DTLZ3 500 150
DTLZ7 200 100

C. Metric of Performance

Different metrics can be defined to compare the per-
formance of EAs with respect to the different goals of
optimization itself [4]: how far is the resulting non-dominated
set from the Pareto front, how uniform is the distribution of
the solutions along the Pareto approximation set/front, how
wide is the Pareto approximation set/front. For measuring the
quality of the results, we have employed the hypervolume ap-
proach, due to its construction simplicity and for the reason,
which will be soon explained. The hypervolume approach
presented in [42] (modified in [10]) measures how much of
the objective space is dominated by a given nondominated
set. Zitzler et al. state it as the most appropriate scalar
indicator since it combines both the distance of solutions
(towards some utopian trade-off surface) and the spread of
solutions. To better understand the reason for this choice, it
is worth to see at Fig. 3 (a) and (b). The reference point is
indicated as R.P..

As regards the convergence of the known P.F. to the
True P.F., please consider the case depicted in Fig. 3 (a).
The non-dominated set A has a great hypervolume indicator
when compared to set B, due to its superior proximity to
the True P.F.. As far as the spread of the solution on the
Pareto approximation set is concerned, Fig. 3 (b) qualitatively
shows that a more uniform distribution of the solutions (on
the right) yields a greater hypervolume indicator. Therefore,
this indicator is intrinsically able to compare performance

3This software is available for public use at PISA website
http://www.tik.ee.ethz.ch/pisa/
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Fig. 3. Significance of the hypervolume indicator as far as convergence
(a, AT THE TOP), and diversity (b, AT THE BOTTOM) is concerned.

of different EAs as regards both the convergence to the
Pareto approximation set and its coverage. In general, it is
not sufficient for a set of candidate solutions to be closer
than another one to the True Pareto front, to have a higher
hypervolume value. It is the blend of convergence and
uniformity of the final approximation set that counts.

The hypervolume4 is defined as the area of coverage of
PFknown with respect to the objective space for a two-
objective MOP. As illustrated in Fig. 3, this region consists
of an orthogonal polytope, and may be seen as the union
of n axis-aligned hyper-rectangles with one common vertex
(the reference point, R.P.). Mathematically, this is described
in Eq. (5) (for a generic n-objectives problem):

hypervolume :=

[⋃
i

voli|veci ∈ Pknown

]
(5)

where veci is a nondominated vector in PFknown and
voli is the hypervolume (an area in two objectives problems)
between the reference point and vector veci.

In this work, the version implemented by Fonseca et al.
and presented in [43] is adopted.

D. Results of Comparison

As in Zitzler et al. [4], Figures 4, 6 and 7 show an excerpt
of the non-dominated fronts obtained by the EAs and the
Pareto-optimal fronts (continuous curves). The points plotted
are the non-dominated solutions extracted from the union
set of the outcomes of the first five runs, the best and the
worst one being discarded. The performance of GeDEA-II
is also compared to that of the competitors according to the
hypervolume metric as defined in [43]. The distribution of
these values is shown using box plots in Figures 5 and 8. On
each box, the central line represents the median, the edges of
the box are the 25th and 75th percentiles, the whiskers extend
to the most extreme data points not considered outliers, and
outliers are plotted individually, with a Plus sign. Results

4The hypervolume is a Pareto compliant indicator as stated in [23].
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are normalized with the best Hypervolume value coming
from the union set of all of the runs, extended to all of
the algorithms. For each test problem, the reference point
is assumed equal for all of the algorithms, and equal to the
maximum value for each objective function from the union
of all of the output points.
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Fig. 4. Test functions ZDT3 (AT THE TOP) and ZDT6 (AT THE
BOTTOM).

In general, the experimental results show that GeDEA-II
is able to converge towards the True Pareto-optimal front
and to develop a widely and well distributed non-dominated
set of solutions. The comparison with the other three best-
performing MOEAs according to the Hypervolume metric
proves that the performance of GeDEA-II is somewhat
superior. Considering the specific features of the two ZDT
test functions, GeDEA-II shows similar performance both
on multi-front and biased Pareto-optimal fronts. NSGA-II,
SPEA-2 and IBEA seem instead to have more difficulties
with discreteness (test function ZDT3). The performance of
GeDEA-II is particularly remarkable in the case of biased
search space (test function ZDT6) where it is also able to
evolve a well-distributed non-dominated set. These results
gain even more significance, since the number of decision
variables was set to 100, unlike the original values of 30 (10
for the test function ZDT6).

As far as DTLZ3 and DTLZ7 test functions is concerned,
GeDEA-II is able to reach the True Pareto Front, whereas
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Fig. 5. Box plots based on the Hypervolume metric. Each square contains
six box plots representing the distribution of Hypervolume values for the
six algorithms. Results refer to the ZDT3 (AT THE TOP) and ZDT6 (AT
THE BOTTOM) test functions.

the competitors remain trapped in the local Pareto Approxi-
mation Sets, as shown in Fig. 6 and 7.

Finally, box plots prove, in general, that the performance
of GeDEA-II is superior to those of the competitors also as
far as the repeatability of the results is concerned.

E. GeDEA-II Performance on Extremly Multidimensional
Landscapes

In this section, authors aim at putting in evidence the
outstanding performance of GeDEA-II even on high mul-
tidimensional environments. To do this, two test problems,
chosen among those presented in Section V-A are considered,
and the GeDEA-II performance tested by changing every
time the number of decision variables. Test functions chosen
for this test are the ZDT4 and DTLZ3, that is, the most
difficult to solve problems, as stated in [4] and [40].

In Table IV, the number of variables and generations char-
acterizing these tests are reported. In particular, ZDT4 test
function feature a maximum number of decision variables
of 1000, whereas on DTLZ3 test functions the maximum
number of decision variables is increased up to 100 times
the original proposed number [40].
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Fig. 6. Test function DTLZ3. From the left, Auto scale axes, Medium
zoom and True Pareto Front region.

Fig. 7. Test function DTLZ7.
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Fig. 8. Box plots based on the Hypervolume metric. Each square contains
six box plots representing the distribution of Hypervolume values for the
six algorithms. Results refer to the DTLZ1 (AT THE TOP) and DTLZ7

(AT THE BOTTOM) test functions.

To the best of the authors’ knowledge, this is the first
time a MOEA is tested on these test problems, with these
number of decision variables. For each test problems, we
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TABLE IV
MINIMUM AND MAXIMUM NUMBER OF DECISION VARIABLES FOR THE

ZDT4 and DTLZ3 test problems.

Number of gener-
ations

Minimum num-
ber of decision
variables

Maximum num-
ber of decision
variables

ZDT4 40 10 1000
DTLZ3 80 12 1200

performed 30 independent runs for each number of decision
variables, and the boxplots were then built, following the
guidelines already given in Section V-D. Y-axes are scaled
in such a way the best run is given a value equal to 1. In
Figure 9, the boxplots showing GeDEA-II performance are
presented, as the decision variables are increased from the
minimum value up to the maximum one. Results clearly
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Fig. 9. Box plots based on the Hypervolume metric. Each square contains
five box plots representing the distribution of Hypervolume values for the
six number of decision variables.Results refer to the ZDT4 (AT THE TOP)
and DTLZ3 (AT THE BOTTOM) test functions.

states that GeDEA-II performance is high-level. In each
test problem, performance is never lower than 99% of the
maximum value, no matter how many the decision variables
are. This clearly demonstrate GeDEA-II manages to evolve
the initial population near to the True Pareto front, even when
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Fig. 10. Final Approximation Set reached by the GeDEA-II on test function
ZDT4 (AT THE TOP) and the non dominated solutions found by GeDEA-II
on DTLZ3 (AT THE BOTTOM), featuring 1200 decision variables.

the number of decision variables is dramatically increased.
Figure 10 shows in the objective space, the distribution
of the final solutions obtained in the run with the lowest
Hypervolume-value by the GeDEA-II for each test instance,
for the maximum number of decision variables. It is evident
that as regards the convergence to the True Pareto Front and
spread of solutions, GeDEA-II performance is high level.

VI. CONCLUSION

In this paper, we have presented GeDEA-II, an improved
multi-objective evolutionary algorithm that employs novel
variation operators compared to its predecessor GeDEA.
Extensive numerical comparisons of GeDEA-II with GeDEA
and with NSGAII, SPEA-2 and IBEA, three state-of-the-
art recently proposed algorithms, have been carried out on
various test problems. Moreover, optimization difficulties
have been enhanced further, in order to test the robustness
of the codes. The key results of the comparison show the
excellent performance of the GeDEA-II, when compared to
the competitors algorithm, in terms of both exploration and
exploitation capabilities. Boxplots show that the reproducibil-
ity of results of GeDEA-II is high-level, when compared
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to that of the NSGAII, SPEA-2 and IBEA. In extremely
high dimensional spaces, GeDEA-II clearly shows excellent
performance. In addition to these characteristics, GeDEA-
II performs these tasks with a reduced number of objective
functions evaluations, a very useful feature when considering
its application to real-world engineering problems.

APPENDIX

Each of the three ZDT test functions, namely ZDT3, ZDT4

and ZDT6 introduced in [4] is a two-objective minimization
problem that involves a distinct feature among those iden-
tified in [39]. All the test functions are constructed in the
same way, according to the guidelines in [39]:

Minimize : T (x) = (f1(x1), f2(x)) (6)
subject to : f2(x) = g(x2; . . . ;xm)

h(f1(x1), g(x2; . . . ;xm))

where : x = (x1, . . . , xM)

Function f controls vector representation uniformity along the
Pareto approximation set. Function g controls the resulting
MOP characteristics (whether it is multifrontal or has an
isolated optimum). Function h controls the resulting Pareto
front characteristics (e.g., convex, disconnected, etc.) These
functions respectively influence search along and towards
the true Pareto front, and the shape of a Pareto front in
R2. Deb [39] implies that a MOEA has difficulty finding
PFtrue because it gets “trapped” in the local optimum,
namely PFlocal. Test functions reported in this work feature
an increased number of decision variables, when compared
to their original versions reported in [4]. This choice was mo-
tivated by the authors’ will of testing exploration capabilities
of the algorithms also on highly dimensional test problems,
and contributes to justify the results presented in Section
V-D.
• Test function ZDT3 features a Pareto-optimal front dis-

connected, consisting of several noncontiguous convex
parts:

f 1(x1) = (x1) (7)

g(x2; . . . ;xn) = 1 + 9 ·
n∑

i=2

xi
(n− 1)

h(f1, g) = 1−

(√
f1
g

)
−
(
f1
g

)
· sin(10πf1 )

where n = 100 and xi ∈ [0,1]. The Pareto-optimal front
corresponds to g(x) = 1. The original version presented
in [4] featured 30 decision variables.

• Test function ZDT4 contains 219 local Pareto-optimal
fronts and, therefore, tests for the EA ability to deal
with multifrontality:

f 1(x1) = (x1)

g(x2; . . . ;xn) = 1 + 10(n− 1)

·
n∑

i=2

(
xi

2 − 10 cos(4πxi)
)

h(f1, g) = 1−

√
f1
g

(8)

where n = 100 and xi ∈ [0,1]. The Pareto-optimal front
is convex and corresponds to g(x) = 1. The original
version presented in [4] featured 10 decision variables.

• Test function ZDT6 features two difficulties caused by
the non-uniformity of the search space: first, the Pareto
optimal solutions are nonuniformly distributed along
the PFtrue (the front is biased for solutions for which
f1(x1) is near one); and second, the density of the
solutions is lowest near the PFtrue and highest away
from the front::

f 1(x1) = 1− exp(−4x1) sin6(6πx1)

g(x2; . . . ;xn) = 1 + 9 ·

(
n∑

i=2

xi
(n− 1)

)1/4

(9)

h(f1, g) = 1−
(
f1
g

)2

where n = 100 and xi ∈ [0,1]. The Pareto-optimal front
is non-convex and corresponds to g(x) = 1. The original
version presented in [4] featured 10 decision variables.

Finally, two of the tri-objective minimization test func-
tions designed by Kalyanmoy Deb, Lothar Thiele, Marco
Laumanns and Eckart Zitzler, and presented in [40], are con-
sidered, in order to demonstrate the GeDEA-II capabilities on
more than two-objectives test problems. In the following, n
identifies the number of decision variables, M the number of
objective functions, and k = |xM | = n−M+1 the number of
variables of the functional g(xM ). The number of variables
was always increased when compared to that suggested by
the authors in [40], whereas the decision variables range was
left unchanged. These features help clarifying the different
results between those reported in Section V-D and the
original ones [40].
• Test function DTLZ3 is similar to test function DTLZ2,

except for the function g, which introduces (3k − 1)
local Pareto-optimal fronts, and only one global Pareto-
optimal front.

f1(x) = (1 + g(xM )) cos(x1π/2 ) cos(x2π/2 )

f2(x) = (1 + g(xM )) cos(x1π/2 ) sin(x2π/2 )

f3(x) = (1 + g(xM )) sin(x1π/2 ) (10)

g = 100 · [k +
∑

xi∈xM

(xi − 0.5)
2 −

cos (20π (xi − 0.5))]

where n = 22 and xi ∈ [0,1]. The number of variables
suggested in [40] is 12.

• Test function DTLZ7 features 2M−1 disconnected local
Pareto-optimal regions in the search space. It is chosen
to test the MOEA ability in finding and maintain stable
and distributed subpopulations in all four disconnected
global Pareto-optimal regions.

f1(x) = x1

f2(x) = x2

f3(x) = (1 + g(xM ))h (11)

g = 1 +
9

k

∑
xi∈xM

(xi)

h = M −
M−1∑
i=1

[
fi

1 + g
(sin((1 + 3πfi))

]
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where n = 100 and xi ∈ [0,1]. Once again, the number
of decision variables was dramatically increased when
compared to the original one, suggested in [40] for this
test problem, and equal to 22.
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