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Abstract—In this article, a Disturbance Observer is utilized 

to realize state feedback in the context of a rotor test rig. The 

rotor is actively supported by means of piezoelectric stack 

actuators and subject to unbalance excitation and gyroscopic 

effect. The presence of gyroscopic effect leads to a dependence 

of the system dynamics on rotary frequency of the shaft. Due to 

unknown disturbances in the form of unbalance excitation and 

system deviation due to gyroscopic effect, ordinary linear time 

invariant observers fail to observe the system states accurately 

for gyroscopic rotors, possibly leading to significant control 

performance reduction. To overcome this problem, a 

Disturbance Observer is applied to the problem. It is shown 

that the gyroscopic effect can be approximated accurately by 

an additive term in the state space equation and can thus be 

treated as an additional disturbance in Disturbance Observer 

design. Due to high steady state estimation accuracy, the 

presence of the Disturbance Observer does not affect steady 

state control performance and thus, controller and observer 

design are decoupled regarding control performance. Due to 

this fact, the controller can be designed prior to the observer 

despite system deviation due to gyroscopic effect and 

disturbances. However, since the separation principle does not 

hold for the system, stability proof has to be carried out by 

consideration of the entire closed loop system for all rotational 

frequencies within the operating range. A Linear Quadratic 

Regulator is used as a controller for the sake of simplicity. 

However, the proposed observer structure is applicable to 

arbitrary state space controllers. The resulting controller-

observer combination is validated in simulation and 

experiment. 

Index Terms—Active Vibration Control, Disturbance 

Observer, Gyroscopic Effect, Rotordynamics, State Space 

Control 

 

I. INTRODUCTION 

OTOR vibration control is an important issue in high 

speed rotor applications such as power plant or aircraft 

engine turbines. High levels of vibration reduce service life 

of rotating machinery and may lead to undesirable operating 

conditions like contact of rotating and stationary parts. It is 

state of the art to achieve rotor vibration attenuation by 

means of passive measures such as damping elements, 

balancing or targeted manipulation of eigenfrequencies. 

However, applicability of passive vibration reduction 

methods is limited in many practical cases and as a result, 

active vibration control strategies are a topic of 

contemporary research in the field of rotordynamics. 
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Besides other active and semi-active components, 

electromagnetic [1], [2] and piezoelectric actuators [3], [4] 

have been proven to be feasible for active control of rotor 

vibration in the respective literature. In this article, vibration 

control is achieved using piezoelectric stack actuators. This 

actuator type provides low weight accompanied by high 

forces in a broad frequency range if suitable amplifiers are 

available. These attributes are important for active vibration 

control in applications that require high vibration attenuation 

and light-weight construction as in aircraft engines, which is 

the background of this study. 

The heart of active vibration control systems is the 

controller itself. The choice of a proper control law affects 

the achievable control performance significantly. For 

vibration control of rotating shafts, feedforward as well as 

feedback methods are commonly applied throughout 

literature. Feedforward approaches are usually realized 

using filters, which are adapted using algorithms like the 

Filtered x Least Mean Square Algorithm [5] for instance. In 

the field of feedback control, besides simple controllers like 

PD or Integral Force Feedback, frequency domain 

approaches [1] like µ-, H∞- or H2-optimal controllers and 

state feedback [3], [4] are frequently utilized. 

In this article, a state feedback controller, the Linear 

Quadratic Regulator (LQR), is applied to a rotor vibration 

control problem. The LQR offers relatively easy design and 

a comprehensible interconnection between design 

parameters and closed loop system dynamics. Possibly due 

to these reasons, the LQR is the most frequently applied 

state space controller in the field of rotordynamics, see e.g. 

[2]- [4], and also commonly utilized as a benchmark 

controller in other applications [6]. Moreover, stability of 

the LQR is robust against modeling errors in the system 

input matrix [6]. For these reasons and also because the 

focus of this paper is not controller design, but to 

demonstrate advantages of an observer structure, the LQR is 

used to achieve state feedback in this article. However, the 

proposed observer structure can also be utilized in the 

context of different state feedback controllers like 

controllers designed via pole placement [6] or advanced 

controllers that consider parametric uncertainty [7] or 

minimize H∞- or H2- norms of certain frequency response 

functions (FRFs) [8]. 

If state feedback is to be applied to a system and not all 

states are measurable using a certain sensor configuration, 

there is a need for an observer in order to estimate the 

missing states. In the context of rotors excited by unbalance 

and subject to gyroscopic effect, state estimation must be 

achieved despite the presence of unbalance excitation and 

system deviation due to gyroscopic effect. Ordinary linear 

time invariant (LTI) observers such as the commonly 
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applied (LTI) Kalman Filter fail to estimate the system 

states accurately as discussed in [9] and [10]. There are, just 

like in the case of state feedback, methods available for 

consideration of e.g. parametric uncertainty [7]. However, it 

was shown in [10] that it is admissible to treat the system 

deviation caused by gyroscopic effect as a harmonic 

disturbance. Disturbance Observers (DOs), proposed by 

Johnson in [11], [12] as well as Unknown Input Observers 

(UIOs), introduced by Wantanabe and Himmelblau in [13], 

account for disturbances, however, in very different ways. 

UIOs, a method being commonly used in the field of fault 

detection and isolation [14], [15], are based on the general 

structure of a Luenberger Observer. Its matrices are 

designed in such a way that disturbances of arbitrary signal 

type acting on the system via a specific input matrix do not 

have any effect on state estimation accuracy. In the field of 

fault detection and isolation, this observer is commonly used 

to estimate system outputs and not system states as it is the 

case in this article. As discussed in [9], conditions for 

applicability of the UIO are quite restrictive and one has to 

deal with poorly conditioned matrices in the design 

procedure. 

DOs rely on the assumption that the disturbance can be 

described by the output of a homogeneous state space 

model. This so-called disturbance model is included into the 

overall state space model in order to account for the effect of 

disturbances on the system. The DO is an ordinary observer, 

designed for this augmented system. As a result, system 

states as well as the disturbances are observed, leading to an 

estimate of the disturbances acting on the system and 

increased estimation accuracy regarding the system states. 

The DO, in contrast to the UIO, can treat disturbances which 

are described by the disturbance model only. Furthermore, 

and just like in the UIO-case, only disturbances acting on 

the system via a specific input matrix are accounted for. 

It has been shown in [9] that conditions for applicability 

of DOs are less restrictive than for UIOs. Furthermore, a 

less accurate approximation of the disturbance input matrix 

and less sensors are required [9]. Due to these reasons, state 

observation is achieved using the DO in this article in a test 

rig application. It is shown that by means of state 

observation via a DO, control performance of an a priori 

designed state space controller is not affected. This article is 

an extension of the investigation in [3], where the coupled 

design of a LQR and a Kalman Filter is treated. 

II. THEORY 

In this section, the relevant theoretical background for the 

investigation in this article is given, i.e. the theory of LQRs 

and DOs is briefly introduced. 

A. Linear Quadratic Regulator 

The LQR is a state space controller, i.e. designed on the 

basis of a system description (1) 
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and minimizes the cost function [6], [16] 
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for arbitrary initial conditions  (   )     and    . In 

(1) and (2),      are the system states,       the 

control inputs,       the disturbances acting on the 

system,       the system outputs and         are 

system matrices with appropriate dimensions. In (1), 

feedthrough components are neglected for the sake of 

simplicity and due to the fact that no significant feedthrough 

components are present at the rig under consideration. 

Furthermore, the results in this subsection are not affected 

by feedthrough terms and the DO, which is treated in the 

next subsection, can easily be extended to systems 

possessing feedthrough components [17]. The control input 

generated by a state space controller is 

 

       (3) 

 

with the constant controller gain          . The LQR, 

minimizing     , is given by [6], [16] 
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In (4),   is the symmetric, positive definite solution to the 

Algebraic Riccati Equation [6], [16] 

 

                      (5) 

 

B. Disturbance Observer 

In order to realize a state space control law (3), all system 

states have to be available. If not all system states are 

measurable, an observer is required. For an ordinary 

Luenberger observer, 
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the estimation error      ̂ tends towards zero as time 

increases if     and the matrix      is stable, i.e. all its 

eigenvalues possess negative real parts. If there are 

disturbances present however, the estimation error is 

described by [16] 
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i.e. even if      is stable, there will be steady state 

estimation error for disturbances other than e.g. impulse-like 

ones. 

DOs rely on the assumption that the disturbance can itself 

be described as a solution to a homogeneous model, the so-

called disturbance model: 
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In (8),  ̂ is an estimate of the disturbance. This disturbance 

model is included in the overall system model: 
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The design of an observer for the system (9) leads to a so-

called DO. As shown by Johnson [17], the estimation error 

of a DO for (1) on the basis of (9) tends towards zero, 

provided that it is stable,   can be fully described by (8) and 

that no model inaccuracy is present. 

III. TEST RIG 

A controller-observer combination is applied to a rotor 

test rig in this article. There are two discs mounted on the 

rotor, one between the two supports and one cantilever disc, 

see Fig. 1. 

 

 
 

Fig. 1: Test rig 

 

 
 

Fig. 2: Active bearing 

 

The rotor is supported by a passive and an active bearing, 

which is equipped with two piezoelectric stack actuators. 

Power supply is provided by means of two amplifiers, 

whose scaled outputs are measured by the real time system. 

The operating range of the actuators is 0 V – 1000 V. 

However, an offset voltage of 500 V is applied to the 

actuators during operation in order to be able apply 

bidirectional forces to the rotor. Thus, the maximum 

admissible voltage amplitude is           . On the 

opposite sides of the piezoelectric actuators, there are 

springs providing pre-stress for the actuators. The active 

bearing is shown in Fig. 2 in detail. The rotor is driven by 

means of a DC motor, installed at the passive bearing side. 

The displacements of the two discs into the x and y direction 

are measured by four eddy current sensors, see Fig. 1. The 

sensor signals and the amplifier output voltages are filtered 

by means of analogue low pass filters in order to avoid 

aliasing effects caused by discrete time signal analysis.  

The rotor is designed to be subject to gyroscopic effect to 

significant extent in order to replicate a high speed rotor 

application. Gyroscopic effect leads to a dependence of the 

system dynamics on rotary frequency, i.e. time varying 

eigenfrequencies and eigenvectors. The rotor can be 

operated at up to 10.000 rpm. However, just the frequency 

range up to 3.300 rpm is considered in this investigation and 

is referred to as operating range in the following. 

IV. MODELING 

A model of the rotor is derived via Finite Element (FE) 

Analysis on the basis of Timoshenko beam theory. The 

bearings are modeled by means of discrete spring, mass and 

piezoelectric elements. In order to achieve a manageable 

number of degrees of freedom for controller 

implementation, the model is reduced to an order of 16 in 

state space using modal truncation technique. For the 

purposes in this article, it is advantageous to derive a rotor 

model description in the form of 

 

 
   (        )            

        
(10) 

 

In (10),   is the rotational frequency in rad/s,     
   

are the rotor states,     
   are the voltages applied to the 

actuators,        are the disturbances, i.e. unbalance 

forces, and       are the displacement sensor signals. 

The derivation of the system matrices is discussed in the 

following. 

Coupling of the FE model with the bearing models leads 

to matrices of a system of second order linear differential 

equations as follows: 

 

   ̈     ̇       (11) 

In (11),      is the vector of rotor degrees of freedom, 

     the vector of excitations,          the 

symmetric, positive definite mass matrix,          the 

symmetric, positive definite stiffness matrix and          

the skew-symmetric gyroscopic matrix. The proposed 

reduction method is based on the non-rotating system, which 

can be decoupled by means of real right eigenvectors,   , 
(    

  )    , which are arranged in the modal matrix 

  [          ].    are the eigenfrequencies of the 

(undamped) non-rotating system. Introducing transformation 

into modal coordinates  ,     , and left multiplication of 

(11) by    leads to the following system of differential 

equations: 
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In (12), it is already taken advantage of that the 

eigenvectors are normalized in such a way that       , 
where   denotes the identity matrix. For    , the 

differential equations in (12) are decoupled, and modal 

truncation to   modes is applicable by simply using 

   [          ] instead of   in (12). Damping is 

introduced by means of modal damping for the non-rotating 

system: 

 

  ̈      (     ) ̇      (  
 )      (13) 

 

The damping ratios    were manually tuned, together 

with other system parameters like the elastic properties of 

roller bearings and actuators, in order to replicate the 

transfer behavior of the system accurately. Equation (13) can 

be transformed into a state space description of the form 
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(14) 

 

Assuming that the gyroscopic coupling between the 

modes can be approximated by    
    , the desired 

frequency dependent part of the system matrix in (10) is 

 

      [
  
    

    
]   (15) 

 

This quasi-modal truncation is not guaranteed to lead to 

an accurate approximation and has to be validated. In the 

case of the test rig, the gyroscopic influence on the 

eigenfrequencies is approximated with high accuracy by the 

truncated model in comparison to the full model, see Fig. 3. 

There is literally no error introduced by the quasi-modal 

truncation. 

 
Fig. 3: Eigenfrequencies vs. rotational frequency, (grey, -) full 

model, (black, --) quasi-modally truncated model 

The inputs to the system on the right hand side of (14) can 

be decomposed into system excitation by unbalance forces 

and the actuators, 

                (16) 

Throughout this article it is assumed that unbalances are 

present at the disc locations only and   represents the 

respective unbalance forces. 

Besides the rotor, there are other effects at the rig to be 

considered: The amplifiers possess relevant dynamics within 

the operating range due to limitations regarding maximum 

current. They are approximated by means of a second order, 

critically damped filter. Furthermore, the time delay caused 

by digital signal processing produces a phase lag, which is 

approximated by means of a second order padé-

approximant. Both effects are described by a single model 

of order 8, 
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and coupled to the rotor model on the input side, 
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(18) 

 

Modeled and identified FRFs from the actuator pointing 

into the x direction to the sensor at disc 1 pointing into the x 

direction at a rotational velocity of 8.000 rpm are shown in 

Fig. 4. The FRFs of the full model and the quasi-modally 

truncated model are included in order to validate the quality 

of the truncation once more. The models do not show 

relevant differences and replicate reality with high accuracy. 

In order to be able to predict control performance and 

control effort in simulations, it is advantageous to derive an 

approximation of the unbalances acting on the rotor. In this 

article, it is assumed that there are unbalances present at the 

disc locations only. The vector of sensor responses to these 

unbalances   [     ]
  at a constant rotational frequency 

  is given by: 

 

      ( ) 
   (19) 

 

In order to be able to derive an approximation of the 

unbalance excitation, the complex amplitudes  (   ) and 

 (   ) at the two unbalance induced resonances below 

10.000 rpm are extracted from measurements by means of a 

digital implementation of the wattmeter measuring principle 

[18]. The desired approximation of the unbalances at the 

disc locations can be calculated by 
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In (22), the superscript + denotes pseudo-inversion of a 

matrix. 
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Fig. 4: FRF from the actuator pointing into the x direction to the 

sensor at disc 1 pointing into the x direction at 8.000 rpm, (grey, -) 

full model, (black, -) identified, (black, --) quasi-modally truncated 

model 

V. IMPLEMENTATION 

In this section, the process of controller and observer 

design for the test rig is described. Since the DO is tuned to 

guarantee accurate state estimation despite the presence of 

gyroscopic effect and unbalance excitation, consecutive 

tuning of controller and observer is admissible. In the first 

step, a state space controller is found which leads to the 

desired control performance. Subsequently, one has to find a 

DO, which leads to closed loop stability for the whole 

operating range. In both steps, i.e. controller and observer 

design, noise amplification is considered. Since manual 

parameter tuning for controllers and observers is time-

consuming in the case of the rig and presumably all rotors 

being subject to gyroscopic effect, a genetic optimization 

algorithm [19] is applied to the problem, which is available 

in MATLAB [20]. Discussion of the algorithm would be 

beyond the scope of this article, for more information about 

genetic optimization algorithms see [19]. 

A. Controller Design 

A LQR is applied to the problem of the unbalance excited 

rotor in this article, due to the fact that the LQR is relatively 

simple to design. The focus of this paper is not the controller 

design, but to show an option for observer design for 

gyroscopic rotors excited by unbalance which preserves the 

desired control performance. 

Obviously, the cost function (2) is not a representative 

measure of unbalance induced vibration and thus one may 

raise the question, how the LQR fits to the problem treated 

in this investigation. (2) can rather be considered to be a 

measure of settling time of the system. However, one can 

influence the damping rations of certain modes by 

appropriate weighting and thus affect the unbalance induced 

resonance amplitudes, which are inversely proportional to 

the respective damping ratios. 

In the controller design process, the following cost 

function is minimized by means of a genetic optimization 

algorithm: 
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In (21),      ( 
   ) is the FRF matrix from an assumed 

noise    in the system states, to the actuator voltages with 

its feedthrough component eliminated: 

 

      ( 
   )   (     ( )      )

      (22) 

 

The H2-norm of this FRF matrix gives just a rough idea of 

the closed loop noise amplification level to be expected. The 

actual noise amplification behavior from sensor noise to 

actuator voltages can only be analyzed for the combination 

of controller and observer. However, (22) is, from the 

authors’ point of view, the best possibility to assess noise 

amplification prior to observer design. 

In (21), the undesirable cases of instability, actuator 

overload and high noise amplification are considered by 

means of assigning infinite cost to the respective controllers. 

This option for handling these cases is chosen instead of 

treatment by means of constraints in the optimization 

because of the computationally involved treatment of 

nonlinear constraints. The conditions are to be checked for 

all    [      ], i.e. for the whole operating range due to 

the dependence of   ( ) on rotational frequency. This is 

realized by means of checking for a number of discrete 

   [      ]. For the reasons discussed in [3], the linear 

time variant (LTV) stability proof is skipped under the 

assumption of a slowly varying system [21] and LTI 

stability is checked at the discrete   . 
The value   as well as bounds for the controller design 

parameters are determined on the basis of the controller 

presented in [3]. The authors recommend to implement a 

controller by manual tuning of the controller parameters 

proposed in [3] in order to get an idea of these values, when 

following the controller design procedure in this article. 

In the optimization routine, not only the controller 

parameters but also the design point frequency      is 

varied, i.e. the LQR is calculated on the basis of the system 
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However, the cost function is evaluated using the 

rotational frequency dependent system (18). 
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B. Observer Design 

For observer design, it is once again assumed that 

unbalances act on the system at the disc locations only, i.e. 

the matrix    of the corresponding model possesses four 

rows corresponding to force inputs at the discs into the x and 

y direction respectively. The observer is designed for a 

system of the form: 
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(24) 

 

An obvious choice of system matrices would be to use 

    (        ) and  ̃     for observer 

implementation and, like in (23), a specific design point 

system for calculation of the observer feedback matrix  . 

However, this would imply that a LTV system of order 32 

has to be implemented in real time. An interesting approach 

to overcome this problem is to use a constant observer 

matrix at some specific design point frequency     

 

                (25) 

 

and to consider the term caused by gyroscopic effect in (18) 

as additional sinusoidal disturbances [10], 

 

  ̃̃ ̃  [      ] [
(     )  

 
]  (26) 

 

In this way, however, the order of the observer is even 

higher than for the case     (        ) and  ̃    . 

To overcome this problem an approximation  ̃  is utilized, 

i.e.  ̃   ̃ , which possesses just   columns and full column 

rank. It is obtained on the basis of a singular value 

decomposition of  ̃̃ [15]: 

 

 

 ̃   [
    (          )
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 ̃̃   [
    (           )  
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(27) 

 

The more singular values    one considers, the more 

accurately the resulting matrix  ̃  represents  ̃̃. The 8 largest 

magnitude singular values of  ̃̃, normalized to the largest 

one, are shown in Fig. 5. In this investigation, 

approximations  ̃  and  ̃ , possessing two and four columns 

respectively, are utilized for observer implementation. The 

proposed observer structure is implemented in real time by 

means of a LTI system of order 24, corresponding to the 

system model at the design point frequency, and a LTV 

system corresponding to the disturbance model, which 

possesses an order of twice the number of rows of  ̃. 

Discretization of this LTI model is achieved using bilinear 

approximation [22] and calculation of the respective rotary 

frequency dependent system matrices by hand in order to 

achieve a computationally efficient real time program. 

 

 
Fig. 5: Singular values    of the disturbance input matrix, 

normalized to the largest magnitude singular value 

For sinusoidal excitation, a disturbance model is given by 

[23] 
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   [  ]   
(28) 

 

Due to the inclusion of the disturbance model into the 

observer matrices, conditions for observability depend on 

the disturbance model as well as the disturbance input 

matrix. In [23], a necessary observability condition for the 

system (9) with a disturbance model (28) is given and 

proven: 

 

 

If (A,C) is an observable pair and E is of full 

column rank, then the system 
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]  [   ])  

 

is observable only if 

 

    ( )      ( ) 
 

i.e. the number of independent disturbances 

considered must be smaller or equal to the 

number of independent measurements. 

(29) 

 

In the investigation in this article, no observer can be 

found using just the displacement sensors despite the rank 

condition being satisfied. To overcome this problem, the 

measured amplifier output voltages are used as additional 

sensor signals, i.e. the output matrix 

 

  ̃  [
   
   

] (30) 

 

is utilized for observer design and implementation. 

The observer matrix   is generated by applying the LQR 

to the dual system, i.e. calculation of a LQR for 
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and transposing the result. Like in the controller design 

procedure, the observer feedback matrix is generated 

utilizing a genetic optimization algorithm. However, finding 

a stabilizing solution is more difficult in the case of the 

observer. Thus, the parameter tuning is achieved in two 

steps. In the first one, the optimization algorithm is utilized 

to maximize the region of robust stability without 

consideration of noise amplification. In the second step, 
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                         [      ]

‖    ( 
   )‖

 

 (32) 

 

is minimized while using the optimal solution of step one in 

order to generate a promising initial population [19] of the 

genetic algorithm. In (32),     ( 
   ) is the FRF matrix 

from sensor noise inputs to actuator voltages. 

There is no need to include other performance measures like 

in (21) in the optimization, because the DO does not affect 

them if it leads to a stable closed loop and the approximation 

 ̃ is sufficiently accurate. Like in the case of the controller, 

the design point frequency     is used besides the 

controller design parameters as free parameter in the 

optimization process. 

VI. RESULTS 

Results achieved with the controller-observer 

combination in simulation and experiment are presented and 

discussed in this section. All simulation results are achieved 

using steady state frequency domain analysis, whereas the 

experimental data is processed by means of a digital 

implementation of the wattmeter measuring principle [18] in 

order to focus on the synchronous vibration of the rotor. 

The results achieved with two different DOs, calculated 

using  ̃  and  ̃  respectively, are presented in order to show 

the effect of accuracy of the approximation of  ̃̃ on control 

performance. 

Simulation results for 3 different configurations are 

shown in Fig. 6. Vibration amplitudes as well as control 

inputs are derived by means of “perfect observation”, i.e. 

feeding back the system states without an observer, and by 

utilizing observers generated by using  ̃  and  ̃ . It is 

observed that the accuracy of  ̃ affects the resulting control 

performance and the control effort. The effect is more 

severe for the control effort than for control performance. 

However, results show that good vibration attenuation can 

still be achieved, such that the overall system can still be 

considered feasible, even by means of a rather inaccurate 

approximation  ̃ . This statement is in agreement with [9], 

where a rotor without gyroscopic effect is treated. 

Fig. 7 shows the experimental results achieved with the 

two observers. As in the simulation results, control 

performance of the closed loop systems involving the two 

observers is very similar, whereas there is some difference 

in control effort as is the case in the simulation results. 

Also, control performance is predicted accurately by the 

model. The control effort shows some deviation from the 

simulation results, particularly in the lower rotary frequency 

range. Since the simulation results indicate that errors in  ̃ 

lead to estimation errors, especially in the control effort, it is 

assumed that this is partially because the matrix  ̃̃  
[      ] is subject to modeling errors. Recall that   , 

which was used for observer design as well as to obtain the 

simulation results shown in Fig. 6, was derived under the 

assumption that unbalances act on the shaft at the disc 

locations only, whereas at the test rig it is an unbalance 

distribution that excites the rotor. Another source of 

uncertainty is actuator nonlinearity, which is not considered 

in the simulation. 

 

 
Fig. 6: Simulation results, displacement amplitudes at discs 1 and 2 

into the x direction: (black, -) no control, (black, --) perfect 

observation, (grey, -) observer  ̃ , (black, :) observer  ̃ . Control 

effort: (black, --) perfect observation, (grey, -) observer  ̃ ,   

(black, :) observer  ̃ . 

VII. CONCLUSION 

Design and implementation of Disturbance Observers for 

realization of state feedback in the context of a rotor being 

subject to unbalance excitation and gyroscopic effect was 

discussed and feasibility was validated in simulation and 

experiment. It was shown that gyroscopic effect can be 

accurately approximated by an additive term in the state 

space equation of the rotor system and can be treated as an 

additional disturbance. It was demonstrated how an 

approximate disturbance input matrix can be derived and the 

influence of the accuracy of this approximation on control 

performance and control effort was investigated. 

Results indicate that by using a Disturbance Observer and 

an estimated disturbance input matrix, performance of a 
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controller designed prior to observer design is preserved 

despite the presence of unbalance excitation and gyroscopic 

effect and thus, consecutive tuning of controller and 

observer is admissible. 

 
Fig. 7: Experimental results, displacement amplitudes at discs 1 

and 2 into the x direction: (black, -) no control, (grey, -) observer 

 ̃ , (black, :) observer  ̃ . Control effort: (grey, -) observer  ̃ , 

(black, :) observer  ̃ . 
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