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Abstract—A deferred correction method is utilized to increase
the order of spatial accuracy of the Crank-Nikolson scheme for
the numerical solution of the one-dimensional heat equation.
Numerical examples are given for both Neumann and Dirichlet
initial boundary value problems. The fourth-order methods
proposed are compared with high-order compact schemes. The
set of methods proposed demonstrate a better performance
compared with high-order compact schemes in the case of the
Neumann boundary conditions.

Index Terms—high-order difference scheme; deferred correc-
tion scheme; high-order compact scheme; heat equation.

I. INTRODUCTION

THE desired properties of finite difference schemes are
stability, accuracy and efficiency. These requirements

are in conflict with each other. In many applications a high-
order accuracy is required in the spatial discretization. To
reach better stability, implicit approximation is desired. For
a high-order method of traditional type (not a high-order
compact (HOC)), the stencil becomes wider with increasing
order of accuracy. For a standard centered discretization of
order p, the stencil is p+1 points wide. This inflicts problems
at the fictional boundaries, and using an implicit method
results in the solution of an algebraic system of equations
with large bandwidth. In light of conflict requirements of
stability, accuracy and computational efficiency, it is desired
to develop schemes that have a wide range of stability, high-
order of accuracy and lead to the solution of the system of
linear equations with a tridiagonal matrix, i.e. the system
of linear equations arising from a standard second order
discretization of heat equation.

The development of high order compact schemes (HOC)
[2-12, 14-19, 21, 22] is one approach to overcome the antago-
nism among stability, accuracy and computational cost. Most
existing HOCs are constructed for problems with Dirichlet
boundary conditions (Dbc) [2-12, 14-19, 22, 23]. Only few
HOCs have been constructed for problems with Neumann (or
insulated) boundary conditions (Nbc) [4,5,11, 12, 14-19, 22,
23]. Even for these less popular compact difference schemes
involving Neumann boundary conditions, very often, the
schemes are fourth-order, sixth-order or higher order at the
interior points, but of lower order at the boundary [1, 4, 5,
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11, 22, 23]. In the paper by Zhao et al. [22], a set of fourth-
order one dimensional compact finite difference schemes is
developed to solve a heat conduction problem with Neumann
boundary conditions.

Another way of preserving a compact stencil at higher time
level and reaching high-order spatial accuracy is the deferred
correction approach [13]. A classical deferred correction
procedure is developed in [20, 21].

In this paper we use the deferred correction technique
to obtain fourth-order accurate schemes in space for the
one dimensional heat conducting problem with Dirichlet
and Neumann boundary conditions. The linear system that
needs to be solved at each time step is similar to the
standard Crank-Nicolson method of second order which
can be solved by using Thomas algorithms. The fourth-
order deferred-correction schemes are compared with the
fourth-order compact schemes for the Dirichlet and Neumann
boundary value problems.

A set of schemes are constructed for the one dimensional
heat conducting problem with Dirichlet boundary conditions
and Neumann boundary conditions and initial data,

ut = βuxx + f(x, t), 0 < x < l, t > 0, (1)

u(x, 0) = u0(x), 0 < x < l, (2)

Dbc: u(0, t) = α1(t), u(l, t) = α2(t), t > 0, (3)

Nbc: ux(0, t) = γ1(t), ux(l, t) = γ2(t), t > 0, (4)

where the diffusion coefficient β is positive, u(x, t) repre-
sents the temperature at point (x, t) and f(x, t), α1(t), α2(t),
γ1(t), γ2(t) are sufficiently smooth functions.

The rest of this paper is organized as follows: Section 2.1
presents a list of fourth-order deferred correction schemes.
Section 2.2 presents briefly the high-order compact differ-
ence schemes, which we use to compare performance of
proposed schemes and HOC schemes. Section 3 provides
examples of comparisons. Although having a higher compu-
tational cost than HOC schemes, it is evident from these
examples that the deferred correction schemes have the
advantage of accuracy in the uniform norm (the accuracy at
the internal points and at the boundary points are the same)
and robustness. We conclude the paper in Section 4.

II. THE PROPOSED SCHEMES

Let ∆t denote the temporal mesh size. For simplic-
ity, we consider a uniform mesh consisting of N points:
x1, x2, . . . , xN where xi = (i − 1)∆x and the mesh size is
∆x = l/(N−1). Below we use the notations un

i and (uxx)n
i

to represent the numerical approximations of u(xi, t
n) and
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uxx(xi, t
n) where tn = n∆t and u(p) is the value of the p-th

derivative of the given function u.

A. Deferred correction schemes

A set of high order deferred correction schemes (HOD) is
based on the well-known Crank-Nikolson type of scheme in
the following form,

un+1,s+1
i − un

i

∆t
=

β

2

[
(uxx)n+1,s+1

i + (uxx)n
i

]

+ f
n+1/2
i , f

n+1/2
i =

fn+1
i + fn

i

2

(5)

the second superscript “s” denotes the number of iterations
s = 0, . . . , Ŝ and i = 2, . . . , N − 1.

The deferred correction technique [13] is utilized to ap-
proximate the second-order derivatives at higher time levels
(uxx)n+1,s+1

i , i = 2, . . . , N − 1 by the iterative method

(uxx)n+1,s+1
i = (ul

xx)n+1,s+1
i

+
[
(uh

xx)n+1,s
i − (ul

xx)n+1,s
i

]
,

(6)

where

(uh
xx)n+1,s

i , i = 2, . . . , N − 1, s = 0, . . . , Ŝ

is high-order approximation on wide stencil, and

(ul
xx)n+1,k

i , k = s, s + 1, i = 2, . . . , N − 1

is the lower order approximation on compact stencil (usually
three point stencil). The expression in the square brackets of
(6) is evaluated explicitly using the values known from the
previous iteration. When s = 0 we use the solution from the
time level n (so un+1,0 = un and (uxx)n+1,0

i = (uxx)n
i ).

Once the iterations converge, the lower order approximation
terms drop out and the approximation of (uxx)n+1,s+1

i

obtained has the same order of approximation as (uh
xx)n+1,Ŝ

i .
There are no difficulties to construct high-order approxima-
tion for interior points.

To preserve a compact 3 using wide stencil in the finite
difference scheme at higher time level (n + 1, s + 1), we
use the central second-order finite difference approximation
to approximate the lower order term in (6)

(ul
xx)n+1,k

i =
1

∆x2
Λlu

n+1,k
i , k = s, s + 1, (7)

Λlu
n+1,k
i = un+1,k

i−1 − 2un+1,k
i + un+1,k

i+1 , i = 3, . . . , N − 2.

For the high-order approximation term in (6), we use a
symmetric five point wide stencil for the inner points to reach
the fourth-order of approximation

(uh
xx)n+1,s

i =
1

∆x2
Λhun+1,s

i , i = 3, . . . , N − 2, (8)

Λhun+1,s
i =

1
12

(− un+1,s
i−2 + 16un+1,s

i−1 − 30un+1,s
i

+ 16un+1,s
i+1 − un+1,s

i+2

)
.

Case s = 0 in equations (8) gives the fourth-order of
approximation to approximate the second-order derivatives
at the time level n, (uxx)n

i , i = 3, . . . , N − 2 in (5).

Stability analysis

To study the stability of scheme (1)-(8), we use the Von-
Neumann stability analysis. For simplicity, we assume that
f

n+1/2
i ≡ 0 in (5), and u is periodic in x.

Let us recast scheme (5) in the following form,

[E + (α/2)Λl]u
n+1,s+1
i = (α/2) [Λl − Λh] un+1,s

i

+ [E − (α/2)Λl]un
i ,

(9)

where α = β∆t/∆x2. If we define the following operators:
A = E + (α/2)Λl, B = E − (α/2)Λh, C = E + (α/2)Λh,
where E is the identity operator, then (9) can be rewritten
as follows

Aun+1,s+1
i = (A− C)un+1,s

i + Bun
i . (10)

Assuming that the operators commute (for example in the
case of uniform grid),

(A− C)A = A(A− C),

it is easy to demonstrate that if un+1,Ŝ+1
i = un+1

i and
un+1,0

i = un
i we get

AŜ+1un+1
i =




Ŝ∑

k=0

AŜ−k(A− C)k


 Bun

i

+ (A− C)Ŝ+1un
i .

(11)

Let un
i = ξneIΘi, I =

√−1, be the solution of (5)-(8),
where Θ = 2π4x/l is the phase angle with wavelength l.
From (11), we can derive an equation for the amplification
factor in the form

|ξ| = |ϕ(Θ, Ŝ, α)|, (12)

where Ŝ is the number of iterations, and

|ϕ(Θ, Ŝ, α)|

=

∣∣∣
[(∑Ŝ

k=0 AŜ−k(A− C)k
)

B + (A− C)Ŝ+1
]
eIΘi

∣∣∣
|AŜ+1eIΘi|

.

For stability of the method it is necessary that the absolute
values of the amplification factor is less than one, i.e.

|ξ| < 1. (13)

Calculations are tedious and almost impossible to do by
hand without mistake. We have therefore automated all
calculations in a computer algebra environment based on
REDUCE to obtain an explicit form of |ϕ(Θ, Ŝ, α)|. Figure
1 shows the values of |ξ|2 in the polar coordinate system
(|ξ|2, Θ) for Ŝ = 1, 3 and 5. If only one iteration executes in
(5), Ŝ = 1, inequality (13) holds if α < 1.5, as can be seen
from Figure 1 a). If 3 iterations are done in (5) (Figure 1 b)
, Ŝ = 3, the amplification factor remains bounded by one at
least for α ≤ 10. In case of Ŝ = 5, the stability criteria hold
up to α = 30 as can be seen from Figure 1 c). It can be seen
that increasing the number of internal iterations results in
increasing the range of α needed for stability. This tendency
allows to assume that as Ŝ → ∞, our method becomes the
unconditionally stable Crank-Nikolson method for the heat
equation.
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Fig. 1. Variation of amplification factor with Θ. (a)–Ŝ = 1, dashed line
α = 2.0, solid line α = 1.5 , dash-doted line α = 1.0, (b)–Ŝ = 3, dashed
line α = 10.0, solid line α = 5.0 , dash-doted line α = 1.0, (c)–Ŝ = 5,
dashed line α = 30.0, solid line α = 15 , dash-doted line α = 5.0, doted
line α = 1.0

Fourth-order deferred correction scheme (Dirichlet boundary
conditions)

Let us first consider the one dimensional heat conduction
problem with initial data and Dirichlet boundary conditions
(1)-(3),

un+1
1 = un+1,k

1 = α1(tn+1), un+1
N = un+1,k

N = α2(tn+1).

The finite difference approximations at x2 and xN−1, which
are the points next to the left and right boundaries, are
straightforward

(ul
xx)n+1,k

2 =
1

∆x2

(
α1(tn+1)− 2un+1,k

2 + un+1,k
3

)
, (14)

(uh
xx)n+1,s

2 =
1

12∆x2

(
10α1(tn+1)− 15un+1,s

2

− 4un+1,s
3 + 14un+1,s

4 − 6un+1,s
5 + un+1,s

6

)
,

(15)

(ul
xx)n+1,k

N−1 =
1

∆x2

(
un+1,k

N−2 − 2un+1,k
N−1 + α2(tn+1)

)
,

(16)

(uh
xx)n+1,s

N−1 =
1

12∆x2

(
10α2(tn+1)− 15un+1,s

N−1

− 4un+1,s
N−2 + 14un+1,s

N−3 − 6un+1,s
N−4 + un+1,s

N−5

)
,

(17)

where k = s, s + 1. Cases s = 0 or k = 0 give formulae
to approximate (un

xx)i. Substituting equations (7), (8), (14)–
(17) into equation (6) the following fourth-order deferred
correction approximations of (uxx)n+1,s+1

i , i = 2, . . . , N−1
are

(uxx)n+1,s+1
2 =

5
6∆x2

α1(tn+1)

+
1

∆x2

(
− 2un+1,s+1

2 + un+1,s+1
3

)

+
1

12∆x2

(
9un+1,s

2 − 16un+1,s
3 + 14un+1,s

4

− 6un+1,s
5 + un+1,s

6

)
,

(18)

(uxx)n+1,s+1
i =

1
∆x2

(
un+1,s+1

i−1 − 2un+1,s+1
i + un+1,s+1

i+1

)

+
1

12∆x2

(
− un+1,s

i−2 + 4un+1,s
i−1 − 6un+1,s

i

+ 4un+1,s
i+1 − un+1,s

i+2

)
, i = 3, . . . , N − 2,

(19)

(uxx)n+1,s+1
N−1 =

5
6∆x2

α2(tn+1)

+
1

∆x2

(
− 2un+1,s+1

N−1 + un+1,s+1
N

)

+
1

12∆x2

(
9un+1,s

N−1 − 16un+1,s
N−2 + 14un+1,s

N−3

− 6un+1,s
N−4 + un+1,s

N−5

)
.

(20)

The scheme including equations (5), (18)–(20) is called the
fourth-order deferred correction scheme for Dirichlet bound-
ary value problem (we will use the abbreviation DHOD).
The order of approximation is O(∆t2, ∆x4) in the uniform
norm.

Fourth-order deferred correction scheme (Neumann bound-
ary conditions)

Next, we develop the fourth-order approximations (based
on principle of deferred corrections) of (uxx)n+1,s+1 at the
near boundary points x2 and xN−1. We do not approximate
the first derivatives using one side wide stencil. The main
idea is to use the given Neumann boundary conditions (value
of the first derivative) in the approximation of the second-
order derivatives at the points near the boundary. A similar
approach has used [16] to construct a high-order compact
scheme.

To preserve a compact stencil (two points) at level (n +
1, s + 1), we use the first-order finite difference formula for
the lower order approximation term in (6) (ul

xx)n+1,k
i , i =

2, N − 1, k = s, s + 1

(ul
xx)n+1,k

2 =
a1

∆x
(ux)n+1,k

1

+
1

∆x2

[
a2u

n+1,k
2 + a3u

n+1,k
3

]
,

(21)

(ul
xx)n+1,k

N−1 = − a1

∆x
(ux)n+1,k

N

+
1

∆x2

[
a2u

n+1,k
N−1 + a3u

n+1,k
N−2

]
,

(22)

where the coefficients can be found by matching the Taylor
series expansion of left-hand side up to the term O(∆x)u(3)

which gives the following values of coefficients

a1 = −2
3
, a2 = −2

3
, a3 =

2
3
.

Substituting coefficients into (21) and (22), the second-order
derivatives (ul

xx)n+1,k
i , i = 2, N − 1, k = s, s + 1 are

approximated with first-order by the following formula

(ul
xx)n+1,k

2 = − 2
3∆x

γ1(tn+1)

− 2
3∆x2

(
un+1,k

2 − un+1,k
3

)
,

(23)

(ul
xx)n+1,k

N−1 =
2

3∆x
γ2(tn+1)

− 2
3∆x2

(
un+1,k

N−1 − un+1,k
N−2

)
.

(24)

The absolute truncation errors of equations (23) and (24) are
(2∆x)/9

∣∣∣u(3)
∣∣∣.

To approximate (uh
xx)n+1,s

i , i = 2, N − 1 with fourth-
order we use five points stencil and given Neumann boundary

Engineering Letters, 21:2, EL_21_2_02

(Advance online publication: 21 May 2013)

 
______________________________________________________________________________________ 



conditions

(uh
xx)n+1,s

2 =
a1

∆x
γ1(tn+1) +

1
∆x2

(
a2u

n+1,s
2

+ a3u
n+1,s
3 + a4u

n+1,s
4 + a5u

n+1,s
5 + a6u

n+1,s
6

)
,

(25)

(uh
xx)n+1,s

N−1 = − a1

∆x
γ2(tn+1) +

1
∆x2

(
a2u

n+1,s
N−1

+ a3u
n+1,s
N−2 + a4u

n+1,s
N−3 + a5u

n+1,s
N−4 + a6u

n+1,s
N−5

)
,

(26)

where the coefficients are found by matching the Taylor
series expansion of the left-hand side terms up to the
term O(∆x4)|u(6)| which gives us the following values of
coefficients

a1 = − 50
137

, a2 =
315
548

, a3 = −887
411

,

a4 =
653
274

, a5 = −131
137

, a6 =
257
1644

.

Substituting coefficients into (25) and (26), the second-order
derivatives (uh

xx)n+1,s
i i = 2, N − 1 are approximated with

the fourth-order approximation by the following formula

(uh
xx)n+1,s

2 = − 50
137∆x

γ1(tn+1)

+
1

∆x2

(315
548

un+1,s
2 − 887

411
un+1,s

3 +
653
274

un+1,s
4

− 131
137

un+1,s
5 +

257
1644

un+1,s
6

)
,

(27)

(uh
xx)n+1,s

N−1 =
50

137∆x
γ2(tn+1)

+
1

∆x2

(315
548

un+1,s
N−1 − 887

411
un+1,s

N−2 +
653
274

un+1,s
N−3

− 131
137

un+1,s
N−4 +

257
1644

un+1,s
N−5

)
.

(28)

The absolute truncation errors of equations (27) and (28) are
(∆x4/15)

∣∣∣u(6)
∣∣∣. In (5) second-order derivatives at time level

n, (uxx)n
i are approximated by equations (27) and (28) with

s = 0. Substituting equations (23), (24), (27) and (28) into
equation (6), the following fourth-order deferred correction
approximations of (uxx)n+1,s+1

i , i = 2, N − 1 are

(uxx)n+1,s+1
2 = − 50

137∆x
γ1(tn+1)

− 2
3∆x2

(
un+1,s+1

2 − un+1,s+1
3

)

+
1

∆x2

(2041
1644

un+1,s
2 − 387

137
un+1,s

3 +
653
274

un+1,s
4

− 131
137

un+1,s
5 +

257
1644

un+1,s
6

)
,

(29)

(uxx)n+1,s+1
N−1 =

50
137∆x

γ2(tn+1)

− 2
3∆x2

(
un+1,s+1

N−1 − un+1,s+1
N−2

)

+
1

∆x2

(2041
1644

un+1,s
N−1 − 387

137
un+1,s

N−2 +
653
274

un+1,s
N−3

− 131
137

un+1,s
N−4 +

257
1644

un+1,s
N−5

)
.

(30)

When the iterations converge the absolute truncation error
of (29) and (30) is (∆x4/15)

∣∣∣u(6)
∣∣∣. We will use the ab-

breviation NHOD to denote the deferred correction scheme
of fourth-order with Neumann boundary conditions (5), (19)
and (27)–(30).

B. Fourth-order compact scheme

Let us briefly represent the main idea and final formulae of
compact schemes. Spatial derivatives in the Crank-Nikolson
scheme are evaluated by the fourth-order compact of implicit
finite differences schemes [5, 7, 8, 13, 14, 20].

Fourth-order compact scheme (Dirichlet boundary condi-
tions)

In [8, 14], the Dirichlet boundary conditions u(0,m∆t) =
α1(tm) = um

1 , and u(l, m∆t) = α2(tm) = um
N are used to

derive the following fourth-order schemes

(uxx)m
2 + α(uxx)m

3

=
1

∆x2
(a1u

m
1 + a2u

m
2 + a3u

m
3 + a4u

m
4

+ a5u
m
5 + a6u

m
6 )

=
a1

∆x2
α1(tm) +

1
∆x2

(a2u
m
2 + a3u

m
3 + a4u

m
4

+ a5u
m
5 + a6u

m
6 ),

(31)

(uxx)m
i−1 + 10(uxx)m

i + (uxx)m
i+1

=
2

∆x2
(6um

i−1 − 12um
i + 6um

i+1), i = 2, . . . , N − 1,
(32)

(uxx)m
N−1 + α(uxx)m

N−2

=
1

∆x2
(a1u

m
N + a2u

m
N−1 + a3u

m
N−2 + a4u

m
N−3

+ a5u
m
N−4 + a6u

m
N−5)

=
a1

∆x2
α2(tm) +

1
∆x2

(a2u
m
N−1 + a3u

m
N−2

+ a4u
m
N−3 + a5u

m
N−4 + a6u

m
N−5),

(33)

where the coefficients can be found by matching the Tay-
lor series expansion of left-hand side terms up to order
O(∆x4)|u(6)| which gives the following values of coeffi-
cients [10]

α =
1
2
, a1 =

19
24

, a2 = − 7
12

,

a3 = −19
12

, a4 =
11
6

, a5 = −13
24

, a6 =
1
12

.
(34)

The scheme (5), (31)–(34) is a fourth-order compact finite
difference scheme for the Dirichlet boundary value problem.
In (5) one has to replace the index n + 1, s + 1 by the index
m. We will use the abbreviation DHOC for this scheme.

Fourth-order compact scheme (Neumann boundary condi-
tions)

In [22], the Neumann boundary conditions (4),
ux(0,m∆t) = γ1(tm) and ux(l, m∆t) = γ2(tm) are
used to derive the following fourth-order approximations
at the near boundary points (x2, t

m), (x3, t
m), (xN−2, t

m)
and (xN−1, t

m)

22(uxx)m
2 − 4(uxx)m

3

= −12γ1(tm)
∆x

+
12

∆x2
(um

3 − um
2 ),

(35)

22(uxx)m
N−1 − 4(uxx)m

N−2

=
12γ2(tm)

∆x
+

12
∆x2

(um
N−2 − um

N−1).
(36)

The scheme (5), (32), (35) and (36) has the order
O(∆t2, ∆x4) at the interior grid points i = 3, . . . , N−2, (see
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for example [22]) and the order of O(∆t2,∆x2) at the grid
points x2 and xN−1 [11]. We will use abbreviation NHOC
to denote this scheme.

Updated fourth-order compact scheme (Neumann boundary
conditions)

To increase the order of accuracy of the NHOC scheme,
we suggest to use the fourth-order deferred correction ap-
proximation (29) and (30) for the Neumann boundary condi-
tions and the compact finite difference scheme (32) at interior
points. Thus, the updated fourth-order compact scheme with
Neumann boundary conditions is as follows. At the interior
points the second-order derivatives at higher n + 1, s + 1
and lower n levels are approximated by standard compact
schemes

(uxx)n+1,s+1
i−1 + 10(uxx)n+1,s+1

i + (uxx)n+1,s+1
i+1

=
12

∆x2
(un+1,s+1

i−1 − 2un+1,s+1
i + un+1,s+1

i+1 ),
(37)

(uxx)n
i−1 + 10(uxx)n

i + (uxx)n
i+1

=
12

∆x2
(un

i−1 − 2un
i + un

i+1), i = 2, . . . , N − 1.
(38)

The fourth-order deferred approximations (29) and (30) are
used at the near boundary points at the higher time level
and equations (27) and (28) are used to approximate the
second-order derivatives at the lower time level n. Together
with equation (5) we get the fourth-order compact scheme
for the Neumann boundary value problem (1), (2) and
(4). We are use the abbreviation NHODC to denote this
scheme. The NHODC scheme has the order of approximation
O(∆t2, ∆x4) in the uniform norm.

III. NUMERICAL EXAMPLES

In this section, several numerical examples are carried
to verify and compare the accuracy of the DHOC, DHOD,
NHOC, NHOD, and NHODC schemes.

In all computations, we used ∆t = ∆x2/4 and ε = 10−10.
The following stopping criterion is used

max
1≤i≤N

| un+1,Ŝ+1
i − un+1,Ŝ

i |< ε, s = 0, . . . , Ŝ,

where “ Ŝ ” denotes the number of the last iteration.
In the first part of this section, numerical examples are

provided to compare the accuracy of DHOC and DHOD
schemes with zero and non-zero Dirichlet boundary condi-
tions. The computations are performed using uniform grids
of 11, 21, 41, 81 and 161 nodes. The initial and boundary
conditions are obtained based on the exact solutions. For
the testing purpose only, all computations are performed for
0 ≤ t ≤ 1.
Example I (The homogeneous heat equation with the homo-
geneous Dirichlet boundary conditions.)

ut =uxx, 0 ≤ x ≤ 1, t > 0,

u(x, 0) =sin(πx), u(0, t) = 0, u(1, t) = 0.
(39)

The exact solution is u(x, t) = e−π2t sin(πx). The results of
performance over the time interval t ∈ [0, 1] for the DHOC
and DHOD schemes are represented in Table I, where the
maximum error and the rate of convergence at time instant
t = 1 are shown.

TABLE I
MAXIMUM ABSOLUTE ERROR, RATE OF CONVERGENCE, AVERAGE

NUMBER OF ITERATIONS AND CPU TIME IN SECONDS OF THE DHOC
AND DHOD SCHEMES FOR PROBLEM (39) AT TIME INSTANT t = 1.

Types of Grid Maximum Rate of Average CPU

scheme points absolute conv. number time

error of itr.

11 1.541×10−5 − 1 0.006

21 8.335×10−7 4.209 1 0.047

DHOC 41 6.221×10−8 3.743 1 0.374

81 3.968×10−9 3.970 1 2.992

161 2.479×10−10 4.001 1 23.938

11 4.565×10−5 − 5 0.017

21 2.065×10−6 4.466 3 0.118

DHOD 41 1.662×10−7 3.635 2 0.944

81 1.069×10−8 3.959 2 6.471

161 6.714×10−10 3.994 2 51.766

Example II (The non-homogeneous heat equation with non-
homogeneous Dirichlet boundary conditions)

ut = uxx + (π2 − 1)e−t cos(πx) + 4x− 2,

0 ≤ x ≤ 1, t > 0,

u(x, 0) = cos(πx) + x2, u(0, t) = e−t,

u(1, t) = −e−t + 4t + 1.

(40)

The exact solution is u(x, t) = e−t cos(πx) + x2 + 4xt. The
results of performance over the time domain t ∈ [0, 1] for
the DHOC and DHOD schemes are represented in Table II,
where the maximum error and the rate of convergence at
time instant t = 1 are shown.

TABLE II
MAXIMUM ABSOLUTE ERROR, THE RATE OF CONVERGENCE, AVERAGE
NUMBER OF ITERATIONS AND CPU TIME IN SECONDS OF THE DHOC
AND DHOD SCHEMES FOR PROBLEM (40) AT TIME INSTANT t = 1.

Types of Grid Maximum Rate of Average CPU

scheme points absolute conv. number time

error of itr.

11 1.847×10−5 − 1 0.007

21 3.690×10−7 5.645 1 0.058

DHOC 41 7.559×10−9 5.609 1 0.460

81 6.643×10−10 3.508 1 3.678

161 4.809×10−11 3.787 1 29.422

11 2.852×10−5 − 8 0.024

21 6.961×10−7 5.356 7 0.166

DHOD 41 2.047×10−8 5.087 7 1.326

81 1.839×10−9 3.476 6 9.092

161 1.264×10−10 3.862 6 72.735

The two last columns of Tables I and II demonstrate the
average number of iterations in DHODs at one time step and
the CPU time required to obtain the solution at time instant
t = 1. The average number of iterations means the total
number of iterations divided by the number of time steps.
As a rule, at the initial stage the convergence of deferred
correction requires more iterations. For larger instants of
time, the convergence occurs after 2 ∼ 8 iterations as can
be seen from Tables I and II. Clearly, the DHOC scheme
provides a more accurate solution. Both schemes are seen
to be the fourth-order of accuracy, as the error is reduced
approximately by a factor four when the mesh is refined by
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half. The better computational efficiency of DHOC schemes
obvious from the results in Tables I and II (DHOC is almost
three times better than DHOD in the sense of the CPU
time). At the same time, it is worth to note that construction
of the DHOD scheme is easy and require only a regular
three point stencil at higher time level which can be solved
similar to the standard second-order Crank-Nicolson method
to give higher order results. There is no need to store the
inverse of coefficient matrices before the time-marching in
the implementation of DHOC scheme.

In the second part of this section, numerical examples
are provided to verify and compare the accuracy of the
NHOC, NHOD, and NHODC schemes with zero and non-
zero Neumann boundary. The computations are performed
using the uniform grids of 11, 21, 41, and 81 nodes.
Example III (The homogeneous heat equation with homo-
geneous Neumann boundary conditions)

ut =uxx, 0 ≤ x ≤ 1, t > 0,

u(x, 0) = cos(πx), ux(0, t) = 0, ux(1, t) = 0.
(41)

The exact solution is u(x, t) = e−π2t cos(πx). The results of
performance over the time interval t ∈ [0, 1] for the NHOC,
NHOD and NHODC schemes are represented in Table III,
where the maximum error and the rate of convergence at
t = 1 are shown.

TABLE III
THE MAXIMUM ABSOLUTE ERROR, RATE OF CONVERGENCE, AVERAGE

NUMBER OF ITERATIONS AND THE CPU TIME IN SECONDS OF THE
NHOC, NHOD AND NHODC SCHEMES FOR PROBLEM (41) AT TIME

INSTANT t = 1.

Types of Grid Maximum Rate of Average CPU

scheme points absolute conv. number time

error of itr.

11 7.060×10−6 − 1 0.004

NHOC 21 9.363×10−7 2.915 1 0.033

41 1.196×10−7 2.969 1 0.262

81 1.503×10−8 2.989 1 2.094

11 3.808×10−7 − 5 0.014

NHOD 21 1.361×10−8 4.807 3 0.068

41 3.907×10−10 5.122 2 0.361

81 8.748×10−12 5.481 2 2.890

11 5.546×10−7 − 5 0.014

NHODC 21 2.2241×10−8 4.640 3 0.068

41 7.456×10−10 4.899 2 0.363

81 2.429×10−11 4.940 2 2.906

Example IV (The non-homogeneous heat equation with non-
homogeneous Neumann boundary conditions)

ut = uxx + (π2/2)e−(π2/2)t cos(πx) + x− 2,

0 ≤ x ≤ 1, t > 0,

u(x, 0) = cos(πx) + x2, ux(0, t) = t,

ux(1, t) = 2 + t.

(42)

The exact solution is u(x, t) = e−(π2/2)t cos(πx) + x2 + xt.
The results of performance over the time interval t ∈ [0, 1]
for the NHOC, NHOD and NHODC schemes are compared
in Table IV, where the maximum error and the rate of
convergence at the time instant t = 1 are shown.

TABLE IV
THE MAXIMUM ABSOLUTE ERROR, RATE OF CONVERGENCE, AVERAGE

NUMBER OF ITERATIONS AND THE CPU TIME IN SECONDS OF THE
NHOC, NHOD AND NHODC SCHEMES FOR PROBLEM (42) AT TIME

INSTANT t = 1.

Types of Grid Maximum Rate of Average CPU

scheme points absolute conv. number time

error of itr.

11 1.940×10−4 − 1 0.005

NHOC 21 2.743×10−5 2.823 1 0.042

41 3.584×10−6 2.936 1 0.332

81 4.562×10−7 2.974 1 2.656

11 1.039×10−5 − 8 0.023

NHOD 21 3.684×10−7 4.818 7 0.161

41 1.002×10−8 5.201 6 1.102

81 1.670×10−10 5.906 5 7.344

11 1.533×10−5 − 8 0.021

NHODC 21 6.254×10−7 4.616 7 0.150

41 2.052×10−8 4.930 6 1.029

81 6.187×10−10 5.051 5 6.859

It can be seen from Tables III and IV that the convergence
rate of the NHOC scheme is about 3.0, while the NHODC
scheme gives a higher convergence rate of about 5.0. This
observation confirms that high-order compact schemes are
very sensitive to the approximation of Neumann boundary
conditions. The NHOD scheme demonstrates the highest
convergence rate of more than 5.0. and provides a more
accurate solution on the same grid compared with the both,
the NHOC and NHODC schemes. Computational efficiency
of the NHOD and NHODC schemes are very similar and
they are more efficient than the NHOC scheme (in terms of
the CPU time required to reach the same accuracy).

IV. CONCLUSION

In this article, a new set of high-order schemes for the
one dimensional heat conduction problem with Dirichlet and
Neumann boundary conditions is constructed using a de-
ferred correction technique. The greatest significance of this
set of deferred correction schemes, compared with high-order
compact ones, is the easier development and better accuracy
in the case of Neumann boundary conditions. Numerical
examples confirm the order of accuracy. The construction
of high-order deferred correction schemes require only a
regular three point stencil at higher time level which is
similar to the standard second-order Crank-Nicolson method.
We could also apply such methods for multi-dimensional
problem while splitting in simpler one dimensional problems.
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