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Abstract—To determine the mechanism of molecular evolu-
tion, molecular biologists need to carry out reconciliation work.
In reconciliation work, they compare the relation between two
heterogeneous phylogenetic trees and the relation between a
phylogenetic tree and a taxonomic tree are compared. Phyloge-
netic trees and taxonomic trees are referred to as ordered trees
and a reconciliation graph is constructed from two ordered
trees. In the reconciliation graph, the leaf nodes of the two
ordered trees face each other. Furthermore, leaf nodes with the
same label name are connected to each other by an edge. To
carry out reconciliation work efficiently, it is necessary to find
the state with the minimum number of crossovers of edges
between leaf nodes. Reducing crossovers in a reconciliation
graph is the combinatorial optimization problem that finds the
state with the minimum number of crossovers. In this paper,
we propose a novel bio-inspired heuristic called distributed
modified extremal optimization (DMEO) using the island model.
This heuristic is a hybrid of population-based modified extremal
optimization (PMEO) and the distributed genetic algorithm
using the island model that is used for reducing crossovers in
a reconciliation graph. We have evaluated DMEO using actual
data sets. DMEO shows better performance compared with
PMEO.

Index Terms—extremal optimization, distributed genetic al-
gorithm, island model, evolutionary computation, reconciliation
graph

I. INTRODUCTION

MOLECULAR biologists need to carry out reconcilia-

tion work [1], [2], [3], [4] in order to determine the

mechanism of molecular evolution. In reconciliation work,

the relation between two heterogeneous phylogenetic trees

and the relation between a phylogenetic tree and a taxonomic

tree are compared. To compare two heterogeneous trees,

a graph called a reconciliation graph that consists of two

heterogeneous phylogenetic trees or a phylogenetic tree and

a taxonomic tree are constructed. In a reconciliation graph,

phylogenetic trees and taxonomic trees are referred to as

ordered trees. The leaf nodes of these ordered trees face each

other and leaf nodes with the same label name are connected

to each other by an edge.

To carry out reconciliation work efficiently, it is necessary

to find the state with the minimum number of crossovers of

edges between leaf nodes in the reconciliation graph. For

example, in Fig. 1, phylogenetic tree 1 and phylogenetic

tree 2 are inferred from different molecular sequences with

four identical species “a,” “b,” “c,” and “d.” The leaf nodes

of phylogenetic tree 1 and those of phylogenetic tree 2

K.Tamura, H.Kitakami, and A.Nakada are with Graduate School
of Information Sciences, Hiroshima City University, 3-4-1, Ozuka-
Higashi, Asa-Minami-Ku, Hiroshima 731-3194 Japan, corresponding e-mail:
(ktamura@hiroshima-cu.ac.jp).

a aa a

d b
3

d
w

b

2 b vc
1

b
u

c

c dc d

h l ti t 1 h l ti t 2phylogenetic tree 1 phylogenetic tree 2

(a) Reconciliation graph with two
crossovers.
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(b) Reconciliation graph with no
crossovers.

Fig. 1. Examples of reconciliation graphs ((a) shows a reconciliation graph
that has two crossovers, and (b) shows a reconciliation graph that has no
crossovers).

face each other. Moreover, leaf nodes representing the same

species are connected to each other. The reconciliation graph

shown in Fig. 1(a) has two crossovers. If node “d” and

node “d” are replaced, we can obtain the reconciliation

graph shown in Fig. 1(b), which has no crossovers. Thus, to

reduce crossovers in a reconciliation graph is called reducing

crossovers in a reconciliation graph.

Reducing crossovers in a reconciliation graph is the com-

binatorial optimization problem that finds the state with the

minimum number of crossovers. The number of combina-

tions increases exponentially as the number of leaf nodes

increases. Therefore, there are some heuristics [5], [6] that

can be used for reducing crossovers in a reconciliation

graph, and they use a genetic algorithm(GA) [7], extremal

optimization (EO) [8], [9], [10], and modified EO (MEO)

[11]. EO is a general-purpose heuristic inspired by the Bak-

Sneppen model [12] of self-organized criticality from the

field of statistical physics. MEO improves the methodology

of generating the next generation. Although EO select a

neighbor solution randomly at an alternation of generations,

MEO selects the best solution in multiple neighbor solutions.

In our previous study [13], we proposed population-based

modified extremal optimization (PMEO), which is a com-

bination of a population-based approach and MEO. PMEO

shows better performance compared with MEO. However, it
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is difficult to maintain diversity at the end of alternation of

generations. To overcome this difficulty, this paper proposes

a novel extremal optimization model called distributed mod-

ified extremal optimization (DMEO) for reducing crossovers

in a reconciliation graph. DMEO is a hybrid of PMEO and

the distributed genetic algorithm (DGA) [14], [15] using

the island model [16]. In the island model, a population is

divided into two or more sub-populations called islands and

each island evolves individually. Each island can maintain

different types of individuals at the end of alternation of

generations. Therefore, DMEO can maintain diversity at the

end of alternation of generations.

The main contributions of this study are as follows:

• Distributed modified extremal optimization (DMEO)

[17] is proposed. DMEO is a hybrid bio-inspired heuris-

tic that combine PMEO and DGA using the island

model. Many studies [8], [9], [10], [18], [19], [20],

[21] have applied EO to combinatorial optimization

problems such as the traveling salesman problem, graph

partitioning problem, and image rasterization. Recently,

some studies [22], [23], [24] have focused on integrating

a population-based approach in EO. To the best of our

knowledge, there is no study on population-based MEO

involving the distributed genetic algorithm using the

island model.

• To evaluate the proposed DMEO, we implemented

DMEO for reducing crossovers in a reconciliation

graph. Moreover, we evaluated DMEO using two actual

data sets for experiments. Experimental results shows

that DMEO outperforms PMEO. Moreover, we com-

pared DMEO with another population-based heuristic

based on genetic algorithm with minimal generation gap

(MGG) [25], which is the one of the best generation

alternation models. The performance of DMEO also is

better than that of MGG.

The rest of the paper is organized as follows. In Section 2,

the problem definition is presented. In Section 3, related work

is reviewed. In Section 4, we explains MEO and PMEO. In

Section 5, DMEO is proposed. In Section 6, experimental

results are presented, and Section 7 is the conclusion of the

paper.

II. PROBLEM DEFINITION

A reconciliation graph (RG) consists of two ordered trees,

OT1 = (V1, E1) and OT2 = (V2, E2), where V1 and V2 are

finite sets of nodes and E1 and E2 are finite sets of edges.

A node that has no child nodes is a leaf node. The leaf node

sets of OT1 and OT2 are denoted by L1 ∈ V1 and L2 ∈ V2,

respectively. If the number of species is n, the number of

leaf nodes is n. A leaf node has a label name, which is a

species’ name. The label name set is denoted by Lleaf .

In the reconciliation graph, OT1 and OT2 are located face

to face. If a leaf node of OT1 has the same label name as

that of OT2, then the two leaf nodes are connected to each

other. In Fig.2, phylogenetic tree 1 is OT1 and phylogenetic

tree 2 is OT2. The leaf node set L1 has four nodes, v14, v15,

v16, and v17. Similarly, L2 has four nodes, v24, v25, v26, and

v27. There are four label names in Lleaf , “a,” “b,” “c,” and

“d.” Two leaf nodes v14 and v24 are connected because they

have the same label name “a.”

a aa a
v14 v24

d b
v11 v21

3 wv12 v15
v22v25

2 b vc
v13

v23

1 uv16 v26

c dc d
v17 v27

phylogenetic tree 1 phylogenetic tree 2

Fig. 2. Problem definition (OL1 is given by OL1 = [v14, v15, v16, v17]
and OL2 is given by OL2 = [v24, v25, v26, v27]).

Let OL1 and OL2 be the order lists of leaf nodes:

OL1 = [ol1,1, ol1,2, · · · , ol1,n](ol1,i ∈ L1,L(ol1,i) ∈ Lleaf ),

OL2 = [ol2,1, ol2,2, · · · , ol2,n](ol2,i ∈ L2,L(ol2,i) ∈ Lleaf ),

where function L returns the label name of an input node.

The function C(M) returns the number of crossovers:

C(M)=
∑

mj,βmk,α[1 ≤ j < k ≤ n, 1 ≤ α < β ≤ n], (1)

where mi,j is (i, j)th-element of the connection matrix M
that is defined as

mi,j =

{

1 if L(ol1,i) = L(ol2,j),
0 otherwise.

(2)

In Fig. 2, OL1 is given by OL1 = [v14, v15, v16, v17].
Similarly, there are four leaf nodes in phylogenetic tree 2,

ol2,1 = v24, ol2,2 = v25, ol2,3 = v26, and ol2,4 = v27.

Therefore OL2 is given by OL2 = [v24, v25, v26, v27]. For

example, the (0, 0)th-element m0,0 is 1 because L(v14)
equals L(v24). Similarly, the (1, 1)th-element m1,1 is 0

because L(v15) does not equal L(v25).

M =









a b c d

a 1 0 0 0
d 0 0 0 1
b 0 1 0 0
c 0 0 1 0









The task of reducing crossovers in the reconciliation graph

is defined as follows:

min : C(M),
subject to : (1) M is the connection matrix of the RG,

(2) There are no crossovers on edges

between non-leaf nodes in the RG.

There should be no crossovers on edges between non-leaf

nodes in the reconciliation graph. For this constraint, we

need to change order of leaf nodes by changing the order

of child nodes in intermediate nodes. We cannot change the

order between v15 and v17 (Fig. 2) because it will lead to

the presence of crossovers on edges between non-leaf nodes.

If we want to change the order between v15 and v17, it is

necessary to replace v15 and v13, which are child nodes of

v12. If we replace v15 and v13, the number of crossovers in

the reconciliation graph becomes zero, and OL1 is changed

to OL1 = [v14, v16, v17, v15].

Engineering Letters, 21:2, EL_21_2_05

(Advance online publication: 21 May 2013)

 
______________________________________________________________________________________ 



III. RELATED WORK

Molecular biologists used to perform reducing crossovers

in reconciliation graphs manually. However, with increase

in the number of nodes in a reconciliation graph, it is very

difficult to make it manually. Hence, some computational

solvers to reduce crossovers automatically in a reconciliation

graph have been proposed. The most simplest computational

heuristic was proposed in [5]. This simplest heuristic could

obtain only a local optimal solution with a kind of local

search. To improve the performance, a GA-based heuristic

was proposed in [6]. There are two steps in the GA-

based heuristic. First, the GA-based heuristic searches quasi-

optimal solutions with simple GA. Second, the GA-based

heuristic finds more better solutions from quasi-optimal

solutions by using local search.

The GA-based heuristic has some performance issues,

because it is difficult to design efficient crossover functions.

One of the performance issue is that the speed of convergence

slow. Therefore it need huge computation time to get optimal

solutions. To overcome this difficulty, We have proposed

modified Extremal Optimization (MEO) [11], which is a

EO-based solver. The EO mechanism[8], [9], [10] follows

the spirit of the Bak-Sneppen model, updating variables that

have among the worst values in a solution and replacing them

by random values without ever explicitly improving them.

In other word, EO evolves a single individual by making

local modifications to the worst components in the individual.

Modified EO improved the methodology of generating the

solution of next generation and making local modification.

The experimental results show that MEO outperforms EO.

Moreover, MEO is good performance compared with the

GA-based heuristic.

In our previous study [13], we proposed population-based

modified extremal optimization (PMEO), which is a combi-

nation of a population-based approach and MEO. Recently,

there are some studies [22], [23], [24] on population-based

EO algorithm. These algorithm is based on EO. Our approach

uses MEO for changing state of individual. Multiple individ-

uals are only used in [22], [23]. In our approach, not only

multiple individuals are used but also restrictive crossover is

performed between individuals. Our approach is most similar

with the approach of [24]. However, [24] is a hybrid of partial

swam optimization (PSO) and EO. This hybrid approach is

only performing EO as mutation. However, our approach

repeats a change of generation by PMEO.

IV. POPULATION-BASED MODIFIED EXTREMAL

OPTIMIZATION

EO [8], [9], [10] follows the spirit of the Bak-Sneppen

model, updating variables that have one of the worst values in

a solution and replacing them by random values without ever

explicitly improving them. Algorithm 1 shows the details of

processing steps of EO. In EO, an individual I consists of n
components Oi (1 ≤ i ≤ n). Let λi be the fitness value of Oi.

First, EO selects Oworst, which has the worst fitness value.

Second, the state of component Oworst is changed at random.

Henceforth, selection and change state of a component are

repeated. The component with the worst fitness value has

a high possibility that the fitness value of it will become

better by changing state. Consequently, the fitness value of

Algorithm 1 EO

1: Generate initial individual I at random.

2: Ibest ← I
3: m← 0
4: while m < max of generations do

5: Evaluate fitness value λi of each component Oi.

6: Select Oworst with the worst fitness value.

7: Change the state of Oworst at random.

8: if F(I) > F(Ibest) /* The function which returns the

fitness value of an individual is denoted as F. */ then

9: Ibest ← I
10: end if

11: m← m+ 1
12: end while

Algorithm 2 MEO

1: Generate initial individual I at random.

2: Ibest ← I
3: m← 0
4: while m < max of generations do

5: Evaluate fitness value λi of each component Oi.

6: Candidates← φ
7: n← 0
8: while n < num of candidates do

9: Select Oselected with roulette selection (selection

rates are the reciprocal of fitness values with com-

ponents).

10: Generate new individual I ′ from I by changing the

state of Oselected .

11: Candidates← Candidates ∪ I ′

12: n← n+ 1
13: end while

14: I ← BEST(Candidates)
15: if F(I) > F(Ibest) then

16: Ibest ← I
17: end if

18: m← m+ 1
19: end while

the individual also gets better because the fitness value of

the component with worst fitness value gets better.

Modified EO (MEO) [11] generates two or more neighbor

individuals as candidates for the next generation individual.

The best neighbor individual among the candidates is se-

lected as the next generation individual. Moreover, MEO

uses roulette selection to select a component. Algorithm 2

shows the details of processing steps of MEO. First, MEO

selects Oselected with roulette selection. The selection rates

of roulette selection are reciprocals of fitness values with

components. Second, MEO generates new individual I ′ from

I by changing the state of Oselected . Third, the generated I ′

is stored into Candidates. Finally, MEO selects the best

individual from Candidates.

Population-based MEO (PMEO) [13] involves a

population-based approach. There are two or more

individuals in a population. Alternation of generation is

repeatedly performed for every individual by using MEO.

To improve the search efficiency, individuals copy a sub-

structure of an individual that has good sub-structures at
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Fig. 3. Distributed modified extremal optimization (DMEO divides the
entire population into two or more sub-populations, as many islands. Each
island has a sub-population and the sub-population evolves individually by
PMEO. ).

each alternation of generations. This operation resembles the

crossover operation in genetic programing (GP). However,

one side only copies a sub-structure of another side.

Copying of good sub-structures leads to a high probability

of generation of a good individual.

V. DISTRIBUTED MODIFIED EXTREMAL OPTIMIZATION

This section explains the main concept of DMEO and the

algorithm of DMEO for reducing crossovers in a reconcilia-

tion graph.

A. Main Concept

DMEO is a hybrid of PMEO and DGA using the island

model. DMEO divides the entire population into two or

more sub-populations, as many islands. Each island has a

sub-population and the sub-population evolves individually

by PMEO. In the island model, from each island, some

individuals are selected and transferred to another island. In

return, the same number of migrants are received from an-

other island. Each sub-population in a island converges to the

separate best solution. Each island evolves individually, the

island model can maintain diversity at the end of alternation

of generations.

DMEO repeats the following two steps:

(1) Sub-populations in islands should be made to evolve

through one or more generations by using PMEO.

(2) Some individuals in islands are migrated to other

islands.

B. Individual and Component

A reconciliation graph is defined as an individual. A

component of an individual is defined as a pair of leaf nodes

with the same label name:

Oi = {ol1,i, ol2,δ(i)} (L(ol1,i) = L(ol2,δ(i))). (3)

Let ol1,i be a leaf node of OL1 and ol2,δ(i) be a leaf node

of OL2. The function δ(i) returns the subscript number of an

element of OL2 whose label name is the same as the label

name of ol1,i. To change the state of Oi, it is necessary to

change the order of child nodes of ancestor nodes of ol1,i or

ol2,δ(i). Here, AS(T, lname) is a set of ancestor nodes of a

leaf node in T that has the label name lname. For example,

AS(I, T1, O2) returns {v12, v11} in Fig. 2.

Algorithm 3 DMEO

1: Generate initial population Pinit at random.

2: Ibest ← BEST(Pinit)
3: Divide Pinit into p sub-populations SubPi.

4: Store sub-populations SubPi into island ISLNDi.

5: for i = 1 to max generations/m do

6: (Evolution Step) For each ISLNDi, sub-population

SubPi should be made to evolve through m genera-

tions by using the function PMEO(SubPi,m).
7: (Migration Step) For each ISLNDi, migrate some

individuals of a sub-population in the island to another

island.

8: if F(BEST(SubP1∩· · ·∩SubPp)) > F(Ibest) then

9: Ibest ← BEST(SubP1 ∩ · · · ∩ SubPp)
10: end if

11: end for

Algorithm 4 PMEO(P,m)

1: for i = 1 to m do

2: for all I ∈ P do

3: Evaluate fitness value λi of each component Oi of

I .

4: C ← φ
5: n← 0
6: while n < num of candidates do

7: Select Oselected by roulette selection (selection

rates are the reciprocal of fitness values with

components).

8: C ← C ∪GNI(I, Oselected)
9: n← n+ 1

10: end while

11: I ← BEST(C)
12: end for

13: CSS(P )
14: end for

C. Definition of Fitness

The number of crossovers between ol1,i and ol2,δ(i) is

denoted by C(M, i). The following are the definitions of

C(M, i) and the fitness value λi of Oi:

λi =
C(M)− C(M, i)

C(M)
, (4)

C(M, i) =
n
∑

l=i+1

δ(i)−1
∑

m=1

ml,m

2
+

i−1
∑

l=1

n
∑

m=δ(i)+1

ml,m

2
.(5)

In Fig. 2, there are four components, O1 =
{ol1,1, ol2,1}(= {v14, v24}), O2 = {ol1,2, ol2,4}(=
{v15, v27}), O3 = {ol1,3, ol2,2}(= {v16, v25}), and O4 =
{ol1,4, ol2,3}(= {v17, v26}), with δ(1) = 1, δ(2) = 4,

δ(3) = 2, and δ(4) = 3. The fitness values of the components

are λ1 = 1, λ2 = 1/2, λ3 = 3/4, and λ4 = 3/4.

D. Algorithm

The algorithm of DMEO for reducing crossovers in a

reconciliation graph consists of two steps: (1) Evolution

Step and (2) Migration Step (Algorithm 3). First, an initial

population divided to p sub-populations (p is the number
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Algorithm 5 CSS(P)

1: Select individual SI ∈ P by roulette selection (selection

rates are the fitness values of components).

2: for all I ∈ P, I 6= SI do

3: for i = 1 to n do

4: Calculate the difference diffi between the fitness

value of Oi in SI and the fitness value of Oj in I ,

where Oi and Oj have the same label name.

5: end for

6: Select Oselected by roulette selection (selection rates

are diffi).
7: A← AS(T1,L(Oselected)) or AS(T2,L(Oselected))
8: C ← φ
9: for all a ∈ A do

10: Generate a new individual I ′ from I by changing

the order of child nodes in a.

11: C ← C ∪ I ′

12: end for

13: I ← BEST(C)
14: end for

of sub-populations). Sub-population SubPi is located in an

island ILNDi. In the Evolution Step (step 6), the sub-

populations in all the islands are made to evolve through

m generations by using the function PMEO(SubPi,m)
(m is migration interval). In Migration Step (step 7), some

individuals of a sub-population in an island are migrated to

another island. Finally, the best individual is selected from

all the islands (step 8 and step 9).

E. Evolution Step

In the Evolution Step, each sub-population is in an island is

made to evolve through m generations by using the function

PMEO (Algorithm 4). First, for each individual, the state of

the individuals in P is changed by using MEO. Second, the

function CSS copies a good sub-structure of an individual

to another individual.

In the MEO steps, for each individual, the following steps

are executed. Initially, the function evaluates the fitness value

λi (step 3). Next, the following three steps are repeated

while n is less than num of candidates. First, component

Oselected in I is selected by using the roulette selection (step

7). Second, the function generates an neighbor individual

from I with the function GNI. The function GNI generates

a neighbor individual by changing the state of component

Oselected . Third, the neighbor individual is stored in C (step

8). Finally, the best individual in C is selected and I is

replaced by it (step 11).

The state of Oselected is changed by changing the or-

der of child nodes in an intermediate node, which is an

ancestor node of Oselected . The processing steps of GNI

are as follows. First, T1 or T2 is selected randomly and

AS(T1,L(Oselected)) or AS(T2,L(Oselected)) are stored in

the set Ancestors. Then, node a is selected at random from

A. Finally, the order of the child nodes in a is changed.

Suppose that the selected component is O2 in Fig.

2. The function AS(T1,L(O2)) returns {v12, v11} and

AS(T2,L(L2)) returns {v22, v21}. If Ancestors =
{v12, v11} and v12 is selected as a, the order of child nodes
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Fig. 4. Example of copy sub-structure (The component Ol’ has five sub-
structures. If individual I copies the 2-th sub-structure, then, the number of
crossovers of I becomes zero.).

in v12 is changed. In this case, order of node v15 and v13
are changed. As a result, a new individual I ′ is obtained by

the change state.

Algorithm 5 shows the function CSS. At the beginning,

an individual SI in P is selected by roulette selection (step

1). Each individual of P copies a sub-structure of SI by the

following steps. First, the function calculates the difference

diffi between the fitness value of Oi of SI and the fitness

value of Oj of I , where Oi and Oj have the same label

name (steps 3, 4, and 5). Second, Oselected is selected by

roulette selection (step 6). Next, AS(T1,L(Oselected)) or

AS(T2,L(Oselected)) is stored in A (step 7). Then, for all

a ∈ A, a new individual I ′ is generated from I by changing

the order of child nodes in a, and I ′ is stored in C (steps

9, 10, 11, and 12). Finally, the function selects the best

individual from C (step 13).

The fitness value of a component is depend on order of

child nodes in its ancestor nodes. In other words, it is very

likely that a component with a good fitness value has good

ancestor nodes. Here, we define order of child nodes of a

ancestor node as a sub-structure. Fig. 4 shows an example of

copy sub-structure. In this example, there are two individuals

I and I’. The component Ol’ in I’ is good component

compared with component Ok in I . The component Ol’

has five sub-structures. If individual I copies the 2-th sub-

structure, then, the number of crossovers of I becomes zero.

F. Migration Step

In the Migration Step, some individuals in each is-

land are migrated to another island. The island model re-

quires number of sub − populations, migration rate,

migration interval, and migration model. The first three

items are user-given parameters. The last item consists of

two things: selection method and topology. The method

used for the selection of individuals for migration is referred

as selection method. The structure of the migration of

individuals between sub-populations is referred as topology.

In this study, we use uniform random selection as the

selection method. In the Migration step, some individual

are selected from a sub-population in each island according

to migration rate. Moreover, the proposed algorithm uses

the random ring migration topology. In this topology, the ring

includes all islands, and the order of the islands is determined

randomly every Migration step. Each island transfers some

individuals to the next inland based on the direction of the

ring.
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TABLE I
DATA SETS

Taxonomic tree Phylogenetic tree
Number of nodes Number of leaf nodes Number of nodes Number of leaf nodes

Housekeeping 241 40 79 40

Moss 290 207 394 207
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(b) Moss data set

Fig. 5. Experiment 1 ((a) and (b) shows the number of crossovers of the
best individual) .

VI. EXPERIMENTAL RESULTS

We performed five experiments for evaluating the per-

formance of DMEO. This section shows the experimental

results.

A. Setup

In the experiments, the two data sets listed in Table I are

used. The Housekeeping data set consists of a phylogenetic

tree of the housekeeping gene and its taxonomic tree. The

Moss data set consists of a phylogenetic tree of the rps4

gene and its taxonomic tree. The number of species in the

Housekeeping data set is 40 and that in the Moss data set

is 207.

Experiment 1 measured the number of crossovers of

the best individual at each generation to compare DMEO

and PMEO. Experiment 2 also measured the number of

crossovers of the best individual at each elapsed time to com-

pare DMEO and PMEO. Experiment 3 measured frequency

of the number of crossovers of best individuals in fixed gen-

erations. Experiment 4 measured the number of crossovers

of the best individual at each generation by changing the

number of sub-populations. Experiment 5 compares PMEO

with MGG.

In PMEO and DMEO, the number of individu-

als in the population was set to 100. The user pa-
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Fig. 6. Experiment 2 ((a) and (b) shows the number of crossovers of the
best individual).

rameter num of candidates was set to 100 and m
was set to 10000 in PMEO. In DMEO, the user

parameter num of candidates, migration interval(m),
number of sub−populations(p), and migration rate were

set to be 100, 10, 5 and 0.05, respectively. The number

of individuals in a sub-population is 20. The number of

crossovers was the average of three trials.

B. Experiment 1

In Experiment 1, we measured the number of crossovers

of the best individual in each generation. Figure5(a) and

Figure5(b) show the number of crossovers (vertical axis:

the number of crossovers, horizontal axis: generations). Fig.

5(a) and Fig. 5(b) show that the number of crossovers of

DMEO in each generation was smaller than that in the case

of PMEO. DMEO showed better performance compared with

PMEO.

The number of crossovers in PMEO is converging into

around 300 when we use Moss data set. On the other

hand, in DMEO, the number of crossovers is converging

into around 250. The diversity of PMEO is small, because

the number of sub-populations is one. Therefore, the fitness

value of a individual will not be improved in the end of

alternation of generations.
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Fig. 7. Experiment 3 (Housekeeping data set).

C. Experiment 2

In Experiment 2, we measured the number of crossovers of

the best individual at different time instants. The computation

time of DMEO was longer than that in the case of PMEO

because the former included the Migration Step. Therefore,

it was necessary to compare the number of crossovers for

the same computation time.

Fig. 6(a) and Fig. 6(b) show the number of crossovers

at different time instants (vertical axis: the number of

crossovers, horizontal axis: processing time). At the end of

the processing, DMEO have fewer crossovers than PMEO.

This result indicates DMEO performs better with fewer

crossovers than PMEO.

D. Experiment 3

The number of crossovers of the best individual was

measured 100 times for the 10,000th alternation generation.

Figure7(a) and Figure7(b) show frequency of the number of

crossovers when Housekeeping data set is used. The num-

ber of crossovers of the optimal solution of Housekeeping
data set is 9. Both of them can obtain the best solution by

100%. Fig. 8(a) and Fig. 8(b) show the frequency of the

number of crossovers for the Moss data set. In DMEO, all

the numbers of crossovers of optimal solutions were between

200 and 299. On the other hand, they were distributed

between 200 and 400 for PMEO. Above all, although 90% of

optimal solutions were between 200 and 249 in the case of

DMEO, only a few optimal solutions were obtained between

200 and 249 in the case of MEO.

E. Experiment 4

In Experiment 4, we changed the number of sub-

populations in DMEO. Fig. 9 shows the results of Experiment
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4 using Moss data set. When the number of sub-populations

is four, it has fallen into the local optimal solutions. On

the other hand, when the number of sub-populations is five

or ten, convergence is not early. Therefore, they can obtain

better solutions.

F. Experiment 5

In Experiment 5, we compared PMEO with MGG, which

is the one of the best generation alternation models. In

DMEO, the number of individuals in the population was

set to 100. The user parameter num of candidates was

set to 100 and m was set to 30000. In DMEO, the user

parameter num of candidates, migration interval(m),
number of sub−populations(p), and migration rate were

set to be 100, 10, 5 and 0.05, respectively. The number of

individuals in a sub-population is 20. In MGG, the number

of individuals is 100, the number of children is 100, and the

rate of mutation is 5%.The number of crossovers was the

average of three trials.

Figure10 show the number of crossovers (vertical axis:

the number of crossovers, horizontal axis: generations). The

performance of DMEO also is better than that of MGG. In
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particular, the speed of convergence in DMEO is faster than

that in MGG.

VII. CONCLUSION

This paper proposes distributed modified extremal opti-

mization (DMEO) for reducing crossovers in a reconciliation

graph. DMEO is a hybrid of population-based modified

extremal optimization (PMEO) and the distributed genetic

algorithm using the island model that is used for reducing

crossovers in a reconciliation graph. In the island model,

a population is divided into two or more sub-populations

called islands and each island evolves individually. Each

island can maintain different types of individuals at the end

of alternation of generations. Therefore, DMEO can maintain

diversity at the end of alternation of generations. We have

evaluated DMEO by using actual data sets. Experimental re-

sults show that DMEO is better performance compared with

PMEO. Moreover, experimental results show that DMEO can

maintain diversity and performs better than PMEO. In the

future work, we will develop extended DMEO for making it

applicable to other combination optimization problems.
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