
 

  
Abstract—A finite volume, cell-centered, density-based flow 

solver on unstructured grids is developed. The Weiss & Smith 
precondition matrix is implemented for solving incompressible 
and compressible flows  at all speeds. The AUSMDV (Advection 
Upstream Splitting Method) scheme with a second order 
reconstruction is given for the explicit Runge-Kutta and 
implicit Lower-Upper Symmetric Gauss-Seidel (LU-SGS) time 
integration methods. Numerical simulation of inviscid flows 
through a channel with a bump at various Mach numbers and 
driven flows in a square cavity are presented to demonstrate the 
performance of the solver. General solution enhancement and 
convergence acceleration for steady-state Navier-Stokes 
solutions are attained via the use of inviscid or viscous 
preconditioning. At last, the analysis of the internal flow in a 
model solid rocket motor and JPL nozzle are made by the use of 
this solver. The ability of the solver in providing accurate 
steady-state solutions for transonic and low-speed flow of 
variable density fluids is demonstrated. 
 

Index Terms—all speeds, density based, unstructured grids, 
flow solver 
 

I. INTRODUCTION 
OMPUTATIONAL fluid dynamics (CFD) technologies 
are widely used in design and analysis process by 

industry, academia, and research community [1]. The 
numerical flow solvers are challenged with demand to 
provide answers to more complex and wide ranging problems 
from incompressible to high-speed compressible flows. The 
incompressible flows were first addressed by pressure-based 
solution algorithms which are solved in an uncoupled manner 
[2]. At the same time, density-based schemes were developed 
in the context of transonic and supersonic aerodynamic 
applications [3]. These methods employ time-marching 
procedures that use the physical time derivatives, both 
implicit and explicit, to solve the hyperbolic system of 
governing equations. 

The potential applications in flows involving both low 
speeds (Ma<0.1) and high speeds (Ma>1.0), e.g., a cavitating 
flow in a rocket engine [4], [5], motivate the modifications to 
the existing (density-based) codes. However, when the 
compressible flow solvers are applied to very low Mach 
number flows, it is known that most of these solvers 
encounter degraded convergence speeds due to huge ratio of 
characteristic speeds and errors arising from excessive 
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amount of numerical dissipation. Local preconditioning 
techniques have been first introduced to make up this 
drawback. They remedy the ill-conditioned matrix equations 
by rescaling the eigenvalues of the governing equations. The 
goal of preconditioning methods is to reduce the disparity 
between the particle and acoustic wave speeds so that good 
convergence properties may be obtained at all speeds.  

Three main development groups have appeared in the CFD 
literature for the preconditioning methods. The first group is 
Chorin [6] and Turkel [7], [8] who built a preconditioning 
method based on the artificial compressibility. The Turkel 
system is derived using entropy as the dependent variable. 
The second group including Choi, Merkle [9], Weiss, Smith 
[10], Venkateswaran, and Merkle [11] developed a family of 
preconditioners whose derivation is based on the temperature 
as the dependent variable. Lastly, the third group led by van 
Leer [12], developed a symmetric preconditioner which is 
referred as optimal since it equalizes the eigenvalues of the 
system for all Mach numbers. 

In this paper we describe a finite volume, Navier-Stokes 
flow solver based on an unstructured grid topology that 
employs time-marching algorithm with Weiss-Smith 
preconditioning method. We will present the governing 
equations and the derivation of the preconditioning matrix for 
variable density flows, followed by a description of the 
spatial and temporal discretization. Afterthat, we present two 
results to demonstrate this methodology, including inviscid 
flows through a channel with a bump and driven flows in a 
square cavity. These examples will provide a measure of the 
present algorithm’s accuracy and performance. Finally, this 
solver is applied in the computation of solid rocket motor 
internal flow. 

II. GOVERNING EQUATIONS 
The governing equations are the time-dependent 

compressible Navier-Stokes equations. This system of 
equations, written to describe the conservation of mass, 
momentum and energy of the flow field, is cast in integral, 
Cartesian form for an arbitrary control volume V with 
differential surface area dA as follows:    ∭   + ∬[ −  ] ∙   = 0                         (1) 
Where  

 = ⎩⎪⎨
⎪⎧             ⎭⎪⎬

⎪⎫
,  = ⎩⎪⎨

⎪⎧       +       +       +      +   ⎭⎪⎬
⎪⎫

,  = ⎩⎪⎨
⎪⎧ 0              +  ⎭⎪⎬

⎪⎫
            

and  ,  ,  , and   are the density, velocity, total energy per 
unit mass, and pressure of the fluid, respectively. 

For a Newtonian fluid, the viscous stress is given by : 
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   = 2    ∗  
 Where    ∗ = 12        +        − 13           

 The heat flux vector,  , is given by Fourier’s Law:    = −       
where   is the fluid temperature.  

And  =   +   +    is the position vector. To close 
these equations it is also necessary to specify an equation of 
state, typically of the form  =  ( , ). 

III. PRECONDITIONING 

A. Choice of Preconditioning Methods 
In this section, comparisons have been made between the 

three low speed preconditioning methods introduced by 
Weiss-Smith, van Leer-Lee-Roe (VLR) and Turkle, 
respectively. The VLR preconditioner is better in 
convergence due to yielding the most optimal condition 
number (Fig. 1). In accuracy issues, all these preconditioners 
have the same impact. Although they are different in formula 
structure, they have a common point linked to the coefficient 
as the Mach number approach to zero. The most robust was 
found to be that proposed by Weiss and Smith which suffers 
only from the stagnation point singularity. Thus the Weiss–
Smith preconditioning method is implemented in our solver. 

 
B. Weiss-Smith Precondition Matrix 

Preconditioning techniques involve the alteration of the 
time-derivatives used in time-marching CFD methods with 
the primary objective of enhancing their convergence. 
According to [10], we transform the original system of 
equations from the conservative variables   to the primitive 
variables  = [ ,  ,  ,  , ]  as follows:        ∭   + ∬[ −  ] ∙   = 0               (2) 

The original non preconditioned Jacobian     ⁄  matrix 
can be replaced to a preconditioning matrix  :     ∭   + ∬[ −  ] ∙   = 0              (3) 

Γ = ⎝⎜
⎛ Θ 0 0 0   Θ   0 0     Θ  0  0     Θ  0 0      Θ − 1             +    ⎠⎟

⎞
 

Where Θ is given by  Θ =  1   −        

Here    is a reference velocity.   =    ,    | | <    | |,      < | | <    ,    | | >    

For the viscous low Reynolds number flows the reference 
velocity should not be smaller than the local diffusion 
velocity  Δ ⁄ . Thus,   = max (  ,  Δ ) 

The resultant eigenvalues of the preconditioned system are 
given by λ  Γ       =  , , ,  +   ,  −  ′ 
where   =  (1 −  )   =      +     α = (1 −     ) 2⁄  β =  ρ +        

we can see that all eigenvalues remain of the order of u as 
long as the reference velocity is of the same order as the local 
velocity. 

IV. SOLUTION PRECEDURE 

A. Data Structure and Grid Entry 
Contrary to structured solvers, the unstructured flow solver 

is much complex in data structure and grid entry due to its 
indirect data addressing. The procedure here is written in 
C++ with a set of classes to describe vertex, face, cell and 
their link. As a cell-centered solver, the system stores the 
flow field data in cell object. The face object contains the 
pointer of its two adjoining cells (Fig. 2), while the two cells 
store the face pointer. This is a fast and efficient way for cell 
objects to store the connection to its neighbor cell object. The 
data members of cell class are shown in Table I. The solver 
can input the mesh generated by Gambit which is easier in 
partitioning grid over geometrically complex domains. 

 

 
Fig. 1 Condition number variation with Mach number 

 
Fig. 2 Control volume 
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B. Spatial Discretization 

The preconditioned governing equations are discretized 
spatially using a finite volume scheme wherein the physical 
domain is subdivided into small (nondeforming) hexahedron 
volumes and integral equations are applied to each cell. The 
discrete, inviscid flux vectors appearing in (1) are evaluated 
by AUSMDV (Advection Upstream Splitting Method) 
scheme with a modification to operate effectively at low 
Mach numbers. The schemes introduced by Liou have been 
discussed more thoroughly in [13] and [14]. 

C. Reconstruction 
The solution vector Q used to evaluate the fluxes at cell 

faces is computed using a multidimensional linear 
reconstruction approach. In this approach, higher order 
accuracy is achieved at cell faces through a Taylor series 
expansion of the cell-averaged solution vector about the cell 
centroid:   =   +    ∙                                 (4) 
where   is the displacement vector from the cell centroid to 
the face centroid. This formulation requires determining the 
solution gradient    in each cell. 

The gradients are computed in the solver according to the 
Green-Gauss and Least Squares method. [1] describes the 
Green-Gauss method, so this paper only presents the Least 
Squares method. In this method the solution is assumed to 
vary linearly.  

For cell C, cell 1,2,... J is its neighbor, so:   = ∆                                        (5) 
where 

 =    −     −     −     −     −     −   ⋮ ⋮ ⋮  −     −     −     
 =      ⁄    ⁄    ⁄    ∆ =    −     −   ⋮  −     

The cell gradient   =      +      +       is determined 
by solving the minimization problem for the system of the 
non-square coefficient matrix in a least-squares sense:      =   ∆                                 (6) 

Finally, the gradients    are limited by the coefficient   
so that they do not introduce new maxima or minima into the 
reconstructed data. The Venkatakrishnan limiter [15] is 
implemented on this code. 

D. Temporal Discretization 
An explicit multistage time-stepping scheme and an 

implicit scheme are implemented on the preconditioned 
system using the conservative variables of unknowns.  

1) Explicit Scheme 
The explicit m-stage Runge-Kutta (R-K) scheme which 

solves the equation from time   to time  + ∆  is given by   =                                       (7)   =   −   ∆     (   )                           (8)    ∆ =  ( )                                 (9) 
where  = 1,2,3,…  is the stage counter for the m-stage 
scheme and    is the multistage coefficient for the  th stage. 
2) Implicit Scheme 

The implicit Lower-Upper Symmetric Gauss-Seidel 
(LU-SGS) scheme for (1), see [16], can be described as: 
Forward sweep: ΓΔ  ∗ =         − 0.5∑     ∙ ∆  ∗ − : ∈ ( )        ΓΔ  ∗             (10) 
Backward sweep: ΓΔ  = ΓΔ  ∗ − 0.5   ∑     ∙ ∆  − : ∈ ( )        ΓΔ               (11) Res = −     ( ) ∙     
Where D is the diagonal matrix D =      ∆t + 0.5          ( )    

V. RESULT 
In this section, the preconditioning implementation for the 

unstructured flow solver has been assessed using some 
representative cases. The test cases chosen for this purpose 
include inviscid flow past a bump in a channel, laminar 
driven flow in square cavity and planar supersonic nozzle. 
The two dimensional test cases have been geometrically 
represented as three-dimensional cases by simply extending 
the geometry in the spanwise direction. The first result will 
show the performance of the present method for computing 
inviscid flows at various speeds. The second case will 
demonstrate the importance of preconditioning for solving 
low speed flows of variable density fluids. And in the last two 
cases we demonstrate the performance of the solver in the 
internal flows of solid rocket motor. 

A. Inviscid Flow Past a Bump in a Channel 
This test case validates the implementation of 

preconditioning for the inviscid flow over a 10% circular arc 
bump at various speeds. The symmetrical computation 
domain is 3×1 with a 129×65 grid partition. Fig. 3 shows the 
results in different methods at 0.01 Mach number over 4000 
iteration cycles. Without preconditioning, the LU-SGS result 
is completely unphysical (Fig. 3a). The solution provided by 
R-K method with preconditioning (Fig. 3b) shows marked 
improvement but not well enough because of the limitation of 
CFL number. This drawback is corrected by using the 
LU-SGS implicit scheme (Fig. 3c). Fig. 4 provides an 
indication of the behavior of implementations of LU-SGS 
with preconditioning method for a range of Mach number. 
Fig. 5 and 6 highlights the convergence history in various 
conditions. Good efficiency across the Mach number range is 
obtained with the preconditioning method. 

TABLE I 
DATA MEMBERS OF CELL CLASS 

Type Name Description 
int ID The ID of the cell. 
double Geometry Geometry information of the cell. 

List<Vertex*> Vertex_ptr The list of Vertex pointers to the 
vertex. 

List<Face*> Face_ptr The list of Face pointers to the 
face. 

double Parameters Flow field information of the cell. 
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B. Driven Flows in Square Cavity 

This test case, representing a 2-dimensional laminar 
incompressible flow in a square cavity, has been numerical 
investigated in detail by Ghia [17] et al. The computation has 
been made with a uniform velocity at the top wall of the 
cavity. A set of Re numbers (100, 400, and 1000) are 
considered in this case. Fig. 7 and 8 shows the distribution of 
velocity through geometric center of the cavity. Fig. 9 gives 
the streamline pattern at 100 and 1000 Re number. The 
results show great agreement with the numerical simulations 
of Ghia. The convergence history is highlighted in Fig. 10. 
The ability in computation of laminar incompressible flow is 
demonstrated. 

 

 
(a) LU-SGS, CFL=40, without preconditioning 

 
(b) R-K, CFL=40, with preconditioning 

 
(c) LU-SGS, CFL=40, with preconditioning 

Fig. 3 Density contour at Ma=0.01 

 
(a) Ma=0.1                                           (b) Ma=0.2 

 
(c) Ma=0.7                                          (d) Ma=2.0 
Fig. 4 Mach number contour at various speeds 

 
Fig. 5 Convergence histories for LU-SGS at various speeds 

 
Fig. 6 Convergence histories with different time integration method 

 
Fig. 7  -velocity along horizontal line through geometric center of cavity 
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C. Model Solid Rocket Motor 
In this section, numerical simulation has been made for the 

internal flow field of a model solid rocket motor, including 
the combustion and nozzle. The solid propellant boundary is 
mass flow inlet. The nozzle exit pressure is 1 atm and the 
combustion pressure is 4 MPa. The geometry is shown in Fig. 
11. The grid is all-triangles, consisting of 4968 elements. The 
global flow structure of the Model SRM is illustrated by 
Mach number in Fig. 12. Both incompressible flow (in 
combustion) and compressible flow (at nozzle) are obtained 
in this result. Fig. 13 indicates the streamline of the internal 

flow field. We can see that there is a low speed vortex in the 
head of the combustion. 

 

 

 
D. JPL Nozzle 

The compressible flow inside the JPL axisymmetric 
convergent-divergent nozzle, shown in Fig. 14, with a 45˚ 
entrance and a 15˚ exit straight wall tangent to a circular 
throat is a classic nozzle flow problem, which has been is 
experimentally investigated in [18]. The tests are conducted 
with air at a stagnation pressure of 70 psia and a stagnation 
temperature of 540 R. The structure of the flow field is 
represented by temperature in Fig.15. Fig. 16 indicates the 
pressure distribution at wall and the axis. Comparisons with 
the experimental data show good agreement. 

 

 

 
Fig. 8  -velocity along vertical line through geometric center of cavity 

 
(a) Re=100                                         (b) Re=1000 

Fig. 9 Streamline pattern 

 
Fig. 10 Convergence histories at different Re number 

 
Fig. 11 Model solid rocket motor geometry (mm) 

 
Fig12 Mach number contour 

 
Fig 13 Streamline pattern in SRM 

 
Fig. 14 JPL Nozzle and computation mesh 

 
Fig. 15 Temperature contour 
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VI. CONCLUSION 
In this paper, time-derivative low-speed preconditioning of 

the Navier-Stokes equations, suitable for flows at all speeds   
has been successfully implemented on an unstructured flow 
solver. The AUSMDV scheme with a second order 
upwind-biased reconstruction is presented to accommodate 
the preconditioned eigenvalues and eigenvectors. Both 
explicit and implicit schemes are developed to march the 
solution of the preconditioned system to steady-state. To 
demonstrate the accuracy and efficiency of the present 
algorithm two test cases were presented. General 
convergence enhancement is demonstrated with the use of 
preconditioning on the Navier-Stokes equations at various 
speeds. Finally, the analysis of rocket internal flow is 
implemented by the solver.    
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Fig. 16 Pressure distribution 
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