
 

  
Abstract—Electrical onset of an epileptic seizure is 

characterized by low frequency and high amplitude rapid 
discharges at hippocampus. An intelligent controller based on 
emotional learning algorithm of the brain has been developed 
to abate this bursting activity. The control input has been 
applied to the lumped parameter model of epilepsy with the 
purpose of steering the epileptic spikes to normal activity. The 
results reveal that rapid discharges occurring at seizure onset 
can be manipulated by applying bounded stimuli to the model. 
 

Index Terms—Epilepsy, Electrical stimulation, Emotional 
based learning, Intelligent control, In-Silico model. 
 

I. INTRODUCTION 
LMOST 50 million people worldwide are afflicted by 
epilepsy [1] and approximately one third are 

pharmacoresistant and cannot be sufficiently cured by 
medications [2]. On the other hand despite prosperity of 
surgically removing the seizure focus in ceasing focal 
seizures, probable side effects on brain structures abandons 
this therapeutic alternative [1], [2]. Reports on the effect of 
electrical currents on neural behavior and their success in 
seizure abatement have motivated many scientists to 
consider electrical stimulation therapies as a less invasive 
alternative for manipulating the epileptic activity [3], [4]. 
Several electrical stimulating protocols have been developed 
recently [5] but only a few have resulted in effective 
therapies [2]. Complexity and variety of seizure 
manifestations in addition to ambiguous neuronal 
mechanisms underlying seizure activity have been 
considered the main drawbacks regarding this 
dissatisfaction.   

Evolution of therapeutic methods has been largely due to 
the employment of novel experimental and computational 
models of epilepsy. These models have improved our 
understanding of underlying neurophysiological 
mechanisms associated with initiation and propagation of 
seizures in the neural tissue [6]. However, unlike 
experimental in-vivo and in-vitro models which have been 
used extensively in developing distinctive curative methods 
for suppressing seizures [1], [3], [5], [7], computational In-
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silico models have not been exploited [6]. In fact these 
models provide mathematical representations of neural 
activity during epilepsy from which stimulation strategies 
can evolve [3], [5], [8]. Moreover compared to experimental 
models, they do not need any particular preparation of brain 
slices and can be simply simulated via computers.  

Incorporating novel achievements from computational 
neuroscience and control engineering can result in 
developing curative stimulation treatments. Following this 
idea, in their first attempt, the authors employed 
backstepping algorithm as a nonlinear Lyapunov-based 
recursive procedure to restrain undesired epileptic spikes in 
the normal brain activity [9]. The results revealed the 
capability of the method in moderately stopping the bursts 
but the main drawback was the infeasible electrical 
stimulation needed to reach this goal. Furthermore four 
control inputs were applied to the system which could be 
difficult in practical implementation of the algorithm. In 
order to overcome the aforementioned restrictions, in this 
paper we have extended another control approach 
established upon emotional learning algorithm of the brain 
to control the epileptic bursting. 

Brain emotional learning based intelligent controller 
(BELBIC) is a model free approach established by Lucas et 
al. [10] based on a physiologically relevant computational 
model of learning procedure in the brain [11]. In fact 
discovering the vigorous role of emotions in making 
satisfactory and fast decisions encouraged them to adapt 
computational model of emotional learning in limbic system 
for control implementations. Results obtained from applying 
the algorithm to various applications indicate the efficiency 
of the method in regulating short time procedures because of 
its fast learning capability [12]-[14]. On the other hand, the 
stability of the algorithm has also been endorsed by cell to 
cell mapping method [15]. These features as well as the 
method’s conspicuous performance in systems with 
uncertainties and complex dynamics make this algorithm 
plausible for elaborating an electrical stimulation technique 
to counteract seizure activity. 

 In this work we have initially simulated the neural 
behavior during an epileptic seizure employing a nonlinear 
lumped parameter model [16]. The model is in fact a 
modification of the neural population model proposed by 
Wendling et al. [17] which was previously used in [9]. In the 
next step the BELBIC controller has been used to inhibit the 
bursting behavior caused by abnormal hypersynchronization 
of neurons at the onset of a seizure. The simulation results 
of the In-silico lumped parameter model along with the 
applied controller are provided. 
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II. METHODS 

A. Computational neuronal population model 
The model simulates the activity of a neural population. 

Each population is considered to consist of four interacting 
subpopulations namely: pyramidal cells, excitatory 
interneurons, slow dendritic inhibitory interneurons and fast 
somatic inhibitory interneurons. Each of these subsets is 
described with a second order nonlinear differential equation 
as described in (1).  
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 (1)        

 
Where z11, z12 represent the dynamics of pyramidal cells, 

z21, z22 represent excitatory interneurons, z31, z32 simulate 
dendritic slow inhibitory interneurons and z41, z42 are 
characterizing somatic fast inhibitory interneurons. Average 
trans-membrane potential (v) is related to the average pulse 
density of spikes at each neuron’s output by an asymmetric 
sigmoid function (S(v)) defined as S(v)=2e0/(1+er(v-v

0
)). This 

average presynaptic signal is then transformed to 
postsynaptic action potential by a second order linear 
transfer function which stands for the synaptic effect of each 
neural subpopulation.  

 [EXC, SDI, FSI] and [a, b, g] represent the synaptic gains 
and time constants for each neuronal group respectively. 
P(t) is a Gaussian white noise representing the effect of the 
neighbor neurons which enters the excitatory interneurons. 
Interneuron interactions are presented by means of seven 
connectivity constant C1 to C7. The neural population 
activity is defined as the postsynaptic potential of the 
pyramidal cells and presented as in (2). 
 

.413121 zzzPA −−=  (2) 
 

 The model is capable of reproducing a wide range of 
brain rhythms. This can be done by adjusting the population 
gains: EXC (excitation), SDI (slow dendritic inhibition) and 
FSI (fast somatic inhibition) [17]. In this work the 
parameters were chosen to reconstruct the data obtained 
from electrophysiological recordings of hippocampal 
neurons during an induced epileptic seizure. Each seizure 
period was divided into four distinct stages of transition 
from normal behavior to seizure activity namely: interictal, 
preonset, onset and ictal which differ in the density and 
frequency content of the rhythms observed [16].  

“Interictal” segment is defined as the stage during which 
no high amplitude epileptic spikes is observed and is chosen 
about 1 minute before seizure starts. This period is 
proceeded by “preonset” period when high amplitude bursts 
commence. The electrical “onset” of the seizure with beta 

and low gamma frequency (15-40 Hz) bursting activity 
occurs 10-50 seconds after preonset segment and moves on 
to the “ictal” stage during which the seizure develops and 
rhythmic activity in theta and alpha band (4-10 Hz) is 
recorded.  

B. Brain emotional learning based intelligent controller 
(BELBIC) 
Inspired by the fast decision making property of the 

mammalian brain, an intelligent controller was introduced 
by [10] based on the brain emotional learning algorithm. 
They exploited a computational model of limbic system [11] 
composed of the thalamus, sensory cortex, amygdala and 
orbitofrontal cortex. These parts have been historically 
considered to play a crucial role in processing emotions. 

The first inputs to the structure are the afferent fibers 
bringing sensory information from different body structures. 
They enter BELBIC via thalamus and continue on to 
sensory cortex. In fact thalamus provides a coarse coding of 
the present sensory condition. This code enters both sensory 
cortex and amygdala. Sensory cortex provides more detailed 
analysis of the crude sensory information of thalamus and 
distributes the differentiated data to both amygdala and 
orbitofrontal cortex. The thalamus output is also projected to 
amygdala in order to help it produce a primary fast 
emotional reaction to the upcoming stimuli. Amygdale 
associates analyzed stimulus received from sensory cortex 
with an emotional value through classical emotional 
conditioning [15]. This emotional value is assigned, based 
on the reinforcing signal (stress) that enters the structure 
from environment and its biological origin is not known 
[11]. Since amygdale is incapable of forgetting the 
experienced emotional reaction once learned, orbitofrontal 
cortex takes the responsibility for correcting the 
unsatisfactory responses and inhibiting amygdala’s 
reactions. It controls extinguishment of learning in 
amygdale by responding to elimination of expected reward 
or punishment.    

As stated above the main learning process occurs within 
amygdale and orbitofrontal cortex. In fact the difference 
between the corresponding excitatory and inhibitory outputs 
of amygdale and orbitofrontal cortex assigned by Ai and OCi 
form the control signal (MO) as shown in (3). 
 

.∑∑ −=
i ii i OCAMO  (3) 

 
Respective outputs of amygdala and orbitofrontal cortex 

are estimated by multiplication of the sensory input (SI) with 
an adaptive plastic connection weight (Vi for amygdala and 
Wi for orbitofrontal cortex) as formulated in (4) and (5).  
 

.iii VSIA =  (4) 

.iii WSIO =  (5) 
 

Thus the associative learning routine in amygdale and 
orbitofrontal cortex is performed by modifying these gains 
via rules given in (6) and (7). 
 

)].,0max([ ∑−=Δ
j jii AstressSIV α  (6) 
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jii stressMOSIW β  (7) 

 
Where α and β are the respective learning rates of 

amygdale and orbitofrontal cortex. Stress represents the 
emotional value assigned, based on the reinforcing signal 
that enters each structure. As revealed in (6) a negative 
feedback loop reduces the learning signal once output 
reaches the stress signal. Furthermore monotony of weight 
assignment is illustrated in (6) which supports the idea of 
aforementioned disability of amygdale to forget a learned 
process. In order to implement this strategy to our neuronal 
model we constructed the closed loop control system as 
illustrated in Fig. 1.  

 

 
 Fig. 1. Control system configuration using BELBIC. 
 

The BELBIC control signal (MO) enters the excitatory 
interneurons. The purpose for choosing this site for applying 
the stimulus is that the electrical stimuli to a brain structure 
is in fact an excitatory arousal of the neural tissue and thus 
should be added to the excitatory effect of neighboring 
populations which is considered in the model via white 
noise. The sensory and stress signals have been defined as 
follows: 
 

)....( 21 eWeeWMOstress +−=   (8) 

..3 eWSI =  (9) 
 

Where e stands for error signal defined as the difference 
between the simulated epileptic activity at seizure onset 
(PAONSET) and the simulated desired interictal behavior 
(PAintICTAL) as shown in (10). 
 

.int ICTALONSET PAPAe −=  (10) 
 

W1, W2 and W3 are positive constants. In fact sensory 
input which will be reinforced or punished due to the stress 
signal is simply chosen as a proportional function of error. 
The stress signal has also been defined as suggested in [13]. 
This definition guarantees an increase in the stress signal in 
correspondence to decrease in error which results in 
enhancement of amygdale gains. On the other hand increase 
in error level will cause decrease in stress and thus 
intensification of orbirofrontal inhibitory gains. The error 
derivative is also included to eliminate the offset error.    

III. RESULTS 

A. Simulation of epileptic activity 
As briefly discussed in section II, the neuronal behavior 

during transition from normal neuronal background 
behavior (interictal period) to fast epileptic discharges (ictal 
period) have been reconstructed via a modified version of 
the lumped parameter computational model of epilepsy 
proposed by wendling [17]. Model equations (1) have been 
solved by numerical integration methods with fixed time 

step, equal to 5 milliseconds. Model parameters are set 
according to Table 1.  
 

TABLE I  
MODEL PARAMETERS 

Parameter Value 
a 100 s-1 
b 30 s-1 
g 350 s-1   
C1, C7 135 
C2 108 
C3, C4 33.75 
C5 40.5 
C6 0.4 
V0 6 mv 
e0 2.5 s-1   
r 0.56 mv-1 

p(t) Mean=90 pulses. s-1, SD=900 pulses. s-1 
 

Synaptic population gains (EXC, SDI and FSI) for each 
segment have been set according to those identified by 
Wendling [17]. Fig. 2 depicts the simulated EEG activity at 
interictal and onset states as well as the power spectral 
density (PSD) of each segment. 
  

 
 

 
Fig. 2. Simulated EEG activity and power spectral density. (a) Interictal, (b) 
onset. 
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B. Electrical stimulation 
As mentioned in section II the BELBIC controller has 

been exploited to abate the epileptic bursting behavior due 
to its ability to defeat unidentified and complex dynamics as 
well as its fast learning rate. The inputs to this controller are 
stress and sensory signal which have been calculated from 
error between unwanted epileptic spikes at seizure onset and 
desired interictal behavior as presented in (8) and (9). Fig. 3 
shows the results obtained from applying this algorithm to 
the neuronal model as shown in Fig.1.  

Comparison between the closed loop PSD of the model 
output at onset period (Fig. 3a) with the one in the interictal 
period (Fig. 2a) shows that the applied control stimulus has 
successfully changed the behavior of the brain at onset 
period in a way that it resembles the normal brain rhythm in 
the interictal period.  

Fig. 3b  shows the control signal applied to the neural 
model. The total energy delivered to the brain structure is 
calculated as the root mean square of the control signal and 
is equal to 164 mV. The amplitude of the applied stimulus is 
approximately 100 mV which is tolerable for brain cells 
according to experiments performed on in-vitro brain slice 
preparations [5].  
 

 

 
Fig. 3. BELBIC results. (a) closed loop power spectral density, (b) control 
signal.  

IV. CONCLUSION 
The main purpose of this study was to investigate a 

control algorithm to restrain the epileptic seizures onset in 
the normal brain activity. The simulated EEG produced by 
the modified model described in (1), resembles that of real 
neural behavior recorded by intracerebral electrodes and 
then simulated by Wendling et al. [17].  

Results show that applying the electrical stimuli derived 
from BELBIC algorithm to the neural population restores 

the normal brain activity by redirecting the neural behavior 
from bursting activity at seizure onset to the normal low 
amplitude spikes at interictal state. BELBIC produces 
satisfactory results regarding both error and stimuli energy. 
Also despite the backstepping method reported at [9] only 
one stimulation site is needed which is desirable for 
practical implementations.  

In this work we have used a single BELBIC cell. More 
investigations can be done on multi neuron BELBIC and 
also input sites for injecting the stimulus.  
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