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Abstract-- The Discrete Compactness is a factor that 

describes the shape of an object. One of its main strengths lies 

in its low sensitivity to variations, due to noise or capture 

defects, in the shape of an object. Then, we use Discrete 

Compactness in order to propose a new approach for  

non-supervised classification of tissue in Computed 

Tomography brain slices. The proposal is sustained on the use 

of One-Dimensional Kohonen Self-Organizing Maps. The 

images are segmented is such way tissue is characterized 

according to its geometrical and topological neighborhood. 

Our main contribution is based in the use of a new similarity 

metric which makes use of Discrete Compactness. We will 

present arguments to sustain the fact, from an experimental 

point of view, that the use of Discrete Compactness as a 

similarity metric for segmentation purposes impacts additional 

processes such as the classification of segmented images. The 

impact will be boarded in two ways: a) respect to the 

differences existing between segmented images in a same class, 

and b) respect to the way a representative relates with the 

members of its class. In both cases, we will be assisted by some 

simple error functions.  
 

Index Terms - Kohonen Networks, Automatic Image 

Segmentation, Pattern Recognition, Discrete Compactness, 

Non-Euclidean Metrics, Automatic Image Classification. 
 

I. INTRODUCTION 

It is well known that medical reasoning is mainly based 

in the information and knowledge acquired from previous 

closed cases [10]. Our main objective is the generation of a 

database composed by a set of images that correspond to 

patients with well specified diagnosis and the medical 

procedures followed. Images are going to be grouped in 

classes in such way those included in a class share 

anatomical characteristics. The automatic classification of 

previously boarded clinical situations, expressed via images, 

has great potential for physicians because it could be 

possible 1) to index an image corresponding to a new case 

in an appropriate class, and 2) to use the associated closed 

case of each member in such class in order to build a 

suggestion of the diagnosis and procedures to apply.  

Firstly, this work is devoted to describe our 

methodology for automatic classification of brain images. 

Specifically, it is proposed a potential use of 1-Dimensional 

Kohonen Self-Organizing Maps (KSOMs) in the automatic 

non-supervised characterization of tissue in the human head. 

It is expected that, via non-supervised classification, images 

presenting similar features are properly grouped.  
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In concrete terms, the idea to be developed here 

considers the application of a new similarity metric which is 

sustained in the use of the Discrete Compactness. The 

Discrete Compactness is a factor that describes the shape of 

an object. It was proposed originally by Bribiesca and it is 

inspired by the well known Shape Compactness of an 

object. However, it has a greater robustness in the sense it 

has a low sensitivity to variations, due to noise or capture 

defects, in the shape of an object. On the other side, it is 

well known the original specification for Kohonen’s model 

considered the use of the Euclidean Distance as similarity 

metric. By this way, the so-called Winner Neuron was 

identified. In the literature it is also mentioned that it is 

possible the use of another metrics in order to achieve this 

task. The metric to be used depends on the specific 

characteristics of the classification task to be performed by a 

1D KSOM. In our case we aim to classify cerebral tissue by 

taking in account the geometry and topology around a given 

pixel. But we also need that capture errors, due to noise, for 

example, do not affect the obtained final classification. For 

this reason, Discrete Compactness results in a good option 

for comparing and classifying brain tissue. Although this 

work considers a training set obtained from 2D cerebral 

images, we will see that in order to compute Discrete 

Compactness it is required in advance a 2D - 3D mapping of 

the regions to classify. From a 2D region it is obtained a 3D 

object for which it is computed its Discrete Compactness. 

The same applies to the weights vectors in the neurons that 

shape our 1D KSOMs: they will be also mapped to 3D 

objects in order to compute their Discrete Compactnesses.  

The Section II describes the theoretical frame behind  

1D KSOMs. The Section III describes the fundamentals 

behind Discrete Compactness. Section IV summarizes a 

method, originally presented in [15], for achieving  

non-supervised characterization of tissue in computed 

tomography brain slices. This characterization is based on 

Kohonen’s original model which uses the Euclidean 

Distance as similarity metric. There will be presented three 

network topologies and some results of brain tissue 

classification. The Section V presents our method for 

mapping 2D brain regions into 3D objects. Such objects are 

described through voxelizations. Section VI describes the 

implementation of our new similarity metric and its 

incorporation in Kohonen’s model. There will be presented 

3 network topologies. The results generated from the 

similarity metric, which are based in Discrete Compactness, 

will be compared with those of the networks trained under 

Euclidean Distance. The Section VII will present arguments 

to sustain the fact, from an experimental point of view, that 

the use of Discrete Compactness as a similarity metric for 

segmentation purposes impacts additional processes such as 

the classification of segmented images. The impact will be 
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boarded in two ways: a) respect to the differences existing 

between segmented images in a same class, and b) respect to 

the way a representative relates with the members of its 

class. In both cases, we will be assisted by some simple 

error functions. Finally, Section VIII discusses the obtained 

results and some observations identified when the classes 

and their members were analyzed. Some conclusions and 

future perspectives of research are presented. 

 

II. ONE-DIMENSIONAL KOHONEN  

SELF-ORGANIZING MAPS 

A KSOM with two layers showing L input neurons and 

M output neurons may be used to classify points embedded 

in an L-Dimensional space into M categories ([4] & [18]). 

Input points have the form (x1, …, xi, …, xL). The total 

number of connections from input layer to output layer is  

L × M. Each output neuron j, 1 ≤ j ≤ M, will have associated 

an L-Dimensional weights vector which describes a 

representation of class Cj. All these vectors have the form: 

Output neuron 1: W1 = (w1,1, …, w1,L) 

⋮  

Output neuron M: WM = (wM,1, …, wM,L) 

A set of training points are presented to the network T 

times. According to [6], all values of weight vectors should 

be randomly initialized. The neuron whose weights vector 

Wj, 1 ≤ j ≤ M, is the most similar to the input point P
k is 

chosen as winner neuron, for each t, 0 < t ≤ T. In the model 

proposed by Kohonen, such selection is based on the 

Squared Euclidean distance. The selected neuron will be 

that with the minimal distance between its weights vector 

and the input point Pk: 

( )
2

,

1

( ) 1
L

k

j i j i

i

d P W t j M
=

= − ≤ ≤∑  

In fact, other distance functions can be considered for the 

purpose of identifying a winner neuron. The use of a 

different metric usually obeys to the needs of the application 

([9] & [20]). Clearly, when using a distinct metric, it must 

express the amount of similarity between an input point and 

a weights vector and, hence, it is reasonable to expect some 

impact in the way the network classifies and distributes the 

elements in the training set. Distances that can be used for 

the purpose of determining winning neurons are: the 

Manhattan Distance [17], the Sup Distance (a special case of 

the Minkowski Distance also known as Chebyshev 

Distance) [7], the Canberra Distance [20], or the  

Pérez-Aguila Metric [16]. Nevertheless, once the j-th winner 

neuron in the t-th presentation has been identified, its 

weights are updated according to: 

, , ,

1
( 1) ( ) ( ) 1,2,...,

1

k

j i j i i j iW t W t P W t i L
t

 + = + − = +
 

When the T presentations have been achieved, the 

values of the weights vectors correspond to coordinates of 

the ‘gravity centers’ of the clusters of the M classes. 

 

III. DISCRETE COMPACTNESS 

In areas such as Image Processing, Pattern Recognition, 

and Computer Vision, there is required to characterize for a 

given object its topological and geometrical factors. They 

have a paramount role in more elaborated tasks such as 

those related to classification, indexing, or comparison. 

Some of these factors describe the shape of an object. One 

of them, and one of the most used, is the Shape 

Compactness [3]. The Shape Compactness of an object 

refers to a measure between the object and an ideal object 

[8]. In the 2D Euclidean Space, shape compactness is 

usually computed via the well known ratio 
2 / (4 )C P Aπ=  

where P is the perimeter of an object and A its area. Such 

ratio has its origins in the isoperimetric inequality 
2 4P Aπ≥ . It is actually the solution to the isoperimetric 

problem which states the question related to find the simple 

closed curve that maximizes the area of its enclosed region 

[11]. The equality is obtained when the considered curve is 

a circle. Hence, as pointed out by [3], the ratio for shape 

compactness is in effect comparing an object with a circle. 

In the 3D space the isoperimetric inequality is given by 
3 236A Vπ≥ . Where A is the area of the boundary of a 3D 

object while V is its volume. Hence, the ratio 
3 2/ (36 )C A Vπ=  denotes shape compactness of a 3D object 

and it effectively is comparing such object with a sphere.   

As [3] & [5] point out, these classical ratios are very 

sensitive to variations in the shape of an object. Moreover, 

they point out, when the above definitions are applied to 

objects defined via pixelizations (in the 2D case) or 

voxelizations (3D case), small changes in the final object’s 

boundary produce more important variations in the 

computed values. Consider for example the sets of boxes 

presented in Figure 1. The “inverted T” described by the 

union of the boxes shown in Figure 1.a has a perimeter of 

32 u while its area is 48 u2. Figure 1.b shows a polygon that 

can be seen as a modified version (because of noise, 

artifacts, digitalization scheme, etc.) of the previous one. Its 

perimeter is given by 56 u. Both polygons have the same 

area, but their shapes have some slight differences. Shape 

compactness for the first polygon is given by 1.6976 while 

for the second is 5.1990. These values are significantly 

distinct, and by considering shape compactness as a rule for 

classification, this could imply they are very different 

objects.   
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a) Perimeter: 32 u,  

Area: 48 u2 

b) Perimeter: 56 u,  

Area: 48 u2 

Fig. 1. Polygons defined by the union of 48 unitary boxes. 
 

In order to provide a solution to the above problem, 

Bribiesca, in [2] & [3], defined the Discrete Compactness. It 

has its foundation on the notion of counting the number of 

edges (in the 2D case) and faces (in the 3D case) which are 

shared between pixels or voxels, according to the case, that 

define an object. Discrete Compactness is given by the 

following expression ([2] & [3]): 

min

max min

( )
( )

C C

D

C C

L p L
C p

L L

−
=

−
 

Where: 

• ( )
C

L p : number of shared edges (faces) within an object p 

consisting of m pixels (voxels).  
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• 
maxC

L : the maximum number of shared edges (faces) 

achieved with an object consisting of m pixels (voxels). 

• 
minC

L : the minimum number of shared edges (faces) 

achieved with an object consisting of m pixels (voxels). 

• ( ) [0,1]
D

C p ∈  

In [3] there are used, for the 2D case, 

( )
max

2
C

L m m= −  and 
min

1
C

L m= − , which respectively 

describe the maximum and minimum number of internal 

contacts (shared edges) between the m pixels forming a 

squared object. It is clear, in this case, when CD(p) = 1 the 

object p corresponds to a square of sides m  and when 

CD(p) = 0 it corresponds to a rectangle with base of length 1 

and height m. In [5] it is established 
min

0
C

L = . Hence, if 

CD(p) = 0 then the object corresponds to a chain of pixels 

such that no edges, and only vertices, are shared. For 

example, considering again the polygons presented in 

Figure 1, we have 80
C

L =  for that shown in Figure 1.a, 

while 68CL =  for the polygon in Figure 1.b. In both cases  

m = 48, hence, 
max

82.1435
C

L = . By considering 
min

0
C

L =  

then discrete compactness for the polygons in Figures 1.a 

and 1.b are 0.9739 and 0.8278, respectively. It both cases, it 

is clear discrete compactness provides us a more robust 

criterion for objects’ comparison/classification/description 

of shapes under the advantage it is much less sensitive to 

variations in their shape. For the 3D case, in [3] it is used 

( )max

2
33

C
L m m= − . If m is a power of 3, then the given 

maxC
L  provides the number of shared faces in an array of 

voxels that correspond to a cube of edges of length 3 m . By 

using 
min

1
C

L m= −  then it is defined a stack of m voxels [3].  

 

IV. PREVIOUS WORK:  

NON-SUPERVISED TISSUE CLASSIFICATION 

Automatic classification of normal and pathological 

tissue types has great potential in clinical practice. However, 

as Abche et al [1] point out, the automatic segmentation and 

classification of medical images is a complex task for two 

reasons: 1) the variability of the human anatomy varies from 

a subject respect to other; and, 2) the images’ acquisition 

process could introduce noise and artifacts which are 

difficult to correct.  

As commented in the introduction of this work, one part 

of the problem to be boarded is the automatic  

non-supervised classification of brain tissue. It is expected 

that the proposed KSOMs identify, during its training 

processes, the proper representations for a previously 

established number of classes of tissue. Hence, a CT brain 

slice can be segmented in such way each type of tissue is 

appropriately characterized (many tasks, such as description, 

object recognition or indexing, are based on a preprocessing 

founded on automatic segmentation, [19] & [21]). This 

section summarizes the methodology established originally 

in [15].  

There are some situations to be considered respect to 

the training sets to be used. One first approach could suggest 

that the grayscale intensity of each pixel, in each brain slice, 

can be seen as an input vector (formerly an input scalar). 

However, as discussed in [12], the networks will be biased 

towards a classification based only in intensities. It is clear 

that each pixel has an intensity which captures, or is 

associated, to a particular tissue; however, it is important to 

consider the pixels that surround it together with their 

intensities. The neighborhood around a given pixel is to be 

taken in account because it complements the information 

about the tissue to be identified [15]. 

Let p be a pixel in a given image. Through p, it is 

possible to build a sub-image by taking those pixels inside a 

square neighborhood of radius r and center at p. Pixel p and 

its neighborhood will be called a mask. The size of the mask 

is given by the length (number of pixels) of its sides. See 

Figure 2. 
 

 
Fig. 2. Example of two masks in a brain slice image.  

 

The experiments were based in a set of 340 grayscale 

images corresponding to Computed Tomography brain 

slices. They are series of axial images of the whole head of 

5 patients. All the 512 × 512 pixels images were captured by 

the same tomography scanner and they have the same 

contrast and configuration conditions. 

The networks’ training sets are composed by all the 

masks that can be generated in each one of the 340 available 

images. A 1D KSOM expects as input a vector, or point, 

embedded in the L-Dimensional Space. A mask can be seen 

as a matrix, but by stacking its columns on top of one 

another a vector is obtained. In fact, this straightforward 

procedure linearizes a mask making it a suitable input for 

the network. 

There were implemented three 1D KSOMs with 

different topologies and training conditions: 

• Network Topology τ1: 

o Mask size: 5 pixels 

o Input Neurons: L = 5 × 5 = 25 

o Output Neurons (classes): M = 10 

o Presentations: T = 6 

• Network Topology τ2: 

o Mask size: 4 pixels 

o Input Neurons: L = 4 × 4 = 16 

o Output Neurons (classes): M = 20 

o Presentations: T = 40 

• Network Topology τ3: 

o Mask size: 10 pixels 

o Input Neurons: L = 10 × 10 = 100 

o Output Neurons (classes): M = 40 

o Presentations: T = 2 

(Network topologies τ1 and τ2 were previously designed for 

performing some experiments discussed in [16]) The Table 

I presents the segmentation obtained for three brain slices at 

distinct positions of the head. The segmented images are 

presented in false color.  
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TABLE I 

TISSUE CHARACTERIZATION OF THREE SELECTED BRAIN SLICES VIA NETWORK TOPOLOGIES τ1, τ2 AND τ3. 
Original 

Brain Slice 

Segmentation  

by Network Topology ττττ1 

Segmentation  

by Network Topology ττττ2 

Segmentation  

by Network Topology ττττ3 

Image 

1 

 

 

 
   

Image 

2 

 

 

 
   

Image 

3 

 

 

 
   

 

V. COMPUTING THE DISCRETE COMPACTNESS OF A 2D MASK 

As previously commented, a mask of radius r is a 

portion of an image which is centered in a given pixel. 

Therefore, and evidently, a mask is a grayscale subimage 

whose size is defined by its radius. In Section III we 

introduced Discrete Compactness as a factor that describes 

geometry and topology of an object represented through a 

pixelization (2D) or a voxelization (3D). Now, our objective 

is to show how it is possible the computing of Discrete 

Compactness for our previously defined masks. Remember 

these masks defined the training sets for the Kohonen 

Networks described in previous Section. We have to take in 

account our masks are two-dimensional subimages but in 

grayscale. For this reason, first of all, we have to consider a 

conversion process with the objective of properly compute 

Discrete Compactness. The methodology to be described is 

based in some aspects originally presented in [13] & [14]. In 

the Figure 3 it is presented an example of a grayscale mask 

of radius 4. 
 

 
Fig. 3. Example of a mask of radius 4. 

 
Suppose the intensity values of the pixels are in the set 

G = {1/256, 1/128, 3/256, …, 1} where value 1/256 is 

associated to black color while value 1 corresponds to white 

color. It is clear we are considering 256 possible intensities. 

Now, each one of the pixels will be extruded towards the 

third dimension, where its intensity value is now assumed its 

coordinate X3, while coordinates X1 and X2 correspond to the 

original pixels' coordinates [13] & [14]. See Figure 4. 

Specifically, a pixel’s extrusion towards third 

dimension depends on its intensity value k ∈ G. Remember 

we are considering 256 possible intensities. Then, for a 

given pixel, we always obtain a stack composed by 256k 

voxels. Obviously, all of these voxels are located in the 

same coordinates X1 and X2 than the original pixel. Stack’s 

height is precisely 256k. See Figure 5. 

By this way, given a mask of radius r we obtain a 3D 

object expressed as a set of voxels. The number of such 

voxels corresponds to the sum of the intensities of each one 

of the pixels in the mask, multiplied by 256. Our process 

can be understood as a mapping of a 2D grayscale mask into 

a 3D monochrome object. The information contained in the 

pixel’s original intensities is preserved thanks to the use of a 

third dimension. Clearly, given a set of masks, it is possible 

to compute the Discrete Compactness of their corresponding 

3D objects. However, we have to know in advance the 

values 
maxC

L  and 
minC

L : the maximum number of shared 

faces achieved with an object consisting of m voxels, and 

the minimum number of shared faces achieved with an 

object consisting of m voxels, respectively. In the case 

related to 
maxC

L  we have to consider that all our masks, of 

    

X 2 

X 1 
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radius r, have a size (2r + 1) × (2r + 1). Due to the 

maximum intensity value in a pixel can be 1 then the 

number of voxels required to represent a mask where all of 

its pixels are white is given by 256⋅(2r + 1)2. The obtained 

3D object, and more specifically the union of the voxels 

composing it, corresponds to a prism of squared base and 

height 256. This object is the one that will characterize our 

value 
maxC

L . The specific value of 
maxC

L  depends on the size 

of the masks to be processed. On the other hand, we simply 

establish that 
minC

L  = 0. 

 

 
Fig. 4. The 3D space defined for the extrusion of grayscale 2D-pixels. 

 

 
Fig. 5. The voxelization resulting from the extrusion  

of grayscale 2D-pixels. 

 

VI. DISCRETE COMPACTNESS-BASED TRAINING 

At this point we have all the elements for mapping a 

mask into a 3D object in order to compute its corresponding 

Discrete Compactness. Our intention now is to incorporate 

Discrete Compactness to the training mechanism for a 1D 

KSOM. We know the election of the winner neuron is based 

on the obtained result when it is computed the Euclidean 

Distance between an input vector and the weights in the 

neurons that compose the network. We assume, as we did it 

in Section IV, that our networks receive as input vectors 

that correspond to linearizations of masks which in turn are 

taken from our set of 340 images. The size of the vectors is 

defined by the mask’s size. This implies our weights vectors 

also have that same number of components. The weights 

vectors describe the representations used by the network for 

classifying the elements in the training set. Such 

representations in turn can be considered as grayscale 

images  whose  size  is  the  same than that of the masks that  

compose our training set. In consequence, it is possible to 

compute the Discrete Compactness of each weights vector. 

Then, let ( )k

DC P  and ( )( )D jC W t  be the values of the 

Discrete Compactnesses of the 3D representations for input 

vector kP  and weights vector ( )
j

W t , respectively. Then we 

define a similarity metric for determining the likeness, from 

a geometrical and topological point of view, between kP  

and ( )
j

W t . We make use of the Pérez-Aguila Metric [12]:  

1

( , ) 1 ,

0

x
if x y

y

y
x y if y x x y

x

if x y

ρ +


− <




= − < ∈


=



ℝ
 

The Pérez-Aguila Metric is effectively a metric over +ℝ , as 

proved in [12]. It is clear if scalars x and y are very close 

then ( , )x yρ  → 0. The range of the values that Discrete 

Compactness can have is [0, 1]. Therefore we have: 

( ) ( )( ), ( ) 1k

j D D jd C P C W t j Mρ= ≤ ≤  

This is the only change to be applied to the KSOM’s 

Training Process: the computation of the Euclidean Distance 

is substituted by the computation of the Pérez-Aguila Metric 

between Discrete Compactnesses of the 3D representations 

for a weights vector and an input vector. All of this in order 

to determine the winner neuron. The remaining of the 

training procedure, as described in Section I, suffers no 

changes. 

We will use the same three network topologies 

described in Section IV. In order to differentiate them from 

topologies τ1, τ2 and τ3, which are based in the computation 

of the Euclidean Distance, we will denote them as 
1

DCτ , 

2

DCτ , and 
3

DCτ . We commented in previous Section the 

specific value for 
maxC

L  depends of the masks’ size. Because 

the masks to use have sizes 5×5, 4×4, and 10×10, then we 

have, in Table II, the corresponding values for 
maxC

L . The 

Table III shows some segmentation results, in false color, 

obtained by applying networks 
1

DCτ , 
2

DCτ , and 
3

DCτ  over our 

set of 340 images. 

 
TABLE II 

maxC
L  VALUES ACHIEVED WITH AN OBJECT THAT DEFINES A PRISM OF 

SQUARED BASE AND HEIGHT 256. THE BASE’S LENGTHS CORRESPOND TO 

THE MASK SIZES USED IN NETWORK TOPOLOGIES 
1

DCτ , 
2

DCτ  AND 
3

DCτ . 

Segmentation by 

Network 
Mask Size 

maxC
L  

1

DCτ  5 × 5 16,680 

2

DCτ  4 × 4 10,264 

3

DCτ  10 × 10 71,860 

 

Now we get inside the question related to the benefits 

obtained when Discrete Compactness, together with  

Perez-Aguila Metric, is used as similarity metric. We will 

consider in the following discussion to segmentations 

produced  by  network  topologies  τ1  and  
1

DCτ .  Remember 

both networks group in 10 classes a training set composed 

  

  

X 2 X 1 

X   = grayscale3 
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by masks of size 5 × 5. The total number of classified masks 

is 258,064. We analyze the segmentation results when an 

image is sent to both Networks. Classes in each 

segmentation were sorted decreasingly respect to the 

number of their members. In the Table IV are shown the 

members of the 10 classes. Both networks have a class 

where regions corresponding to empty space are grouped. In 

fact, these classes have the maximal number of members: 

136,399 in the case of network τ1 and 124,909 for the 

network 
1

DCτ . Now we have, for τ1, that the sum of members 

in classes 1, 5, 2, and 6 is 112,338, whereas class 1 groups 

approximately to 74.88% of such members. On the other 

side, for network 
1

DCτ , the sum of the members in classes 9, 

0, 1, and 7 is 99,636. In this case the class with more 

members is 1 (40,914), which translates in the property that 

it has the 41.06% of the previous sum. It is clear then that 

network 
1

DCτ  has given us a more equitable distribution of 

the masks between the classes. Also of interest is the class 1 

under network 
1

DCτ . It corresponds clearly, and exclusively, 

to bone tissue. It can be observed how there are no classes 

under topology τ1 which present this characteristic. Class 1 

of network τ1 contains bone tissue, but there is also present 

brain tissue, among others. In this last sense, classes 9 and 0, 

from network 
1

DCτ , describe brain tissue but without the 

presence of bone tissue.  

Other point to stand out is the delimitation of tissue 

shared by network 
1

DCτ  (See Table IV). Classes 2, 4, 8, 5, 

and 6 can be seen as boundaries for the different regions of 

tissue lying in the remaining classes. Cleary in these cases 

network τ1 produces a classification where boundaries are 

not continuous. In fact, in classes 7, 3 and 0 is not possible 

to appreciate components of enough size and visual 

description of the tissue to which they are associated. In 

network 
1

DCτ , we have that class 6 has the minimal number 

of members: 3,121. But it is clear how the tissue that 

describes can be seen as the one that separates bone tissue 

(class 1) from the remaining types. 

 

VII. CLASSIFICATION OF SEGMENTED IMAGES  

AND EVALUATION USING ERROR FUNCTIONS 

The idea to be described in this Section considers the 

use of two 1D Kohonen Networks. A first network will be 

used to characterize brain tissue in the human head. Such 

characterizations are then used for segmenting brain images. 

This process has been achieved in the previous Sections. 

Now, the whole set of segmented images is then used as a 

training set for a second 1D Kohonen Network whose 

objective is to group them in classes in such way it is 

expected the members of a class share common and useful 

properties. This idea was originally presented in a study 

developed in [16]. 

Let TS(x) be defined as a set of segmented images 

generated by Kohonen Network x, where  

x ∈ {τ1, τ2, τ3, 1

DCτ , 
2

DCτ , 
3

DCτ }. Now, each one of these six 

sets will be used for training a Kohonen Network. The plan 

is that such network classifies the images in a given number 

of classes. Each training set is then composed by 340 

images whose size is 512 × 512. The segmented images 

(presented in false color) are codified under the color model 

24-bits RGB. 
 
 

 

TABLE III 

TISSUE CHARACTERIZATION OF THREE SELECTED BRAIN SLICES VIA NETWORK TOPOLOGIES 
1

DCτ , 
2

DCτ  AND 
3

DCτ . 

Original 

Brain Slice 

Segmentation  

by Network Topology 
1

DCτ  

Segmentation  

by Network Topology 
2

DCτ  

Segmentation  

by Network Topology 
3

DCτ  

Image 

1 

 

 

 
   

Image 

2 

 
 

 

 
   

Image 

3 
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TABLE IV 

CLASSIFICATION OF POINTS IN A CT BRAIN SLICE (CLASSES ARE SORTED DECREASINGLY IN EACH COLUMN). 

Segmentation by  

Network Topology ττττ1 

 

 
 

 
Segmentation by  

Network Topology 
1

DCτ  

 

 
 

Class and Members Count under ττττ1   Class and Members Count under 
1

DCτ  
 

 
Class 4: 136,399 

 

 
Class 8: 2,818 

 
 

 
Class 3: 124,909 

 

 
Class 4: 11,289 

 
Class 1: 84,119 

 
Class 9: 2,494 

 

 
Class 1: 40,914 

 
Class 2: 8,644 

 
Class 5: 18,707 

 
Class 3: 1,578 

 

 
Class 9: 29,726 

 
Class 8: 6,073 

 
Class 2: 5,489 

 
Class 7: 1,314 

 

 
Class 0: 15,711 

 
Class 5: 4,392 

 
Class 6: 4,023 

 
Class 0: 1,123 

 

 
Class 7: 13,285 

 
Class 6: 3,121 

 

Let l1 (rows) and l2 (columns) be the dimensions of a 

2D segmented image. Let L = l1 ⋅ l2. Each pixel in the image 

will have associated a 3D point (xi, yi, RGBi) such that 

RGBi ∈ [0, 16777216), 1 ≤ i ≤ L, where RGBi is the color 

value associated to the i-th pixel. The color values of the 

pixels will be normalized such that they will be in [0.0, 1.0) 

through the transformation [16]:  

_ /16777216i inormalized RGB RGB=  

Basically, it is defined a vector in the L-Dimensional 

space by concatenating the l2 columns in the image 

considering for each pixel its normalized color RGB value.  

By this way, each image is now associated to a vector in the  

L-dimensional Euclidean space [16]. Therefore, the training 

images to be applied in a Kohonen Network are mapped in 

order to be embedded in a unit L-Dimensional hypercube. 

Because the input vectors are not necessarily uniformly 

distributed in the L-D space, we can expect important 
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repercussions during their classification process. For 

example, for a given number of classes, we can obtain some 

clusters that coincide with other clusters or classes without 

associated training points. We will describe a simple 

methodology, originally presented in [12], to distribute 

uniformly the points of a training set for the general case of 

a L-dimensional space. Consider a unit L-dimensional 

hypercube H where the points are embedded in their 

corresponding minimal orthogonal bounding hyper-box h 

such that h ⊆ H. The point with the minimal coordinates 

min min min minmin 1 2 1( , ,..., , )
L L

P x x x x−=  and the point with the 

maximal coordinates 
max max max maxmax 1 2 1( , ,..., , )

L L
P x x x x−=  will 

describe the main diagonal of h. We proceed to apply to 

each point 
1 2 1( , ,..., , )

L L
P x x x x−=  in the training set, 

including Pmin and Pmax, the geometric transformation of 

translation given by 
min

' , 1
i i i

x x x i L= − ≤ ≤ . By this way, 

we will get a new hyper-box h’ and the points that describe 

the main diagonal of h’ will be 
�min' (0,...,0)

L

P =  and 

max max max maxmax 1 2 1' ( ' , ' ,..., ' , ' )
L L

P x x x x−= . The second part of 

our procedure will consist in the extension of the current 

hyper-box h’ in order to occupy the whole L-dimensional 

hypercube H. The scaling of a point 
1 2 1( , ,..., , )

L L
P x x x x−=  

is given by multiplying their coordinates by the factors S1, 

S2, …, SL each one related with x1, x2, …, xL respectively in 

order to produce the new scaled coordinates x1’, x2’, …, xL’. 

Because we want to extend the bounding hyper-box h’ and 

the translated training points to the whole unit hypercube H, 

we have that by scaling the point 

max max max maxmax 1 2 1' ( ' , ' ,..., ' , ' )
L L

P x x x x−=  we must obtain the 

new point 
�(1,...,1)

L

. That is to say, we define the set of L 

equations 
max

' 1, 1
i i

x S i L⋅ = ≤ ≤ . Starting from these 

equations we obtain the scaling factors to apply to all points 

included in the bounding hyper-box h’: 
max

1/ '
i i

S x= ,  

1 ≤ i ≤ L.  

Finally, each one of the coordinates in the original 

points of the training set must be transformed in order to be 

redistributed in the whole unit L-dimensional hypercube 

[0,1]L through ( )
min max

' ( ) 1/ 'i i i ix x x x= − ⋅ , 1 ≤ i ≤ L. 

The 1D Kohonen Network used for classifying  

the segmented images was composed by  

L = 512×512 = 262,114 input neurons and M = 30 output 

neurons (classes). Each set of 340 training points 

(segmented images) was presented T = 45 times. The 

training procedures were applied according to Section II 

and by taking in account the redistribution in the  

L-Dimensional Space of the training sets. 

Table V shows the obtained classification of the 

segmented images using the training sets TS(τ1), TS(τ2), and 

TS(τ3). The results associated to TS(τ1) and TS(τ2) were 

originally presented in [16]. The Table VI presents the 

distribution of the 340 training segmented images (TS(
1

DCτ ), 

TS(
2

DCτ ), and TS(
3

DCτ )) in each one of the 30 classes.  

Let 
1, , 2, , , ,

Ti

k i k i k L i k
I g g g =  ⋯  be a linearized 

segmented image in training set TS(x),  

x ∈ {τ1, τ2, τ3, 1

DCτ , 
2

DCτ , 
3

DCτ }, such that it was 

characterized as part of class Ck once a 1D Kohonen 

Network was trained precisely with TS(x). The upper index i 

(or j) only refers to an arbitrary position assigned to the 

image belonging class Ck. Now we define the “Error in 

Class k”, denoted as ERRk, in the following way: 
( ) ( )

, , , ,

1 1 1

k kCard C Card C L

k p i k p j k

i j i p

ERR g g
= = + =

  
= −   

  
∑ ∑ ∑  

That is, we are computing the whole sum of the absolute 

value of the differences that exist between corresponding 

components of all the images in class Ck. Or in other words, 

we are establishing a measure for the quality of the relation 

that exists between images in class Ck. It is clear if images in 

Ck effectively share similar characteristics then the value of 

ERRk should be low. On the other hand, if images in Ck are 

very distinct then we would expect ERRk has a high value. 
 

TABLE V 

CLASSIFICATION OF 340 TRAINING SEGMENTED IMAGES ACCORDING TO A 

KOHONEN NETWORK WITH 262,114 INPUT NEURONS,  

30 OUTPUT NEURONS, AND 45 PRESENTATIONS. 

 TS(τ1) TS(τ2) TS(τ3) 

Class Images Images Images 

1 43 15 177 

2 2 19 163 

3 8 8 0 

4 8 14 0 

5 33 9 0 

6 9 12 0 

7 8 4 0 

8 3 9 0 

9 17 12 0 

10 31 4 0 

11 22 5 0 

12 18 12 0 

13 7 14 0 

14 29 13 0 

15 15 11 0 

16 11 13 0 

17 2 9 0 

18 21 16 0 

19 27 4 0 

20 25 7 0 

21 1 4 0 

22 0 20 0 

23 0 7 0 

24 0 10 0 

25 0 14 0 

26 0 3 0 

27 0 28 0 

28 0 9 0 

29 0 15 0 

30 0 20 0 
 

Now we define the “Global Error for TS(x)”,  

x ∈ {τ1, τ2, τ3, 1

DCτ , 
2

DCτ , 
3

DCτ }, and denoted ERRTS(x), as 

follows: 

( )

1

M

TS x k

k

ERR Err
=

=∑  

We have proposed a way to measure the quality of the 

characterization provided for a 1D Kohonen Network with 

M classes when it is trained using set TS(x). 

The Table VII shows the global error obtained for each 

one of the training sets under our consideration. We analyze 

first the case TS(τ1) vs. TS(
1

DCτ ). According to Table V the 

network trained with TS(τ1) distributed the segmented 

images along 21 classes. On the other side we have network 

trained with TS(
1

DCτ ) used the 30 available classes (See 

Table VI). Now, respect to the quality of such 

classification, and by the values presented in Table VII, we 
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can see 
( )1TS

ERR
τ

 is approximately 1.41 times greater than 

( )1
DC

TS
ERR

τ
. This implies the segmentation supported by 

Discrete Compactness leads to a characterization of 

segmented images such that those elements in the same 

class effectively share more similar characteristics that those 

shared in the classification based on TS(τ1). A similar 

situation is given by the case TS(τ3) vs. TS(
3

DCτ ). According 

to Table VII we have 
( )3

DC
TS

ERR
τ

 = 9.0053 × 107 and 

( )3TS
ERR

τ
 = 1.0814 × 109. That is, 

( )3TS
ERR

τ
 is 

approximately 12 times greater than 
( )3

DC
TS

ERR
τ

. This result 

becomes more impressive by taking in account the fact 

classification based on TS(τ3) only used 2 of 30 classes 

available (Table V). The network trained using TS(
3

DCτ ) 

distributed the segmented images in 24 classes. We can infer 

then the segmentation achieved by applying Discrete 

Compactness as similarity metric allow more information to 

rise in order to support and to enhance the Kohonen 

Network classification of segmented images. 

 
TABLE VI 

 CLASSIFICATION OF 340 TRAINING SEGMENTED IMAGES ACCORDING TO A 

KOHONEN NETWORK WITH 262,114 INPUT NEURONS,  

30 OUTPUT NEURONS, AND 45 PRESENTATIONS OF TRAINING SETS  

TS(
1

DCτ ), TS(
2

DCτ ), AND TS(
3

DCτ ). 

 TS(
1

DCτ ) TS(
2

DCτ ) TS(
3

DCτ ) 

Class Images Images Images 

1 7 24 20 

2 8 13 42 

3 14 16 20 

4 4 39 16 

5 3 9 22 

6 23 21 14 

7 11 15 11 

8 4 23 9 

9 12 5 7 

10 7 16 5 

11 9 28 9 

12 18 18 2 

13 5 5 8 

14 32 20 5 

15 29 31 16 

16 3 23 1 

17 26 16 37 

18 11 18 18 

19 18 0 5 

20 11 0 13 

21 5 0 10 

22 1 0 25 

23 17 0 8 

24 3 0 17 

25 23 0 0 

26 4 0 0 

27 9 0 0 

28 12 0 0 

29 4 0 0 

30 7 0 0 
 

TABLE VII 

COMPUTATION OF GLOBAL ERROR  

FOR SETS τ1, τ2, τ3, 
1

DCτ , 
2

DCτ , AND 
3

DCτ . 

Network ERRTS(x) Network ERRTS(x) 

TS(τ1) 9.6274 × 107 TS(
1

DCτ ) 6.8249 × 107 

TS(τ2) 5.7853 × 107 TS(
2

DCτ ) 8.4002 × 107 

TS(τ3) 1.0814 × 109 TS(
3

DCτ ) 9.0053 × 107 

 

Now we take in consideration the case TS(τ2) vs. 

TS(
2

DCτ ). Table VII reports that 
( )2

DC
TS

ERR
τ

 is 

approximately 1.45 times greater than 
( )2TS

ERR
τ

. We will 

introduce two new error functions. Now consider to Weights 

Vector 
1, 2, ,

T

k k k L k
W W W W =  ⋯  associated to class 

Ck. Wk can be seen as a linearized image and for instance it 

can be also compared with those images located in the 

corresponding class. We define then to the “Error in Class k 

respect to Wk”, denoted by W

k
Err , as: 

( )

, , ,

1 1

kCard C L
W

k p i k p k

i p

ERR g W
= =

 
= − 

 
∑ ∑  

It is clear that by computing W

k
Err  we are obtaining the 

differences that exist between each image in class k with the 

weights vector Wk, which is in fact its representative. We 

can think if W

k
Err  has a low value then Wk is a good 

representative for all the images in Ck. This reasoning can be 

extended for considering all the representatives of all classes 

for a given Kohonen Network. Therefore, we have a new 

value for measuring the classification quality shared by a 

network. We say the “Global Error for TS(x) respect to its 

Representatives”, denoted by 
( )

W

TS x
ERR , can be defined as: 

( )

1

M
W W

TS x k

k

ERR Err
=

=∑  

The Table VIII shows the global error respect to its 

representatives, obtained for each one of the training sets 

under our consideration.  

 
TABLE VIII 

COMPUTATION OF GLOBAL ERROR RESPECT TO ITS REPRESENTATIVES  

FOR SETS τ1, τ2, τ3, 
1

DCτ , 
2

DCτ , AND 
3

DCτ . 

Network ( )

W

TS x
ERR  Network ( )

W

TS x
ERR  

TS(τ1) 6,346,501.3418 TS(
1

DCτ ) 6,719,582.8468 

TS(τ2) 6,638,142.9902 TS(
2

DCτ ) 5,713,244.1448 

TS(τ3) 1.0593 × 107 TS(
3

DCτ ) 6,418,264.8862 

 

We resume our discussion referring to TS(τ2) vs. 

TS(
2

DCτ ). By comparing values for 
2( )

W

TSERR τ
 and 

2( )DC

W

TS
ERR

τ
 

we found the first value is 1.16 times greater than the second 

one. This can be understood as the representatives, produced 

after the training procedure using TS(
2

DCτ ), were modeled in 

such that they relate with their represented segmented 

images in better way than using TS(τ2). We mention again to 

previous cases: TS(τ3) vs. TS(
3

DCτ ) shows again a great 

difference in values for 
3( )

W

TSERR τ
 and 

3( )DC

W

TS
ERR

τ
 because of 

the fact by using TS(
3

DCτ ) could be distributed in 24 classes 

instead of the 2 classes used by the application of TS(τ3). In 

the case TS(τ1) vs. TS(
1

DCτ ) we can see a “tie” because the 

difference in values 
1( )

W

TSERR τ
 and 

1( )DC

W

TS
ERR

τ
 is very small. 

In conclusion, we have presented arguments to sustain the 

fact, from an experimental point of view, that the use of 

Discrete Compactness as a similarity metric for 

segmentation purposes impacts additional processes such as 

the classification of segmented images. As we have seen, 

Engineering Letters, 21:4, EL_21_4_02

(Advance online publication: 29 November 2013)

 
______________________________________________________________________________________ 



the impact can be understood in two ways: a) respect to the 

differences existing between segmented images in a same 

class, and b) respect to the way a representative relates with 

the members of its class. In both cases, and assisted by our 

error functions, we have seen how the use of Discrete 

Compactness as a similarity metric has provided us some 

benefits.  

 

VIII. CONCLUSIONS AND PERSPECTIVES  

OF FUTURE RESEARCH 

In this work we have presented a new similarity metric 

for the identification of the winner neuron in 1D KSOM 

training. We have seen how by substituting classical rule 

( )
2

,

1

( ) 1
L

k

j i j i

i

d P W t j M
=

= − ≤ ≤∑  

by the new one, based in Discrete Compactness and  

Pérez-Aguila Metric,  

( ) ( )( ), ( ) 1k

j D D jd C P C W t j Mρ= ≤ ≤  

has shared us some interesting results for classification of 

tissue in Computed Tomography brain slices. We recall that 

for achieving the computation of Discrete Compactness of 

the masks that compose an image, also for weights vectors 

in the networks’ neurons, it is required a 2D – 3D mapping 

that, in one side, preserves information referent to grayscale 

intensity of the original pixels. On the other side, this 3D 

representation also expresses geometric and topologic 

information which is then used by the network in its training 

process. According to Table IV we can appreciate that the 

final segmentation groups in a more coherent way the 

elements in an image sharing a clear identification of the 

tissue described by each class. The results of Table IV also 

lead us to understand that classification supported in 

Discrete Compactness is directed in a way such that the 

formed regions are well delimited as much as possible.  

The results from Section VII gave us arguments to 

sustain the fact, from an experimental point of view, that the 

use of Discrete Compactness as a similarity metric for 

segmentation purposes impacts in positive way additional 

processes such as the classification of segmented images.  

As commented previously, the only change applied to 

Kohonen’s training procedure for 1D KSOMs was the 

related to the similarity metric. On the other hand, the 

updating rule, as seen in Section II, modifies the weights of 

the winner neuron in terms of the input vector and the 

current learning coefficient. It is clear the learning 

coefficient is a scaling factor that is applied over the vector 

resulting from the difference ( )k

jP W t− . Finally, size and 

orientation of the weights vector are updated in terms of 

vector ( )1/ ( 1) ( )k

jt P W t + −  . This implies that there are 

only taken in account spatial relationships in order to obtain 

a new weights vector. In this work we have seen what 

happens when other type of relations are taken in 

consideration when a 1D KSOM is trained. We took the 

essence of one of Kohonen’s learning rules and defined a 

new one based in Discrete Compactness and Pérez-Aguila 

Metric. This implies we can establish a new line of future 

research in the sense Kohonen’s learning rules can be seen 

as starting points for defining analogous updating rules that 

could take in account well known operators such as Boolean 

Regularized Operations and Morphological Operators. On 

the other side, it is possible to use other geometrical and 

topological interrogators in order to determine similarity. 

Among these interrogators we can mention Discrete 

Compactness (the one used in this work) or the Euler 

Characteristic. Then, we are proposing as a line of future 

research the specification of a Non-Supervised Classifier 

based on Kohonen’s learning rules were the winner neuron 

and its update is according to one or various geometrical and 

topological interrogations and operations. 

 

REFERENCES 
[1] Abche, A.B., Maalouf, A. & Karam, E. “A Hybrid Approach for the 

Segmentation of MRI Brain Images”. IEEE 13th International Con-

ference on systems, signals and Image processing, September, 2006. 

[2] Bribiesca, E. “Measuring 2-d shape compactness using the contact 

perimeter”. Computer and Mathematics with Applications, Vol. 33, 

No. 11, pp. 1-9, 1997. 

[3] Bribiesca, E. & Montero R.S. “State of the Art of Compactness and 

Circularity Measures”. International Mathematical Forum, Vol. 4, 

No. 27, pp. 1305-1335. Hikari, Ltd., 2009. 

[4] Davalo, E. & Naïm, P. Neural Networks. The Macmillan Press Ltd, 

1992. 

[5] Einenkel, J.; Braumann, U.; Horn, L.; Pannicke, N.; Kuska, J.; 

Schütz, A.; Hentschel, B. & Höckel, M. “Evaluation of the invasion 

front pattern of squamous cell cervical carcinoma by measuring 

classical and discrete compactness”. Computerized Medical Imaging 

and Graphics, Vol. 31, pp. 428-435. Elsevier, 2007. 

[6] Hilera, J. & Martínez, V. Redes Neuronales Artificiales. Alfaomega, 

2000. México. 

[7] Kamimura, R.; Aida-Hyugaji, S. & Maruyama, Y. “Information-

theoretic Self-Organizing Maps with Minkowski Distance”. Artificial 

Intelligence and Soft Computing, ASC 2003, track 385-067. 2003. 

[8] Marchand-Maillet, S. & Sharaiha, Y. M. Binary Digital Image 

Processing: A Discrete Approach. Academic Press, 2000. 

[9] Martín-Merino, M. & Muñoz, Alberto. “Extending the SOM Algo-

rithm to Non-Euclidean Distances via the Kernel Trick”. ICONIP 

2004, LNCS 3316, pp. 150-157. Springer-Verlag, 2004. 

[10] McDonald, F.S.; Mueller, P.S. & Ramakrishna, G. (Eds.). Mayo 

Clinic Images in Internal Medicine. Informa HealthCare, First 

Edition, 2004. 

[11] Osserman, R. “The Isoperimetric Inequality”. Bulletin of the 

American Mathematical Society, Vol. 84, No. 6, pp. 1182-1238. 1978. 

[12] Pérez Aguila, R.; Gómez-Gil, P. & Aguilera, A. “Non-Supervised 

Classification of 2D Color Images Using Kohonen Networks and a 

Novel Metric”. Lecture Notes in Computer Science, Vol. 3773,  

pp. 271-284. Springer-Verlag Berlin Heidelberg, 2005. 

[13] Pérez-Aguila, R. Orthogonal Polytopes: Study and Application. PhD 

Thesis, Universidad de las Américas-Puebla (UDLAP), 2006. 

Available:  

http://catarina.udlap.mx/u_dl_a/tales/documentos/dsc/perez_a_r/ 

[14] Pérez-Aguila, R. “Representing and Visualizing Vectorized Videos 

through the Extreme Vertices Model in the n-Dimensional Space  

(nD-EVM)”. Journal Research in Computer Science, Special Issue: 

Advances in Computer Science and Engineering. Vol. 29, 2007,  

pp. 65-80. 

[15] Pérez-Aguila, R. “Brain Tissue Characterization Via Non-Supervised 

One-Dimensional Kohonen Networks”. Proc. of the XIX International 

Conference on Electronics, Communications and Computers 

CONIELECOMP 2009, pp. 197-201. Published by the IEEE 

Computer Society. February 26-28, 2009. Cholula, Puebla, México. 

[16] Pérez-Aguila, R. “Automatic Segmentation and Classification of 

Computed Tomography Brain Images: An Approach Using  

One-Dimensional Kohonen Networks”. IAENG International Journal 

of Computer Science, Vol. 37, Issue 1, pp. 27-35, 2010. 

[17] Porrmann, M.; Franzmeier, M.; Kalte, H.; Witkowski, U. & Rückert, 

U. “A Reconfigurable SOM Hardware Accelerator”. ESANN 2002 

Proceedings, pp. 337-342. Belgium, 2004. 

[18] Ritter, H.; Martinetz, T. & Schulten, K. Neural Computation and  

Self-Organizing Maps, An introduction. Addison-Wesley, 1992. 

[19] Yuan, K.; Peng, F.; Feng, S. & Chen, W. “Pre-Processing of CT Brain 

Images for Content-Based Image Retrieval”. Proc. International 

Conference on BioMedical Engineering and Informatics 2008, Vol. 2, 

pp. 208-212. 

[20] Yusof, N.B.M. Multilevel Learning in Kohonen SOM Network for 

Classification Problems. Universiti Teknologi Malaysia, 2006. 

[21] Zerubia, J.; Yu, S.; Kato, Z. & Berthod, M. “Bayesian Image 

Classification Using Markov Random Fields”. Image and Vision 

Computing, 14:285-295, 1996. 

Engineering Letters, 21:4, EL_21_4_02

(Advance online publication: 29 November 2013)

 
______________________________________________________________________________________ 




