
 
 

 

 
Abstract—This paper develops an equipment failure 

prognostics model, in the context of Condition Based 
Maintenance (CBM), in order to predict the equipment’s 
chance of survival, using Logical Analysis of Data (LAD). LAD 
has the advantage of not relying on any statistical theory, which 
enables it to overcome the conventional problems concerning 
the statistical properties of the datasets. LAD’s main advantage 
is its straightforward procedure and self-explanatory results. In 
this paper, our main objective is to develop methods to calculate 
equipment’s survival probability at a certain future moment, 
using LAD. We employ LAD’s pattern generation procedure. 
Then, we introduce a guideline to employ the generated 
patterns to estimate the equipment’s survival probability. The 
proposed methods are applied on Prognostics and Health 
Management Challenge dataset, a condition monitoring dataset 
collected from some mechanical equipment, provided by NASA 
Ames Prognostics Data Repository. Analysis of performance of 
the proposed methods reveals that the methods provide 
comprehensible results that are greatly beneficial to 
maintenance practitioners. Prognostics results obtained by the 
proposed methods are compared with that of Proportional 
Hazards Model (PHM). The comparison reveals that the 
proposed methods are promising tools that compare favorably 
to the PH Model. Since the proposed prognostics model is at its 
beginning phase, some future directions are presented to 
improve the performance of the model. 
 

Index Terms— Condition Based Maintenance (CBM), 
Logical Analysis of Data (LAD), Prognostics Condition 
Monitoring. 

I. INTRODUCTION  

Widely applied in maintenance, Condition Based 
Maintenance (CBM) [Jardine et al. (2006)] is a maintenance 
program that engages the equipment’s health condition in 
optimizing or improving the maintenance activities. The 
equipment’s age and health condition indicators are the 
factors based on which CBM diagnoses a failure in 
equipment or prognosticates an imminent failure.  

Logical Analysis of Data (LAD), first introduced in 
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[Crama et al. (1988)], is a combinatorics, optimization and 
Boolean logic based methodology for the analysis of datasets. The 
typical aim of LAD is to extract knowledge hidden in 
observations of a dataset in order to detect the sets of causes 
that would lead to certain effects. In the context of 
maintenance, a cause can be the monitored equipment’s age 
or any health condition indicator value, while an effect can be 
the equipment’s survival or failure. Each cause is called an 
Attribute. A literal is either an attribute or its Negation. 
Negation of an attribute contradicts the attribute. Based on 
certain effects, observations are categorized into two classes: 
observations that fail during the coming period, referred to as 
the Positive Class, and observations that survive at least until 
the end of the coming period, referred to as the Negative 
Class. A Positive (Negative) Pattern is a set of literals that is 
reflected in one or more of the observations of the positive 
(negative) class while not reflected in any (many) of the 
observations of the negative (positive) class. The number of 
literals forming the pattern is called the degree of pattern. A 
pattern cannot be formed of an attribute and its negation. 

Since its introduction, LAD has been widely applied for 
the analysis of datasets from different fields such as 
medicine, biotechnology, economics, finance, politics, 
properties, oil exploration, manufacturing and maintenance. 
[Abramson et al. (2005), G. Alexe et al. (2006), S. Alexe et 
al. (2003), and Lauer et al. (2002)] applied LAD in medical 
fields such as cell growth, breast cancer, coronary risk, and 
electrocardiography in order to predict behavior of medical 
models. [G. Alexe et al. (2005), and G. Alexe et al. (2004)] 
used LAD in medical fields such as B-cell lymphoma, and 
ovarian cancer in order to diagnose medical diseases. [G. 
Alexe et al. (2008), Boros et al. (2000), A. B. Hammer et al. 
(1999), P. L. Hammer et al. (2006), P. L. Hammer et al. 
(2004), and Kim et al. (2008)] applied LAD in various fields 
such as voting, credit card scoring, housing, labor 
productivity, country risk, composition of soil in the oil, 
genotyping, and psychometric in order to discover 
knowledge from the data and estimate the behavior of the 
models. [Yacout (2010), Bennane et al. (2012), Mortada et al. 
(2012), Mortada et al. (2011), Ghasemi et al. (2013)] applied 
LAD on industrial equipment such as power transformer, oil 
transformer, aircraft, and rotor bearing in order to diagnose 
equipment failure. LAD has proved to be a promising 
technique that provides interpretable results that are 
comparable to most pioneer techniques in the field of 
diagnostics in CBM. 
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Unlike the earlier applications of LAD in the filed of 
CBM, our focus is not on the detection of the failure, which is 
the diagnostics objective of CBM, but on calculation of the 
probability of failure at certain moment in future, which is the 
prognostics objective of CBM, and has been comparatively 
untested. In the following section, we will improve the LAD 
methodology to predict equipment’s chance of survival at 
each observation moment when new data on attributes of the 
equipment is available. 

II. METHODOLOGY 

In this section, we will illustrate LAD’s basic steps in the 
context of CBM. Patterns, LAD’s outcomes that characterize 
the failure and survival characteristics of equipment, will be 
generated. Then, we will present a guideline to use the 
generated patterns for equipment’s failure prognostics. The 
failure prognostics model, which represents the relation 
between the equipment’s age and health condition indicators 
with its failure, will be constructed based on a given 
historical dataset, called the Train Set. Quality of the failure 
prognostics model will be examined by applying it on 
another part of the historical dataset, called the Test Set. The 
former process is Train Phase, while the latter one is Test 
Phase. 

Table 1 shows a sample train set. The set is composed of 
the monitored data, including different observation moments, 
associated with different pieces of equipment, and their 
corresponding attributes. Each row corresponds to an 
observation moment, for which the equipment identification 
and the observation time are respectively shown in the first 
and the second columns. The third column shows the class of 
each observation. The last observation moment of each piece 
of equipment, referred to as the observation that will fail 
during the current period, is shown with the dark background. 
The forth and the fifth columns respectively show the 
measurements of age and condition of equipment. Unlike the 
earlier applications of LAD in the field of CBM [Yacout 
(2010), Mortada et al. (2012), and Mortada et al. (2011)], we 
consider both age and condition of equipment as the 
equipment’s attributes, and use both of them as LAD 
attributes. 

This section is structured as follows: First, we will describe 
two data binarization methods. Then, we will describe two 
pattern generation methods. Finally, we will introduce two 
methods to employ the generated patterns to calculate the 
survival probability of the equipment from which a new 
observation is collected. 

 
TABLE I. SAMPLE TRAIN SET 

Observations Attributes 

Equipment 
 ID. 

Observation 
 Time 

Class Age 
Condition  
Indicator 

1 0 - 0 14 
1 1 - 1 16 
1 2 - 2 20 
1 3 - 3 18 
1 4 + 4 20 
2 0 - 0 12 
2 1 - 1 18 
2 2 + 2 22 
3 0 - 0 16 
3 1 - 1 18 
3 2 - 2 20 

A. Data Binarization 

LAD deals with Boolean attribute values, while in many 
real life problems, the attribute values may appear in 
numerical form (e.g. temperature), nominal form (e.g. color), 
or ordered form (e.g. color describing a traffic light). The 
binarization procedure transforms each non-binary attribute 
value into several binary ones, by comparing attribute values 
to certain thresholds called Cut-Points. According to [Boros 
et al. (2000)], for each numerical attribute, a binary attribute 
is associated with every cut-point as following: 

ܾ௔,௖ ൌ ൜1
0
					
; ݂݅
; ݂݅					

ܽ ൒ ܿ
ܽ ൏ ܿ

                                              (1) 

Where a is the numerical value of attribute, c is the 
cut-point value, and ba,c is the binary value of attribute, 
associated with a and c. As a result, each numerical attribute 
is converted to n binary attributes, where n is equal to the 
number of cut-points. In the literature, there are several 
approaches to define cut-points, from which we will employ 
Sensitive Discriminating method and Equipartitioning 
method. 

The sensitive discriminating method begins by sorting the 
attribute values in increasing order. A cut-point is defined as 
average of two consecutive attribute values, each belonging 
to different classes. The outcome cut-point represents a 
threshold, which is able to differentiate between positive and 
negative classes. 

The equipartitioning method also begins by sorting the 
attribute values in increasing order. The cut-points are 
defined in such a way that all the attribute values are 
approximately equally divided into a pre-defined number of 
intervals. Appropriate number of intervals is selected by 
comparing the quality of results associated with different 
values. 

B. Pattern Generation 

A pattern discriminates one or more of the observations of 
its class from all or most of the observations of the opposite 
class. The basic pattern generation algorithms are mainly 
based on generating all combinations of literals, and 
examining whether each of the combinations can be 
considered as a pattern. This results in a huge computational 
effort. 

Recently, some heuristic methods have been introduced 
that require less computational effort while providing 
equivalent performance, from which we will employ Mixed 
Integer Linear Programming (MILP) method and Hybrid 
Greedy method. 

MILP-based pattern generation method, first introduced by 
[Ryoo (2009)], develops a Mixed Integer Linear 
Programming and formulates a linear set-covering problem 
to generate Strong Pure patterns. A pattern is strong if the set 
of observations covered by the pattern is not a subset of that 
covered by other patterns. A pattern is pure if it does not 
cover any observation from the opposite class. The objective 
of the model is to generate a pattern that leads to the 
minimum number of observations in certain class, which are 
not covered by the generated pattern. Then, by reconstructing 
the previous model, different patterns are generated one by 
one, up to a point that all the observations are covered by at 
least one pattern. Although each generated pattern differs 
from previously generated ones, yet it might cover some or 
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all of the previously covered observations while some 
remaining observations are still uncovered. This will result in 
generating redundant pattern while no more uncovered 
observation gets covered. In order to avoid generating 
redundant patterns, all the observations that were previously 
covered by generated patterns will be removed before 
reconstructing the model. In order to prevent the model from 
generating the same pattern twice, a new constraint is 
required to be added to the model, after a pattern is generated. 

[Boros et al. (2000)] introduced a heuristic algorithm, 
called hybrid greedy method, to obtain optimal Prime pure 
patterns. A pattern is prime if removal of any of its literals 
results in coverage of observations from the opposite class. 
The restriction on the generation of pure patterns can be 
relaxed by allowing the algorithm to cover observations from 
the opposite class. In this case, a pattern will be defined as a 
combination of literals covering at least a minimum number 
of observations of the pattern’s class, and at most a maximum 
number of observations of the opposite class. The numbers 
are called Coverage and Fuzziness parameters, respectively. 
The hybrid greedy method is composed of two phases: the 
first and also the favored phase is the Bottom-Up phase. If 
any observation is left uncovered by the end of the first phase, 
the second phase, which is the Top-Down phase, is 
performed. The bottom-up algorithm starts with only one 
literal. Then it tries to add as many literals as required up to a 
point that the combination of literals forms a pattern. The 
top-down algorithm starts with a combination of literals that 
certainly is a pattern. Then it tries to remove as many literals 
as possible from the pattern up to a point where the removal 
of the remaining literals will result in coverage of 
observations from the opposite class more than specified 
fuzziness parameter. 

C. Prognostics Model Formulation 

Prognostics aim at the detection of the failure at certain 
moments in the future, which to the author’s knowledge has 
been relatively untested, when using LAD. We will introduce 
two methods to calculate the conditional survival probability 
of the equipment, based on the estimated survival functions 
using Kaplan-Meier (KM) estimation [Kaplan et al. (1958)]. 
Table 2 shows the generated positive and negative patterns 
along with their corresponding covered observations based 
on the sample train set provided in the Table 1. 

 
TABLE II. LIST OF GENERATED PATTERNS BASED ON THE SAMPLE TRAIN SET 

+ 
Pattern 

Covered  
Observations 

- Pattern 
Covered  

Observations 

PP1 1-3 , 1-4 , 3-3 NP1 
1-0 , 1-1 , 1-2 , 2-0 , 2-1 
2-0  , 2-2 , 3-0 , 3-1 , 3-2 

PP2 2-2 , 3-3 NP2 1-0 , 1-1 , 1-3 , 2-0 , 
2-0  2-1 , 3-0 , 3-1

 
We associate to each pattern p, Pattern Conditional 

Survival Probabilities SPp(i) for i {1,2,…,T}, which 
represent the pattern’s survival estimation of a piece of 
equipment for at least i periods, when the equipment’s 
observation is covered by the pattern. T is the maximum 
available survival period within train set. Since LAD bases its 
pattern generation on the train set, its ability to prognosticate 
is limited to the attributes that it has observed in the train 
phase. In other words, T represents the LAD’s maximum 

perception. KM estimation of pattern conditional survival 
probability is defined as the proportion of the number of 
observations covered by pattern P whose corresponding 
pieces of equipment survived at least i periods after being 
covered by the pattern, to the total number of observations 
covered by pattern P. 

ܵ ௉ܲሺ݅ሻ ൌ 	
#ሺ௉∩ௌ;ఛவఛబା௜∆ሻ

#ሺ௉∩ௌ;ఛவఛబሻ
                                  (2) 

Where S is the set of observations in the train set, and PS 
represents the subset of observations in the train set S that are 
covered by the pattern P.  Function #(N) counts the number of 
members of the set N. τ is the actual failure time of the 
corresponding equipment, and τ0 is the current age of the 
corresponding equipment at the observation moment when it 
is covered by pattern P.  is the observation period length. 
Due to the fact that both age and condition of equipment are 
considered as the equipment’s attributes in our study, the 
above-mentioned survival probability contains the 
prognostics information based on both age and condition of 
the equipment. Table 3 shows KM estimation of conditional 
survival probability of the patterns in the Table 2, based on 
their corresponding covered observations. For example, 
SPPP1(1) is equal to 0.333 because PP1 covers observations 
1-3, 1-4, and 3-3, but only observation 1-3 has corresponding 
equipment (i.e. equipment 1) that survives more than one 
period after being covered by PP1. Both corresponding 
equipment of observation 1-4 and 3-3 have failed during next 
period as soon as they are covered by PP1. 

 
TABLE III. KM ESTIMATION OF CONDITIONAL SURVIVAL PROBABILITY OF 

GENERATED PATTERNS 
݅∆ 1 2 3 4 

PP1 0.333 0 0 0 
PP2 0 0 0 0 
NP1 0.889 0.667 0.333 0.111 
NP2 1 0.714 0.428 0.143 

 
We also defined the Baseline Conditional Survival 

Probability to indicate time-based survival function, 
regardless of the equipment’s condition.  This is taken into 
consideration for the probable case where no pattern covers 
an observation. This way, we will be able to calculate the 
conditional survival probability of the equipment at 
observation moments, which are not covered by any of the 
patterns. KM estimation of baseline conditional survival 
probability is calculated as the proportion of the number of 
pieces of equipment that survived at least i periods, to the 
number of all the pieces of equipment in train set. 

ܵ ௕ܲሺ݅ሻ ൌ 	
#ሺா;ఛவ௜∆ሻ

#ሺாሻ
                                   (3) 

Where E is the set of all pieces of equipment in the train 
set. Table 4 shows KM estimation of baseline conditional 
survival probability based on all the observations in the train 
set. SPb(3) equal to 0.667 means that two out of three pieces 
of equipment in the train set have survived more than 3 
periods. 

 
TABLE IV. KM ESTIMATION OF BASELINE CONDITIONAL SURVIVAL 

PROBABILITY 
݅∆ 1 2 3 4 

SPb(i) 1 1 0.667 0.333 
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Considering the mentioned conditional survival 
probabilities, we introduce two methods to calculate the 
conditional survival probability of the equipment from which 
a new observation is collected. Table 5 shows a sample test 
set along with the list of patterns that cover each observation. 

 
TABLE V. SAMPLE TEST SET 

Observations Attributes 
Covering 
Patterns Equip. 

 ID. 
Observation  

Time 
Age 

Condition  
Indicator 

1 0 0 14 NP1 , NP2 
1 1 1 16 NP1 , NP2 
1 2 2 20 NP1 
1 3 3 22 PP1 , PP2 

 
The first method favors the Pattern Conditional Survival 

Probability (SPp), while it takes into account the ones that 
were calculated for the equipment based on observations at 
previous observation moments (SPformer), less weightily. It 
also contains the Baseline Conditional Survival Probability 
(SPb). Defining n as the number of patterns that cover an 
observation, the conditional survival probability of the 
equipment for i periods is calculated as follows: 

ܵ ௢ܲ௕௦ሺ݅ሻ ൌ

	ቐ

∑ ௌ௉೛ሺ௜ሻାௌ௉್ሺ௜ሻ
೙
೛సభ

௡ାଵ
∑ ௌ௉೛ሺ௜ሻାௌ௉೑೚ೝ೘೐ೝሺ௜ାଵሻ
೙
೛సభ

௡ାଵ

					
; ݂݅

; ݂݅
					
ݐ ൌ 0

ݐ ൐ 0
              (4) 

Using the 1st method, as introduced in eq. (4), the 
conditional survival probabilities of the equipment at 
different observation moments are shown in Table 6. SPobs(2) 
for 1-0 is equal to 0.794 because the observation 1-0 is 
covered by patterns NP1 and NP2 for which SPNP1(2) and 
SPNP2(2) are equal to 0.667 and 0.714 respectively (see Table 
3), and SPb(2) is equal to 1 (see Table 4). As a result SPobs(2) 
for 1-0 is equal to (0.667 + 0.714 + 1) / 3 = 0.794. SPformer(1) 
for 1-1 is also equal to 0.794 because its corresponding 
equipment was formerly predicted to survive for at least 2 
periods with the probability of 0.794 (SPobs(2) for 1-0 is 
0.794). Since all the train data failed before the fifth period, 
the fourth period is considered as the LAD’s maximum 
perception, and the probability of survival more than four 
periods is equal to zero. 

 
TABLE VI. CONDITIONAL SURVIVAL PROBABILITY OF SAMPLE TEST 

EQUIPMENT AT DIFFERENT OBSERVATION MOMENTS – FIRST CALCULATION 

METHOD 

Obs 
Covering 
Patterns 

 SPp(t) SPb(t) 

1 2 3 4 1 2 3 4 

1-0 NP1,NP2 1.89 1.38 0.76 0.25 1 1 0.67 0.33 

1-1 NP1,NP2 1.89 1.38 0.76 0.25 - - - - 

1-2 NP1 0.89 0.67 0.33 0.11 - - - - 

1-3 PP1,PP2 0.33 0 0 0 - - - - 

 

Obs 
Covering 
Patterns 

SPformer(t) SPobs(t) 

1 2 3 4 1 2 3 4 

1-0 NP1,NP2 - - - - 0.96 0.79 0.48 0.19 

1-1 NP1,NP2 0.79 0.48 0.19 0 0.89 0.62 0.32 0.08 

1-2 NP1 0.62 0.32 0.08 0 0.76 0.5 0.21 0.06 

1-3 PP1,PP2 0.5 0.21 0.06 0 0.28 0.07 0.02 0 

 
The second method also prefers the latest observation to older 

observation. But, it considers equal weight for Pattern and Baseline 

Conditional Survival Probabilities. The conditional survival 
probability of the equipment at current observation moment 
is calculated as follows: 

ܵ ௢ܲ௕௦ሺ݅ሻ ൌ

	

ە
ۖ
۔

ۖ
ۓ

∑ ೄು೛ሺ೔ሻ
೙
೛సభ

೙
ାௌ௉್ሺ௜ሻ

ଶ
∑ ೄು೛ሺ೔ሻశೄು೑೚ೝ೘೐ೝሺ೔శభሻ
೙
೛సభ

೙శభ
ାௌ௉್ሺ௜ሻ

ଶ

					
; ݂݅

; ݂݅
					
ݐ ൌ 0

ݐ ൐ 0
      (5) 

Using the 2nd method, as introduced in eq. (5), the 
conditional survival probabilities of the equipment at 
different observation moments are shown in Table 7. SPb(1) 
for 1-3 is equal to 0.5 because one out of two pieces of 
equipment that have survived more than 3 periods, has 
survived more than 4 periods. 

 
TABLE VII. CONDITIONAL SURVIVAL PROBABILITY OF SAMPLE TEST 

EQUIPMENT AT DIFFERENT OBSERVATION MOMENTS – SECOND 

CALCULATION METHOD 

Obs 
Covering 
Patterns 

 SPp(t) SPb(t) 

1 2 3 4 1 2 3 4 

1-0 NP1,NP2 1.89 1.38 0.76 0.25 1 1 0.67 0.33 

1-1 NP1,NP2 1.89 1.38 0.76 0.25 1 0.67 0.33 0 

1-2 NP1 0.89 0.67 0.33 0.11 0.67 0.33 0 0 

1-3 PP1,PP2 0.33 0 0 0 0.5 0 0 0 

 

Obs 
Covering 
Patterns 

SPformer(t) SPobs(t) 

1 2 3 4 1 2 3 4 

1-0 NP1,NP2 - - - - 0.97 0.85 0.53 0.23 

1-1 NP1,NP2 0.85 0.53 0.23 0 0.96 0.65 0.33 0.04 

1-2 NP1 0.65 0.33 0.04 0 0.72 0.42 0.09 0.03 

1-3 PP1,PP2 0.42 0.09 0.03 0 0.38 0.02 0 0 

 

III. EXPERIMENTS 

We applied the LAD methodology on Prognostics and 
Health Management Challenge dataset, a condition 
monitoring dataset provided by NASA Ames Prognostics 
Data Repository. The dataset consists of approximately 
46,000 observations associated with 218 pieces of 
mechanical equipment. For each observation, 3 operational 
settings and 21 measurements associated with the 
equipment’s attributes are provided. 

In order to model the system in a reasonable time, we had 
to decrease the dataset size. To do so, we extracted every 10th 
observation and reduced the number of observations to about 
4,600. Correlation analysis reveals that most of the attributes 
are highly correlated. Involving correlated attributes in the 
model is not appropriate due to two main reasons: First and 
foremost, correlated attributes do not provide any additional 
information. Second, the more attributes involved, the more 
modeling time is required. In order to remove the effect of 
involving trivial attributes, we applied the Principal 
Component Analysis (PCA). PCA [Pearson (1901)] is a 
mathematical method that converts a multi-attribute dataset 
into a dataset of linearly uncorrelated attributes by extracting 
only the most informative attributes. PCA shows that the first 
two principal components convey more than 97% of 
characteristics of all the attributes before conversion. So, we 
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constructed the model based on these two attributes as a 
substitute for system’s 21 attributes. 

From the dataset of 218 pieces of equipment, a dataset of 
15 pieces of equipment was extracted to test the performance 
of the model, and from the remaining pieces of equipment, 10 
datasets of 70 randomly extracted pieces of equipment were 
generated to train the model. We constructed 10 models 
based on different train datasets, and for each model, we 
calculated the conditional survival probabilities based on the 
same test dataset. This enables us to compare the conditional 
survival probability of each matched pair observation 
obtained by different models while eliminating the difference 
(error) due to randomness of different random test data. 
Finally, the prognostics results provided by all the 10 models 
were averaged over the models. The final analysis of the 
performances was performed using the averages. 

The proposed LAD prognostics model was entirely coded 
in the Python programming language, and all of the steps 
were carried out automatically. The inputs and outputs 
interfaced through the Excel spreadsheets. The MILP model 
was solved, using the CPLEX optimization software package 
module for Python. 

Table 8 shows the prognostics results for a test piece of 
equipment based on the second conditional survival 
probability calculation method at 21 consecutive observation 
moments. Before getting to the 22nd observation moment, the 
equipment has failed. Each row corresponds to an 
observation moment, for which the conditional probabilities 
of survival up to 1 to 5 periods later are respectively shown in 
the columns 5 to 9. For instance, the 16th row shows the 
conditional probabilities of survival up to the period 17th to 
21st, based on the equipment’s attributes at the 16th 
observation moment. The conditional probabilities of 
survival up to the period 17th to 21st are respectively equal to 
0.923, 0.878, 0.799, 0.732, and 0.665. 

However, the set of conditional probabilities of survival 
for the future predictable periods is not meaningfully 
comparable to its matched pair set provided by other 
experiments. Therefore, we transformed the information of 
the set into a single comparable value, Mean Residual Life 
(MRL), so that we can compare performance of different 
experiments. MRL represents the expected value of 
equipment residual life, and is formulated as following 
[Banjevic et al. (2006)]: 

ܮܴܯ ൌ 
∑ ݅∆	ൈ ሺ߬ݕݐ݈ܾܾ݅݅ܽ݋ݎܲ	 ൐ ߬଴ ൅ ݅∆|߬ ൐ ߬଴ሻ
ஶ
௜ୀଵ   

(6) 

Where Probability ( > 0 + i| > 0) shows the 
probability of survival for at least i periods, knowing that the 

equipment has not failed until 0. This conditional 
probability is identical with conditional survival probability 
SPobs(i), introduced in this work. So, the MRL is formulated 
in terms of SPobs(i) as following: 

ܮܴܯ ൌ ∑ ݅∆	ൈ	ܵ ௢ܲ௕௦ሺ݅ሻ
ஶ
௜ୀଵ

                             

(7) 

 

TABLE VIII. PROGNOSTICS RESULTS FOR A TEST PIECE OF EQUIPMENT 
Observations Conditional Survival Probability

  
ID Age 

Cond. 
1 

Cond. 
2 

X
൐ ∆ 

X
൐ 2∆ 

X
൐ 3∆ 

X
൐ 4∆ 

X
൐ 5∆ 

1 0 0.059 0.011 0.99 0.990 0.978 0.961 0.939
1 1 0.044 0.078 0.99 0.986 0.973 0.953 0.933 
1 2 0.004 0.000 0.99 0.984 0.965 0.948 0.917
1 3 0.009 0.023 0.99 0.983 0.970 0.948 0.924
1 4 0.005 0.012 0.99 0.986 0.972 0.955 0.931 
1 5 0.059 0.011 0.99 0.986 0.971 0.951 0.924
1 6 0.008 0.024 0.99 0.978 0.961 0.929 0.902
1 7 0.004 0.000 0.99 0.982 0.960 0.942 0.909 
1 8 0.016 0.000 0.99 0.983 0.969 0.950 0.924
1 9 0.016 0.000 0.99 0.984 0.970 0.953 0.926
1 10 0.009 0.024 0.99 0.982 0.969 0.946 0.923 
1 11 0.043 0.078 0.99 0.983 0.968 0.947 0.924
1 12 0.008 0.024 0.99 0.976 0.958 0.925 0.897
1 13 0.004 0.000 0.99 0.975 0.946 0.923 0.884 
1 14 0.060 0.011 0.99 0.967 0.946 0.913 0.870
1 15 0.043 0.076 0.98 0.950 0.913 0.862 0.815
1 16 0.004 0.013 0.92 0.878 0.799 0.732 0.665 
1 17 0.004 0.013 0.96 0.890 0.793 0.702 0.609
1 18 0.007 0.000 0.85 0.740 0.647 0.569 0.472
1 19 0.007 0.027 0.82 0.656 0.540 0.429 0.367 
1 20 0.063 0.008 0.87 0.667 0.524 0.403 0.301

 
Observations Residual Life 

Eqp. ID. Age Cond.1 Cond.2 MRL RL Diff.
1 0 0.059 0.011 14.80 20 - 5.20
1 1 0.044 0.078 13.87 19 - 5.13 
1 2 0.004 0.000 13.46 18 - 4.54
1 3 0.009 0.023 13.43 17 - 3.57
1 4 0.005 0.012 13.56 16 - 2.44 
1 5 0.059 0.011 13.49 15 - 1.51
1 6 0.008 0.024 12.96 14 - 1.04
1 7 0.004 0.000 13.27 13 0.27 
1 8 0.016 0.000 13.41 12 1.41
1 9 0.016 0.000 13.43 11 2.43
1 10 0.009 0.024 13.33 10 3.33 
1 11 0.043 0.078 13.45 9 4.45
1 12 0.008 0.024 12.81 8 4.81
1 13 0.004 0.000 12.65 7 5.65 
1 14 0.060 0.011 12.14 6 6.14
1 15 0.043 0.076 10.91 5 5.91
1 16 0.004 0.013 8.22 4 4.22 
1 17 0.004 0.013 7.37 3 4.37
1 18 0.007 0.000 6.24 2 4.24
1 19 0.007 0.027 4.82 1 3.82 
1 20 0.063 0.008 4.17 0 4.17

 
In the Table 8, associated with each observation moment, 

the MRL and the actual Residual Life (RL) are calculated 
and shown in columns 10 and 11, respectively. The actual 
RL is not determined until the equipment failure moment. 
At this moment, the equipment lifetime is determined as the 
time difference between the failure moment and installation 
moment. In the above sample, the equipment lifetime is 
equal to 20. Then, for each observation moment, the actual 
RL is calculated by subtracting the observation moment 
from the equipment lifetime. For instance, the actual RL 
associated with the 16th observation moment is equal to 4. 
At each observation moment, the difference between the 
MRL and the actual RL is calculated and shown in column 
12. The lower the difference, the better the performance of 
the model. Figure 1 shows a comparison between the MRL 
and the actual RL of the equipment. In early observation 
moments, the model underestimates the MRL. As time 
passes by, the MRL gets closer to the actual RL, and the 
model correctly estimates the MRL almost at the mid-age 
observation moments. Later, when getting closer to the 
actual failure moment, the model overestimates the MRL. 
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Fig.  1. A Comparison between MRL and Actual RL 

 

Our prognostics model formation generally has two 
phases: At the first phase, data binarization, using either the 
sensitive discriminating or the equipartitioning method, is 
performed. The performance of the equipartitioning method 
depends on a pre-defined number of cut-points. At the second 
phase, survival analysis is performed based on the patterns 
generated by either the MILP or the hybrid greedy method. 
The performance of the hybrid greedy method depends on the 
pre-defined degree, coverage and fuzziness parameters. 
Table 9 shows our Design of Experiments (DOE). We have 
examined 5 parameter settings for the data binarization 
phase, and 13 parameter settings for the survival analysis 
phase. We have also included the Weibull PHM [Banjevic et 
al. (2006)] to calculate conditional survival probabilities to 
compare different LAD settings performances with that of 

PHM. As a result, (514=) 70 experiments were designed in 
order to compare the performance of the model based on 
different parameters and methods. Each experiment was 
performed 10 times based on different train sets and the 
results were averaged over all the 10 runs. 

The absolute value of differences between the MRL and 
the actual RL indicates the accuracy of the experiment. The 
lower the difference, the more accurate the experiment. So, 
the measurement under study in the DOE is the absolute 
value of differences between the MRL and the actual RL. 

Let X ={1,2,…,U} be defined as the test set, where U is the 
number of observations in the test set. In order to compare the 
performance of different experiments, first we associate the 
set Ze = (z1

e, z2
e,…, zU

e) with experiment e. The nth member of 
the set, zn

e is formulated as |MRLn
e-RLn|, where MRLn

e is the 
estimated MRL by experiment e for observation n, and RLn is 
the actual RL for observation n. Then, experiments 1,2,…,m 
are compared based on the sets Z1,Z2,…,Zm. To do so, 
members of the sets are compared pair by pair, using the 
Friedman Matched-pair Test (Dunn’s Multiple Comparison 
Test) [Friedman (1940)]. 

The comparison is structured as follows: First, we compare 
two conditional survival probability calculation methods 
introduced in eq. (4) and eq. (5). Second, different hybrid 
greedy methods are compared. Third, the best hybrid greedy 
method is compared with the MILP and the PHM methods. 
Comparison of the two methods of conditional survival 

probability calculation reveals that the second method that 
equally prefers the baseline and pattern survival probability 
(eq. (5)), statistically outperforms the first method that 
prefers the pattern survival probability (eq. (4)), in all 70 
experiments. 

Comparison of the hybrid greedy methods reveals that the 

one with the parameters coverage  10% and fuzziness = 0 
outperforms the other methods. Table 10 shows the 
comparison between the mean values of different hybrid 

greedy methods. The method with the parameters coverage  
10% and fuzziness = 0 provides the lowest mean value 
although the differences are not statistically significant. 

 
TABLE IX. DESIGN OF EXPERIMENTS (DOE) 

Data  
Binarization 

Parameters 

Sensitive  
Discriminating 

- 

Equipartitioning 

# cut-points = 20 

# cut-points = 30 

# cut-points = 40 

# cut-points = 50 

Survival  
Analysis 

Parameters 

PHM - 
MILP - 

Hybrid 
Greedy 

d = 3  coverage > 10%   fuzziness <=0 
d = 3  coverage > 10%   fuzziness <=1 
d = 3  coverage > 10%   fuzziness <=2 
d = 3  coverage > 20%   fuzziness <=0 
d = 3  coverage > 20%   fuzziness <=1 
d = 3  coverage > 20%   fuzziness <=2 
d = 3  coverage > 30%   fuzziness <=0 
d = 3  coverage > 30%   fuzziness <=1 
d = 3  coverage > 30%   fuzziness <=2 
d = 3  coverage > 40%   fuzziness <=0 
d = 3  coverage > 40%   fuzziness <=1 
d = 3  coverage > 40%   fuzziness <=2 

 
 

TABLE X. HYBRID GREEDY #1 VS. … VS. HYBRID GREEDY #12 

 
C>0.1 
F <=0 

C>0.1 
F <=1 

C>0.1 
F <=2 

C>0.2 
F <=0 

C>0.2 
F <=1 

C>0.2 
F <=2 

Sensitive Discriminating 3.751+ 3.774 3.78 3.783 3.789 3.758 

Equipartitioning (n=20) 3.748+ 3.762 3.826 3.778 3.816 3.835 

Equipartitioning (n=30) 3.731+ 3.753 3.754 3.77 3.792 3.835 

Equipartitioning (n=40) 3.723+ 3.727 3.751 3.738 3.749 3.753 

Equipartitioning (n=50) 3.728+ 3.739 3.788 3.75 3.734 3.818 
+ Minimum mean value 

C>0.3 
F <=0 

C>0.3 
F <=1 

C>0.3 
F <=2 

C>0.4 
F <=0 

C>0.4 
F <=1 

C>0.4 
F <=2 

Sensitive Discriminating 3.788 3.775 3.783 3.796 3.775 3.787 

Equipartitioning (n=20) 3.812 3.839 3.822 3.833 3.842 3.857 

Equipartitioning (n=30) 3.778 3.778 3.829 3.786 3.795 3.785 

Equipartitioning (n=40) 3.758 3.731 3.732 3.779 3.738 3.775 

Equipartitioning (n=50) 3.751 3.766 3.754 3.763 3.772 3.753 
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Comparison of the best hybrid greedy, the MILP, and the 
PHM reveals that the PHM statistically outperforms the LAD 
methods. While the hybrid greedy and the MILP methods are 
not statistically different. Table 11 shows the comparison 
between the mean values of the three methods. 

 
TABLE XI. HYBRID GREEDY VS. MILP VS. PHM 

Hybrid Greedy MILP PHM 
Sensitive Discriminating 3.751 3.811 3.507+ 
Equipartitioning (n=20) 3.748 3.867 3.51+ 
Equipartitioning (n=30) 3.731 3.826 3.509+ 
Equipartitioning (n=40) 3.723 3.801 3.51+ 
Equipartitioning (n=50) 3.728 3.801 3.51+ 

+ Minimum mean value 

 
Figure 2 shows the difference between the MRL and the 

actual RL of a test piece of equipment, using the best models 
provided by the hybrid greedy, the MILP, and the PHM 
methods. It shows that the LAD methods underestimate the 
MRL at the early observation moments (pessimistic outlook 
about the equipment future). As time passes by, the 
estimations get closer to the actual RL, and they correctly 
estimate the MRL between 4th and 7th observations. Later, 
when getting closer to the actual failure moment, they 
overestimate the MRL (optimistic outlook about the 
equipment future). It can be concluded that the LAD methods 
have neither a constant optimistic outlook nor a constant 
pessimistic outlook about the equipment future, whereas they 
adjust their outlook over the equipment lifetime. Contrary to 
the LAD methods, the PHM method always overestimates 
the MRL by at least one period (optimistic outlook about the 
equipment future). It also reveals that the PHM method is 
stable at the early observation moments (see zone A), while 
the LAD methods are stable when getting closer to the actual 
failure moment (see zone B). 

 

 
Fig.  2. Difference between MRL and Actual RL using Hybrid Greedy, 
MILP, and PHM Methods 

 
Table 12 shows the comparison between the average 

run-time of the three methods. It is shown that the run-time, 
as was expected, increases as the number of cut-points 
increases. In the train phase, the PHM method runs faster in 
comparison with the LAD methods. In the test phase, the 
LAD methods run faster than the PHM method. In total, the 
PHM method comparatively runs faster in 4 out of 5 cases, 
while in the remaining case, the MILP method runs faster. 
Among the LAD methods, the MILP method runs, as was 

expected, much significantly faster than the hybrid greedy 
method. 

IV. CONCLUSION 

In this paper, we developed an equipment failure 
prognostics model by employing the Logical Analysis of 
Data (LAD). We improved the LAD methodology to predict 
equipment’s chance of survival at each observation moment 
when new data on the equipment health condition indicators 
is collected. The LAD model was applied on the Prognostics 
and Health Management Challenge dataset, a condition 
monitoring dataset provided by NASA Ames Prognostics 
Data Repository. Analysis of performance of the LAD model 
revealed that it provides comprehensible results that are 
greatly beneficial to maintenance practitioners. Prognostics 
results obtained using the LAD model, were compared with 
that using PH Model. Following results are only based on one 
example and need to be investigated further. 

Comparison with respect to the accuracy of estimated 
MRL showed that: The conditional survival probability 
calculation method that equally favors the baseline and 
pattern survival probabilities statistically outperformed the 
one that prefers the pattern survival probability. The hybrid 
greedy method with the parameters coverage >10% and 
fuzziness= 0 statistically outperformed other hybrid greedy 
methods. The PHM method statistically outperformed the 
both LAD methods. Also, it is noticed that the performances 
of the LAD model is highly sensitive to its defined survival 
function. However, the LAD’s results are highly interpretable 
and easy to understand, which is of great value for 
maintenance practitioners. 

Comparison with respect to the run-time showed that: 
Fewer cut-points is preferred due to the fact that the accuracy 
of prognostics did not significantly depend much on the 
number of cut-points at the tested levels. In the train phase, 
the PHM method ran faster than the LAD methods, while in 
the test phase, the LAD methods ran faster than the PHM 
method. In 4 out of 5 cases, the PHM method ran faster in 
total. Among the LAD methods, the MILP method ran much 
significantly faster than the hybrid greedy method. Since the 
LAD methods were not statistically different, the MILP is 
preferred to the hybrid greedy, due to faster result 
achievement. 

Our results also showed that the PHM method has an 
optimistic outlook about the equipment’s survival. The LAD 
methods have neither constant optimistic nor constant 
pessimistic outlooks about the equipment’s survival, whereas 
their outlooks change gradually from pessimistic to 
optimistic, as the equipment health deteriorates over its 
lifetime. The PHM method is more stable at the early 
observation moments, while the LAD method stabilizes 
when the equipment gets older. 

The LAD model has the advantage of not relying on any 
statistical theory, which enables it to overcome the 
conventional problems concerning the statistical properties 
of the datasets. Its main advantage is its straightforward 
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process and self-explanatory results, which are greatly 
beneficial to maintenance practitioners. 

Since the proposed LAD model is at its beginning phase, 
further research is required to improve the performance of the 
model. Due to the fact that the performances of the proposed 
calculation methods are highly sensitive to the defined 
survival function, a future research direction is to improve the 
survival function to reflect equipment’s probable failure 
better. Due to the fact that the PH Model and the LAD model 
are stable at the early and the late observation moments, 
respectively, another future research direction is to 
investigate a hybrid LAD-PHM Model to benefit from both 
models’ advantages. Another future research direction is to 
develop a technique to calibrate the LAD model to adjust for 
both underestimation and overestimation. 
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