


Abstract— We consider the environmental traveling

salesman problem in a connected graph driven by a cost
function describing the impact of environmental externalities
over the routes. The resulting problem is the asymmetric non-
Euclidean TSP that we solve using a blend of cutting planes
and 2-OPT algorithm. We test our solution approach on the
well-known instances of the TSP-LIB and we present the
results and the future research directions.

Index Terms— 2-OPT, cutting planes, TSP.

I. INTRODUCTION
n this paper the application is motivated by the

environmental extension of the TSP, namely, to find
the environmentally friendliest tour in a directed graph,

the arcs of which are weighted based on their impact on fuel
consumption. The environmental dimension of the problem
has not been exhaustively addressed, although most
countries and their governments do recognize the major
effect of vehicle emissions on the environment.

The Green Vehicle Routing Problem was introduced in
2012 by Erdogan & Miller-Hooks in [16] where the vehicle
driving range is dictated by fuel tank capacity limitations
and tour duration constraints restrict tour durations to a pre-
specified limit. The total distance traveled is still minimized.
For a recent survey on the area the reader is referred to [17].
The novelty of our work lies on the fact that the criterion to
be minimized is the environmental externalities score,
briefly introduced in the following section, multiplied by the
distance.

At the modeling side, the vast majority of works in the
TSP is focused on minimizing the total distance of the tour.
Although one may claim that fuel consumption is linked to
the distance traveled, this may only be true should one
assume that all routes are under identical conditions e.g.
same quality of tarmac, same grade, identical wind speed
and direction etc. We may encounter dozens of possible

Manuscript received November 29, 2013; revised December 23, 2013.
This work was supported in part by the European Commission under the
grant FP7-PEOPLE-2011-CIG, GreenRoute, 293753 and the grant
EnvRouting SH3_(1234) of Action “Supporting Postdoctoral Researchers”
of the Operational Program "Education and Lifelong Learning" (Action’s
Beneficiary: General Secretariat for Research and Technology, Greece),
and is co-financed by the European Social Fund (ESF) and the Greek State.

Georgios K.D. Saharidis is at the Department of Mechanical
Engineering, University of Thessaly, Volos, Greece. Tel.: +30-24210-
74185; fax: +30-24210-74050. E-mail address: saharidis@gmail.com;
saharidis@mie.uth.gr

George Kolomvos is at the Kathikas Institute of Research and
Technology, Paphos, Cyprus.

George Liberopoulos is at the Department of Mechanical Engineering,
University of Thessaly, Volos, Greece.

daily conditions where this assumption fails dramatically. It
suffices to follow a route with large alteration in grade or
strong side winds and the fuel consumption may increase at
such level that a longer route with environmentally
friendlier conditions would have been far more economical.
The TSP may be amenable to the vehicle routing problem,
consequently, the results of this paper may also be used to
optimize the fleet management of light- or heavy-duty
vehicles.

At the solution side, the TSP literature is vast. For a
review of approaches to solve the TSP, the reader is referred
to the comprehensive work of Laporte [8]. A more recent
review with developments and an updated set of modern
areas of applications is included in [2] and [12]. The
description of the TSP polytope is not yet known and its
complexity relies on the subtour elimination constraints. The
formulation proposed by Dantzig, Fulekrson and Johnson in
[4] provides a tight description of the polytope, but the
number of constraints grows exponentially with the size of
the problem, rendering the formulation impractical from the
computational point of view. The idea that was firstly
explored in [4] was to solve the LP relaxation and
subsequently add cuts which are violated by the integer
solutions and not by their continuous counterparts. This was
the first cutting plane algorithm proposed in the TSP
literature and was made popular thereof, since it showed to
perform fairly well on the case of the 49-node problem
addressed by the authors. Current algorithms [1] are able to
attack problems of thousands of nodes, but still parallel
computing is required to obtain an optimal solution within
reasonable time.

Cutting planes algorithms can be divided into generic and
structured cuts algorithms by the way one follows to
determine which cuts they should append at each iteration.
In the former case, one can base on algebraic arguments to
generate cuts such as for instance Gomory cuts, lift-and-
project or mixed-integer rounding cuts [3]. More emphasis
in the literature is given on structured cuts, where the
underlying structure of the specific problem is exploited to
generate valid inequalities at each iteration. Consequently,
one obtains 2-matching inequalities [5] and comb
inequalities [6]. It is not surprising that these cuts are
coming or may also be applied to other problems such as
knapsack and vertex packing since the TSP is linked to these
problems. These are commonly called in the literature as
“brunch and cut” approaches, since one solves the relaxed
version of the TSP where the integer constraints are
dropped; apply valid inequalities; and continues with the
branch and bound method. The work of Padberg & Rinaldi
in [10] is considered as a milestone in the successful

Modeling and Solution Approach for the
Environmental Traveling Salesman Problem

Georgios K.D. Saharidis, George Kolomvos, George Liberopoulos

I

Engineering Letters, 22:2, EL_22_2_04

(Advance online publication: 27 May 2014)

__

application of branch and cut strategies in the TSP. Branch
and cut combine cutting planes with the well-known branch
and bound algorithms according to which a smart
enumeration of all different combinations is performed
driven by the solution to the LP relaxation.

Another perspective of viewing the TSP is as a special
case of a minimum 1-spanning tree. This analogy was nicely
explored by Held & Karp in [15]. The idea is to carefully
create an objective function such that the result of the
spanning tree which is a lower bound of the TSP closely
approximates the TSP. The formulation of the minimization
of 1-spanning trees by default excludes subtours, so there is
no reason to enforce any subtour elimination constraints. On
the other hand, in a minimum spanning tree there may be
nodes with a degree greater to two, that is for instance, a
node with two descendants nodes, which is prohibited in the
TSP.

Christofides algorithm [14] is based on the 1-spanning
view perspective and provides a tight lower bound on the
original TSP. The minimum spanning tree and the perfect
matching problem are the two main operations performed,
based on the triangular property or Euclidean graphs. In the
literature the vast majority of applications and theory is
devoted to the symmetric Euclidean TSP. In this paper we
are interested in the asymmetric non-Euclidean TSPs.

Heuristics algorithms are largely employed to efficiently
solve the TSP of larger instances. Heuristics are divided to
construction heuristics and improvement heuristics. The
former aim at constructing a tour from scratch usually
including Euclidean arguments (such as the greedy
algorithm for the nearest or k-th nearest neighbor, see for
instance). The latter include methods that are given an initial
tour and are trying to improve. Such algorithms are the 2-
OPT algorithm that we apply in this paper, 3-OPT and k-
OPT (known as LKH) proposed by Lin & Kernighanin [9]
and successfully applied by Helsgaun in [7] to provide what
is known today as the best generic algorithm for solving the
TSP.

II. MODELING AND SOLUTION APPROACH

A. Environmental Externalities Score
Let us consider two different routing options for a vehicle

to travel from a point A to a point B. The need to introduce
the concept of the environmental externalities score arises
when one wishes to compare these two routes that will be
traveled by the same vehicle in terms of their environmental
impact. In both cases, we may assume that the driving
attitude will not change and of course that the vehicle
characteristics will remain identical. In this work, we
introduce the concept of the environmental externalities
score, henceforth EES, which is a measure expressing the
percentage of increase or decrease of the underlying
environmental externalities compared to the nominal
conditions. Each arc would have an individual EES based on
the arc’s characteristics. By multiplying the EES with the
values provided by any emission calculation model, we may
translate the result into fuel consumption in liters per
kilometer.

In this paper we will not enter into the details of how the
EES is calculated. The reader is referred to [13] for a

thorough study on how this measure was conceived, devised
and developed. We define the instantaneous environmental
externalities score function EES related to fuel consumption
to be the ratio of instantaneous fuel consumption to fuel
consumption at nominal conditions. The above is expressed
through the following formula: ܵܧܧ = ி஼

ி஼തതതത
 where FC stands

for fuel consumption and ܥܨതതതത for fuel consumption at
nominal conditions. The consumption at nominal conditions
is provided by an emission calculation model.

B. The Traveling Salesman problem
Let us now turn our attention towards the solution of the

resulting environmental TSP. Let ܩ = (ܸ, be a graph (ܣ
where ܸ is a set of N vertices and ܣ is a set of arcs. Let C be
a cost matrix associated with ܣ. ܸ is the set of vertices such
that ܸ = {0,1,2,… ,ܰ} and ݅, ݆ ∈ ܸ. We call the first vertex
݅ = 0. Arcs connect vertices such that edge ݆݅ connects the
vertices ݅ and ݆. We denote by ݔ௜௝ ∈ {0,1} the binary
variable which takes the value of 1 if the arc connecting ݅
and ݆ is included in the Hamiltonian tour and 0 if not. x is
the vector containing the values ݔ௜௝. Let ܿ௜௝ be the vector of
costs associated to the edge ݆݅. In fact ܿ௜௝ is fed into the
objective function using the values EES for every arc
mentioned in the previous section. The formulation of the
TSP without the subtour elimination constraints (SECs) is
equivalent to the assignment problem (AP) and is presented
right below.

 (ܲܣ	:݈ܾ݉݁݋ݎܲ	ݐ݊݁݉݊݃݅ݏݏܣ)

݉݅݊
௫೔ೕ

ܿ௜௝ݔ௜௝

subject to:

෍ ௜௝ݔ = 1,∀݆ ∈ ܸ
௜∈௏\{௝}

෍ ௜௝ݔ = 1,∀݅ ∈ ܸ
௝∈௏\{௜}

௜௝ݔ ∈ {0,1}

The SECs can be represented in various ways following
the formulations. In this paper we follow a cutting place
approach, where the subtour elimination constraints are
initially dropped. The resulting problem (ܲܣ′) is a relaxation
of the original TSP in the sense that every feasible solution
of the TSP is a feasible solution of (ܲܣ′), while the optimal
value of (ܲܣ′) provides a lower bound on the optimal value
of the original TSP. Note that we call it (ܲܣ′), because it is
the assignment problem (AP) augmented with the cutting
planes appended at each iteration.

At each iteration of our algorithm, we solve (ܲܣ′) and
inspect the resulting solution ݔ௜௝. Note that we solve the
 using the branch and bound method. If the resulting (′ܲܣ)
solution satisfies the SECs then we can safely claim that we
have obtained the optimal path. If it does contain at least
two subtours, then we have obtained a lower bound. We
identify subtours by simple inspection. That is, we inspect
the solution vector x୧୨ by starting from an arbitrary vertex
(e.g. ݅ = 0) keeping track of the path. If we reach the
starting vertex without having visited all vertices then we
have encountered a subtour. We enter the respective SEC
and we proceed to identifying the next subtour.

Engineering Letters, 22:2, EL_22_2_04

(Advance online publication: 27 May 2014)

__

We construct a feasible tour using the subtours identified
earlier (we will explain later how we do this) and we apply a
2-OPT heuristic aiming to improve the incumbent solution.
The role of the resulting 2-OPT feasible solution has a dual
role: (a) to provide an upper bound at the current iteration
and (b) to pass this information of the upper bound to the
branch and bound method and accelerate branching by
fathoming more nodes in the search tree. Moreover, using
the subtours identified we generate a valid cut – explained
below – and proceed to the next iteration.

Once all subtours identified and the respective valid
inequalities entered, then we solve again (ܲܣᇱ) to optimality
and repeat the procedure. The algorithm is presented in
Table 1 as a pseudocode.

TABLE I

ALGORITHM IN PSEUDOCODE

Step 0: (Initialization) Create the set ܵ = ∅ that will contain the
subtours identified. Set the iterator ݇ = 0. Set lower bound
ܤܮ = ∞ and upper bound ܷܤ = −∞.

Step 1: (Solution of (ࡼ࡭ᇱ)) Solve (ܲܣ′) to obtain the incumbent
solution ݔ௜௝௞ at iteration ݇. Store the value of the objective
function at LB.

Step 2: (Subtour inspection) Let ௟ܵ ⊂ ܵ be the subtour	݈ which
contains the vertices belonging to this subtour. Inspect the
solution vector ݔ to identify subtours ௟ܵ	݈ = 1,2… until all
vertices are inspected. Subtour inspection is performed starting
from an arbitrary vertex and following connections. If no
subtour is identified, i.e. ܵ = ∅, then the incumbent solution ݔ௜௝௞
is optimal representing a Hamiltonian tour and the algorithm
ends here. Else continue to Step 3.

Step 3 (Valid inequality) For every subtour ௟ܵ, append the following
cut at (ܲܣᇱ):

 ∑ ௜௝௜∈ௌ೗,௝∉ௌ೗ݔ = ௟ݕ2 	∀	 ௟ܵ and ݕ௟ ∈ ℕା (1)

Step 4: (Tour construction) Consider the current subtour identified at
Step 2. If this is the first subtour identified, then go to Step 2.
Else, find the arc ij of the current tour with specific properties
(see notes below) and place the identified subtour between i and
j.

Step 5: (2-OPT) Perform a 2-OPT move. If a 2-OPT move improves
the UB, then (a) update the ܷܤ with the value of the new
feasible tour and (b) set the ܷܤ as cut-off value for the branch
and bound method and return to Step 1.

Let us explain a bit Steps 3, 4 and 5. In Step 3, the valid

inequality (1) imposes an even number of connections
between the nodes of the subtour and the remaining nodes
not belonging to the subtour. Unless the incumbent solution
of Step is optimal, it will include subtours. When a subtour
is identified we instruct the algorithm to connect this subtour
with the remaining vertices by an even number of arcs. For
this reason we introduce the variable ݕ௟ ∈ ܰ for every
identified subtour ௟ܵ, which denotes the number of arcs
connecting the subtour with the remaining vertices. Because
this number needs to be even, we actually use variable 2ݕ௟
and enforce constraint (1) for each subtour ௟ܵ identified.

The performance of the 2-OPT heuristic in Step 4
depends on the quality of the initial tour on which
improvements will be tested. The idea exploited here is to
feed the 2-OPT with as many candidate initial tours as
possible and let it find the best improved tour among those.
We have thus implemented several strategies, such as: (a)
random positions of the current subtour in the current tour;
(b) placing current subtour at the end of the current tour, (c)

nearest neighbor algorithm; (d) the strategy that worked best
in terms of results is the following: Every time we identify a
subtour we place it between the two vertices inducing the
most “expensive” pass of the tour. To illustrate this and for
ease of explanation, let us represent the current tour as a
string with starting point the node 0 and last node say n (in
the tour, the last node n is also the preceding node of 0).
Iterate among all possible pairs of nodes i and ݆ ≠ ݅. Figure
1 illustrates this operation. All resulting tours are sent to the
2-OPT algorithm and an improved tour, if possible is
returned. We keep the tour with the lowest upper bound.

Current tour

Next tour

4 651 320

Max Cost at
arc (2,3)

7 9Current subtour

4 651 320 7 98

8

Fig. 1. Tour construction.

In Step 5, we perform a 2-OPT move. We adopt the

representation of the string to illustrate this move. Name the
node following i as ݅′ and the node following j as ݆′. Select
the pair (i,j) for which ܿ௜௜ᇲ + ௝ܿ௝ᇲ + ܿ௡଴ > ܿ௜௝ᇱ + ܿ௡௜ᇲ +
௝ܿ଴	and perform a 2-OPT move by placing the string which

is contained between the nodes ݅′ and ݆, right after node ݊.

Fig. 2. 2-OPT move.

III. COMPUTATIONAL RESULTS
We report performance of our algorithm by testing it on

the well-known TSP library. The TSP-LIB [11] is a library
created by several TSP instances aimed to provide
researchers with a broad set of test problems from various
sources and with various properties. We have attacked
problems included in the asymmetric test cases.

We performed the experiments on a dual-core 2.2GHz
processor with 3GB of usable memory. The code was
written on C++, the modeling of the problem was done
using the IBM ILOG Concert Technology and the solution
was provided by the IBM ILOG CPLEX 12.4 suite.

Table 4 presents the results of our runs. The column
“Name” stores the name of the problem where the digits
represent the number of nodes. The column “#iterations”
stores the number of iteration until the end of the algorithm.
The column “CPU time” stores the time required to reach
the solution. We have divided the results in two pairs of
columns: “Optimal” means that the algorithm run until the

Engineering Letters, 22:2, EL_22_2_04

(Advance online publication: 27 May 2014)

__

optimal solution was provided; “Gap<1%” means that the
algorithm stopped once a feasible tour was obtained with a
value close to optimum by at most 1%. We have included
this number, because in the frame of the real-world
application on which this algorithm will be applied, a 1%
solution is considered as a satisfactory approximation.

TABLE II

RESULTS ON ASYMMETRIC INSTANCES OF THE TSP-LIB

 Optimal Gap<1%

Name #iterations CPU time #iterations CPU time

ftv64 12 5.679sec 9 4.15sec

ftv33 5 1.7sec 5 1.7sec

ftv35 11 2.543sec 10 2.403sec

ftv38 11 2.48sec 9 2.2sec

p43 16 7.816sec 3 1.498sec

ftv44 9 2.698sec 9 2.698sec

ftv47 10 3.573sec 10 3.573sec

ry48p 11 4.415sec 11 4.415sec

ft53 7 2.168sec 7 2.168sec

ftv55 12 4.181sec 9 3.26sec

ftv64 12 5.679sec 9 4.15sec

ft70 6 3.167sec 3 1.95sec

ftv70 7 4.93sec 7 4.93sec

kro124p 8 8.627sec 8 8.627sec

ftv170 11 46.441sec 11 46.441sec

rbg323 30 353.92sec 2 9.251sec

rbg358 70 1699.97sec 1 6.396sec

rbg403 1 7.489sec 1 7.489sec
rbg443 2 17.207sec 1 9.033sec

There may be cases where the 1%-solution is obtained

relatively fast, while the optimum may take very long to
reach. The most typical instance is rbg358 where the 1%-
solution is obtained already from the first iteration, while the
optimum is obtained at the end of the 70th iteration, almost
half an hour later.

We generally observe that although LB starts with a value
not very far from the optimum, it is actually UB that
eventually decreases more rapidly. Figure 1 illustrates the
convergence of the two bounds in the case of an instance
with 55 nodes and another one with 124 nodes.

Fig. 3. Convergence of LB and UB for two instances.

The cuts passed to the (APᇱ) are dense which results to a
heavy simplex tableau. A possible future research direction
will be to seek ways to lower the density of the obtained
cuts in order to find a compromise between sufficient
information (high-density cuts) and compactness that will
allow us attack larger instances (low-density cuts). Apart
from a certain instances (ftv170), the CPU time obtained for
each instance does not seem to increase rapidly with the
number of nodes. Figure 2 illustrates this relation.

Fig. 4. Comparison of CPU time for different instances.

IV. CONCLUSION
In this paper we considered the environmental TSP, the

first application of the TSP in an environmental dimension
where the fuel consumption of the tour is minimized. We
attacked in this paper two distinct fronts. We proposed a
novel cost function the aim of which is to minimize the fuel
consumed throughout a route. Two major limitations of
emission calculation models have motivated this work: (a)
they cannot cater for real-time conditions such as weather,
traffic etc, the result being that they provide a rather myopic
view of the actual fuel consumption when factors such as
grade, weather and use of air condition come into play; and
(b) they require substantial information on the type of
vehicle, engine and either characteristics which is not
straightforward to input in a web platform. The data we take
into account are provided through freely available web
APIs. The proposed EES reflects the increase or decrease of
the nominal values (provided by any calculation model)

1400

1500

1600

1700

1800

1900

2000

1 6 11

Value

Iteration

ftv55

LB

UB

32000
34000
36000
38000
40000
42000
44000
46000
48000

1 3 5 7

Value

Iteration

kro124p

LB

UB

0

5

10

15

20

25

30

35

40

45

50

30 130 230 330 430

CPU time in
sec

Number of nodes

CPU time per instance

Engineering Letters, 22:2, EL_22_2_04

(Advance online publication: 27 May 2014)

__

when a vehicle travels on a route segment. We based our
model on available research and validated our results
through comparison with an onboard diagnostic that we
installed on a testing light-duty vehicle. The EES we
devised feeds the objective function of the TSP.

The solution approach we followed for the TSP is based
on the combination of a cutting plane strategy with 2-OPT
heuristic. The cutting plane strategy appends a cut requiring
an even number of connection between the nodes of each
subtour and the remaining nodes outside the subtour. The
resulting cuts are dense but effective. Solution of the
assignment problem augmented with these valid inequalities
provides an effective lower bound. The 2-OPT receives the
different subtours and construct a feasible tour (not
necessarily optimal however) and performs a 2-OPT move
providing an upper bound. This upper bound is fed into the
augmented problem when performing the branch and bound
strategy to fathom nodes in the search tree. We tested the
concept on the asymmetric instances of the TSP-LIB. The
convergence of the proposed algorithm is reached after a
few iterations, typically around 12. In the case one is
interested in a solution within 1% margin of the optimum,
then a tour is obtained typically within 10 seconds.

A future research direction will be to apply the
environmental dimension of the TSP on heavy-duty vehicles
and other transport modes. At the solution approach level,
we will be investigating ways to make the appended cuts
lighter (less dense) in order to benefit from economizing
some computer memory.

REFERENCES
[1] Applegate, D., Bixby R., Chvatal V, Cook W (2001). TSP Cuts

Which Do Not Conform to the Template Paradigm.” In M Junger, D
Naddef (eds.), Computational Combinatorial Optimization, Lecture
Notes In Computer Science, Vol. 2241, pp. 261-304. Springer-Verlag
Berlin Heidelberg.

[2] Bektas T. (2006). The multiple traveling salesman problem: an
overview of formulations and solution procedures. Omega, Vol. 34,
No. 3, pp. 209-219.

[3] Cornuejols, Gerard (2008). Valid Inequalities for Mixed Integer
Linear Programs. Mathematical Programming Ser. B, 112:3-44.

[4] Dantzig, G.B., Fulkerson, D.R. and Johnson, S.M. (1954). Solution of
a large scale traveling-salesman problem. Operations Research, Vol.
2, pp. 393-410.

[5] Edmonds, J. (1965). Maximum matching and a polyhedron with 0–1
vertices. J. Res. Nat. Bur. Standards 69B 125–130.

[6] Grötschel M. and Padberg M.W. (1979). On the symmetric travelling
salesman problem I: Inequalities, Mathematical Programming,
Volume 16, Issue 1, pp 265-280.

[7] Helsgaun, K., (2000). "An Effective Implementation of the Lin-
Kernighan Traveling Salesman Heuristic". European Journal of
Operational Research 126 (1): 106–130. doi:10.1016/S0377-
2217(99)00284-2.

[8] Laporte G. (1992). The Traveling Salesman Problem: An overview of
exact and approximate algorithms. European Journal of Operational
Research, 59, 1992, pp. 231-247.

[9] Lin, S. & Kernighan, B. W. (1973). "An Effective Heuristic
Algorithm for the Traveling-Salesman Problem". Operations
Research 21 (2): 498–516. doi:10.1287/opre.21.2.498.

[10] Padberg, M.W., Rinaldi, G., (1991). A branch-and-cut algorithm for
the resolution of large-scale symmetric traveling salesman problems,
SIAM Rev. 33 pp 60–100.

[11] Reinelt, G., (1991). TSPLIB - A Traveling Salesman Problem
Library. INFORMS Journal on Computing, 01/1991, 3:376-384.

[12] Saharidis G.K.D. (2014). Review of solution approaches for the
symmetric traveling salesman problem. International Journal of
Information Systems and Supply Chain Management. 2014,
unpublished.

[13] Saharidis, G. (2012). Research report that presents the candidate TN
factors for the definition of EESarc and the revision methodology

following the development of new emission calculation models. FP7-
PEOPLE-2011-CIG, GreenRoute: A web based platform which helps
individuals and companies move commodities with the most
environmental friendly way, minimizing emissions and transportation
cost. Athens: Marie-Curie Grant.

[14] Christofides, N. (1976). Worst-case analysis of a new heuristic for the
travelling salesman problem. Technical Report 388, Graduate School
of Industrial Administration, Carnegie Mellon University.

[15] Held, M, and Karp, R.M. (1969). The traveling-salesman problem and
minimum spanning trees. New York : IBM Systems Research
Institute.

[16] Canhong Lin, K.L. Choy, G.T.S. Ho, S.H. Chung, H.Y. Lam, Survey
of Green Vehicle Routing Problem: Past and future trends, Expert
Systems with Applications, Vol. 41, Issue 4, Part 1, March 2014,
Pages 1118–1138.

[17] Sevgi Erdogan, Elise Miller-Hooks, A Green Vehicle Routing
Problem, Transportation Research Part E 48 (2012) 100–114.

Engineering Letters, 22:2, EL_22_2_04

(Advance online publication: 27 May 2014)

__

