
 

 
Abstract— We consider the environmental traveling 

salesman problem in a connected graph driven by a cost 
function describing the impact of environmental externalities 
over the routes. The resulting problem is the asymmetric non-
Euclidean TSP that we solve using a blend of cutting planes 
and 2-OPT algorithm. We test our solution approach on the 
well-known instances of the TSP-LIB and we present the 
results and the future research directions. 
 

Index Terms— 2-OPT, cutting planes, TSP. 
 

I. INTRODUCTION 
n this paper the application is motivated by the 

environmental extension of the TSP, namely, to find 
the environmentally friendliest tour in a directed graph, 

the arcs of which are weighted based on their impact on fuel 
consumption. The environmental dimension of the problem 
has not been exhaustively addressed, although most 
countries and their governments do recognize the major 
effect of vehicle emissions on the environment.  

The Green Vehicle Routing Problem was introduced in 
2012 by Erdogan & Miller-Hooks in [16] where the vehicle 
driving range is dictated by fuel tank capacity limitations 
and tour duration constraints restrict tour durations to a pre-
specified limit. The total distance traveled is still minimized. 
For a recent survey on the area the reader is referred to [17]. 
The novelty of our work lies on the fact that the criterion to 
be minimized is the environmental externalities score, 
briefly introduced in the following section, multiplied by the 
distance.  

At the modeling side, the vast majority of works in the 
TSP is focused on minimizing the total distance of the tour. 
Although one may claim that fuel consumption is linked to 
the distance traveled, this may only be true should one 
assume that all routes are under identical conditions e.g. 
same quality of tarmac, same grade, identical wind speed 
and direction etc. We may encounter dozens of possible 
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daily conditions where this assumption fails dramatically. It 
suffices to follow a route with large alteration in grade or 
strong side winds and the fuel consumption may increase at 
such level that a longer route with environmentally 
friendlier conditions would have been far more economical. 
The TSP may be amenable to the vehicle routing problem, 
consequently, the results of this paper may also be used to 
optimize the fleet management of light- or heavy-duty 
vehicles. 

At the solution side, the TSP literature is vast. For a 
review of approaches to solve the TSP, the reader is referred 
to the comprehensive work of Laporte [8]. A more recent 
review with developments and an updated set of modern 
areas of applications is included in [2] and [12]. The 
description of the TSP polytope is not yet known and its 
complexity relies on the subtour elimination constraints. The 
formulation proposed by Dantzig, Fulekrson and Johnson in 
[4] provides a tight description of the polytope, but the 
number of constraints grows exponentially with the size of 
the problem, rendering the formulation impractical from the 
computational point of view. The idea that was firstly 
explored in [4] was to solve the LP relaxation and 
subsequently add cuts which are violated by the integer 
solutions and not by their continuous counterparts. This was 
the first cutting plane algorithm proposed in the TSP 
literature and was made popular thereof, since it showed to 
perform fairly well on the case of the 49-node problem 
addressed by the authors. Current algorithms [1] are able to 
attack problems of thousands of nodes, but still parallel 
computing is required to obtain an optimal solution within 
reasonable time. 

Cutting planes algorithms can be divided into generic and 
structured cuts algorithms by the way one follows to 
determine which cuts they should append at each iteration. 
In the former case, one can base on algebraic arguments to 
generate cuts such as for instance Gomory cuts, lift-and-
project or mixed-integer rounding cuts [3]. More emphasis 
in the literature is given on structured cuts, where the 
underlying structure of the specific problem is exploited to 
generate valid inequalities at each iteration. Consequently, 
one obtains 2-matching inequalities [5] and comb 
inequalities [6]. It is not surprising that these cuts are 
coming or may also be applied to other problems such as 
knapsack and vertex packing since the TSP is linked to these 
problems. These are commonly called in the literature as 
“brunch and cut” approaches, since one solves the relaxed 
version of the TSP where the integer constraints are 
dropped; apply valid inequalities; and continues with the 
branch and bound method. The work of Padberg & Rinaldi 
in [10] is considered as a  milestone in the successful 
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application of branch and cut strategies in the TSP. Branch 
and cut combine cutting planes with the well-known branch 
and bound algorithms according to which a smart 
enumeration of all different combinations is performed 
driven by the solution to the LP relaxation. 

Another perspective of viewing the TSP is as a special 
case of a minimum 1-spanning tree. This analogy was nicely 
explored by Held & Karp in [15]. The idea is to carefully 
create an objective function such that the result of the 
spanning tree which is a lower bound of the TSP closely 
approximates the TSP. The formulation of the minimization 
of 1-spanning trees by default excludes subtours, so there is 
no reason to enforce any subtour elimination constraints. On 
the other hand, in a minimum spanning tree there may be 
nodes with a degree greater to two, that is for instance, a 
node with two descendants nodes, which is prohibited in the 
TSP.  

Christofides algorithm [14] is based on the 1-spanning 
view perspective and provides a tight lower bound on the 
original TSP. The minimum spanning tree and the perfect 
matching problem are the two main operations performed, 
based on the triangular property or Euclidean graphs. In the 
literature the vast majority of applications and theory is 
devoted to the symmetric Euclidean TSP. In this paper we 
are interested in the asymmetric non-Euclidean TSPs. 

Heuristics algorithms are largely employed to efficiently 
solve the TSP of larger instances. Heuristics are divided to 
construction heuristics and improvement heuristics. The 
former aim at constructing a tour from scratch usually 
including Euclidean arguments (such as the greedy 
algorithm for the nearest or k-th nearest neighbor, see for 
instance). The latter include methods that are given an initial 
tour and are trying to improve. Such algorithms are the 2-
OPT algorithm that we apply in this paper, 3-OPT and k-
OPT (known as LKH) proposed by Lin & Kernighanin [9] 
and successfully applied by Helsgaun in [7] to provide what 
is known today as the best generic algorithm for solving the 
TSP.  

II. MODELING AND SOLUTION APPROACH 

A. Environmental Externalities Score 
Let us consider two different routing options for a vehicle 

to travel from a point A to a point B. The need to introduce 
the concept of the environmental externalities score arises 
when one wishes to compare these two routes that will be 
traveled by the same vehicle in terms of their environmental 
impact. In both cases, we may assume that the driving 
attitude will not change and of course that the vehicle 
characteristics will remain identical. In this work, we 
introduce the concept of the environmental externalities 
score, henceforth EES, which is a measure expressing the 
percentage of increase or decrease of the underlying 
environmental externalities compared to the nominal 
conditions. Each arc would have an individual EES based on 
the arc’s characteristics. By multiplying the EES with the 
values provided by any emission calculation model, we may 
translate the result into fuel consumption in liters per 
kilometer.  

In this paper we will not enter into the details of how the 
EES is calculated. The reader is referred to [13] for a 

thorough study on how this measure was conceived, devised 
and developed. We define the instantaneous environmental 
externalities score function EES related to fuel consumption 
to be the ratio of instantaneous fuel consumption to fuel 
consumption at nominal conditions. The above is expressed 
through the following formula: ܵܧܧ = ி஼

ி஼തതതത
 where FC stands 

for fuel consumption and ܥܨതതതത for fuel consumption at 
nominal conditions. The consumption at nominal conditions 
is provided by an emission calculation model. 

B. The Traveling Salesman problem 
Let us now turn our attention towards the solution of the 

resulting environmental TSP. Let  ܩ = (ܸ,  be a graph (ܣ
where ܸ is a set of N vertices and ܣ is a set of arcs. Let C be 
a cost matrix associated with ܣ. ܸ is the set of vertices such 
that ܸ = {0,1,2,… ,ܰ} and ݅, ݆ ∈ ܸ. We call the first vertex 
݅ = 0. Arcs connect vertices such that edge ݆݅ connects the 
vertices ݅ and ݆. We denote by ݔ௜௝ ∈ {0,1} the binary 
variable which takes the value of 1 if the arc connecting ݅ 
and ݆ is included in the Hamiltonian tour and 0 if not. x is 
the vector containing the values ݔ௜௝. Let ܿ௜௝  be the vector of 
costs associated to the edge ݆݅. In fact ܿ௜௝  is fed into the 
objective function using the values EES for every arc 
mentioned in the previous section. The formulation of the 
TSP without the subtour elimination constraints (SECs) is 
equivalent to the assignment problem (AP) and is presented 
right below. 

 
 (ܲܣ	:݈ܾ݉݁݋ݎܲ	ݐ݊݁݉݊݃݅ݏݏܣ)

݉݅݊
௫೔ೕ

ܿ௜௝ݔ௜௝  

subject to: 
 

෍ ௜௝ݔ = 1,∀݆ ∈ ܸ
௜∈௏\{௝}

  

෍ ௜௝ݔ = 1,∀݅ ∈ ܸ
௝∈௏\{௜}

  

௜௝ݔ ∈ {0,1}  
 

The SECs can be represented in various ways following 
the formulations. In this paper we follow a cutting place 
approach, where the subtour elimination constraints are 
initially dropped. The resulting problem (ܲܣ′) is a relaxation 
of the original TSP in the sense that every feasible solution 
of the TSP is a feasible solution of (ܲܣ′), while the optimal 
value of (ܲܣ′) provides a lower bound on the optimal value 
of the original TSP. Note that we call it (ܲܣ′), because it is 
the assignment problem (AP) augmented with the cutting 
planes appended at each iteration.  

At each iteration of our algorithm, we solve (ܲܣ′) and 
inspect the resulting solution ݔ௜௝. Note that we solve the 
 using the branch and bound method. If the resulting (′ܲܣ)
solution satisfies the SECs then we can safely claim that we 
have obtained the optimal path. If it does contain at least 
two subtours, then we have obtained a lower bound. We 
identify subtours by simple inspection. That is, we inspect 
the solution vector x୧୨ by starting from an arbitrary vertex 
(e.g. ݅ = 0) keeping track of the path. If we reach the 
starting vertex without having visited all vertices then we 
have encountered a subtour. We enter the respective SEC 
and we proceed to identifying the next subtour. 
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We construct a feasible tour using the subtours identified 
earlier (we will explain later how we do this) and we apply a 
2-OPT heuristic aiming to improve the incumbent solution. 
The role of the resulting 2-OPT feasible solution has a dual 
role: (a) to provide an upper bound at the current iteration 
and (b) to pass this information of the upper bound to the 
branch and bound method and accelerate branching by 
fathoming more nodes in the search tree. Moreover, using 
the subtours identified we generate a valid cut – explained 
below – and proceed to the next iteration.  

Once all subtours identified and the respective valid 
inequalities entered, then we solve again (ܲܣᇱ) to optimality 
and repeat the procedure. The algorithm is presented in 
Table 1 as a pseudocode. 

 
TABLE I 

ALGORITHM IN PSEUDOCODE 
 

Step 0: (Initialization) Create the set ܵ = ∅ that will contain the 
subtours identified. Set the iterator ݇ = 0. Set lower bound 
ܤܮ = ∞ and upper bound ܷܤ = −∞. 

Step 1: (Solution of (ࡼ࡭ᇱ)) Solve (ܲܣ′) to obtain the incumbent 
solution ݔ௜௝௞  at iteration ݇. Store the value of the objective 
function at LB. 

Step 2: (Subtour inspection) Let ௟ܵ ⊂ ܵ be the subtour	݈ which 
contains the vertices belonging to this subtour. Inspect the 
solution vector ݔ to identify subtours ௟ܵ	݈ = 1,2… until all 
vertices are inspected. Subtour inspection is performed starting 
from an arbitrary vertex and following connections. If no 
subtour is identified, i.e. ܵ = ∅, then the incumbent solution ݔ௜௝௞  
is optimal representing a Hamiltonian tour and the algorithm 
ends here. Else continue to Step 3. 

Step 3 (Valid inequality) For every subtour ௟ܵ, append the following 
cut at (ܲܣᇱ):  

 ∑ ௜௝௜∈ௌ೗,௝∉ௌ೗ݔ = ௟ݕ2 	∀	 ௟ܵ  and ݕ௟ ∈ ℕା (1) 
 

Step 4: (Tour construction) Consider the current subtour identified at 
Step 2. If this is the first subtour identified, then go to Step 2. 
Else, find the arc ij of the current tour with specific properties 
(see notes below) and place the identified subtour between i and 
j.  

Step 5: (2-OPT) Perform a 2-OPT move. If a 2-OPT move improves 
the UB, then (a) update the ܷܤ with the value of the new 
feasible tour and (b) set the ܷܤ as cut-off value for the branch 
and bound method and return to Step 1. 

 
Let us explain a bit Steps 3, 4 and 5. In Step 3, the valid 

inequality (1) imposes an even number of connections 
between the nodes of the subtour and the remaining nodes 
not belonging to the subtour. Unless the incumbent solution 
of Step is optimal, it will include subtours. When a subtour 
is identified we instruct the algorithm to connect this subtour 
with the remaining vertices by an even number of arcs. For 
this reason we introduce the variable ݕ௟ ∈ ܰ for every 
identified subtour ௟ܵ, which denotes the number of arcs 
connecting the subtour with the remaining vertices. Because 
this number needs to be even, we actually use variable 2ݕ௟ 
and enforce constraint (1) for each subtour ௟ܵ identified. 

The performance of the 2-OPT heuristic in Step 4 
depends on the quality of the initial tour on which 
improvements will be tested. The idea exploited here is to 
feed the 2-OPT with as many candidate initial tours as 
possible and let it find the best improved tour among those. 
We have thus implemented several strategies, such as: (a) 
random positions of the current subtour in the current tour; 
(b) placing current subtour at the end of the current tour, (c) 

nearest neighbor algorithm; (d) the strategy that worked best 
in terms of results is the following: Every time we identify a 
subtour we place it between the two vertices inducing the 
most “expensive” pass of the tour. To illustrate this and for 
ease of explanation, let us represent the current tour as a 
string with starting point the node 0 and last node say n (in 
the tour, the last node n is also the preceding node of 0). 
Iterate among all possible pairs of nodes i and ݆ ≠ ݅. Figure 
1 illustrates this operation. All resulting tours are sent to the 
2-OPT algorithm and an improved tour, if possible is 
returned. We keep the tour with the lowest upper bound. 
 

Current tour

Next tour

4 651 320

Max  Cost at 
arc  (2,3)

7 9Current subtour

4 651 320 7 98

8

 
 
Fig. 1.  Tour construction. 

  
In Step 5, we perform a 2-OPT move. We adopt the 

representation of the string to illustrate this move. Name the 
node following i as ݅′ and the node following j as ݆′. Select 
the pair (i,j) for which ܿ௜௜ᇲ + ௝ܿ௝ᇲ + ܿ௡଴ > ܿ௜௝ᇱ + ܿ௡௜ᇲ +
௝ܿ଴	and perform a 2-OPT move by placing the string which 

is contained between the nodes ݅′ and ݆, right after node ݊.  
 

 
 
Fig. 2.  2-OPT move.  

III. COMPUTATIONAL RESULTS 
We report performance of our algorithm by testing it on 

the well-known TSP library. The TSP-LIB [11] is a library 
created by several TSP instances aimed to provide 
researchers with a broad set of test problems from various 
sources and with various properties. We have attacked 
problems included in the asymmetric test cases.  

We performed the experiments on a dual-core 2.2GHz 
processor with 3GB of usable memory. The code was 
written on C++, the modeling of the problem was done 
using the IBM ILOG Concert Technology and the solution 
was provided by the IBM ILOG CPLEX 12.4 suite. 

Table 4 presents the results of our runs. The column 
“Name” stores the name of the problem where the digits 
represent the number of nodes. The column “#iterations” 
stores the number of iteration until the end of the algorithm. 
The column “CPU time” stores the time required to reach 
the solution. We have divided the results in two pairs of 
columns: “Optimal” means that the algorithm run until the 
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optimal solution was provided; “Gap<1%” means that the 
algorithm stopped once a feasible tour was obtained with a 
value close to optimum by at most 1%. We have included 
this number, because in the frame of the real-world 
application on which this algorithm will be applied, a 1% 
solution is considered as a satisfactory approximation. 

 
TABLE II 

RESULTS ON ASYMMETRIC INSTANCES OF THE TSP-LIB 
 

 Optimal Gap<1% 

Name #iterations CPU time #iterations CPU time 

ftv64 12 5.679sec 9 4.15sec 

ftv33 5 1.7sec 5 1.7sec 

ftv35 11 2.543sec 10 2.403sec 

ftv38 11 2.48sec 9 2.2sec 

p43 16 7.816sec 3 1.498sec 

ftv44 9 2.698sec 9 2.698sec 

ftv47 10 3.573sec 10 3.573sec 

ry48p 11 4.415sec 11 4.415sec 

ft53 7 2.168sec 7 2.168sec 

ftv55 12 4.181sec 9 3.26sec 

ftv64 12 5.679sec 9 4.15sec 

ft70 6 3.167sec 3 1.95sec 

ftv70 7 4.93sec 7 4.93sec 

kro124p 8 8.627sec 8 8.627sec 

ftv170 11 46.441sec 11 46.441sec 

rbg323 30 353.92sec 2 9.251sec 

rbg358 70 1699.97sec 1 6.396sec 

rbg403 1 7.489sec 1 7.489sec 
rbg443 2 17.207sec 1 9.033sec 

 
There may be cases where the 1%-solution is obtained 

relatively fast, while the optimum may take very long to 
reach. The most typical instance is rbg358 where the 1%-
solution is obtained already from the first iteration, while the 
optimum is obtained at the end of the 70th iteration, almost 
half an hour later. 

We generally observe that although LB starts with a value 
not very far from the optimum, it is actually UB that 
eventually decreases more rapidly. Figure 1 illustrates the 
convergence of the two bounds in the case of an instance 
with 55 nodes and another one with 124 nodes. 

 

 
Fig. 3.  Convergence of LB and UB for two instances. 
 

The cuts passed to the (APᇱ) are dense which results to a 
heavy simplex tableau. A possible future research direction 
will be to seek ways to lower the density of the obtained 
cuts in order to find a compromise between sufficient 
information (high-density cuts) and compactness that will 
allow us attack larger instances (low-density cuts). Apart 
from a certain instances (ftv170), the CPU time obtained for 
each instance does not seem to increase rapidly with the 
number of nodes. Figure 2 illustrates this relation. 
 

 
Fig. 4.  Comparison of CPU time for different instances. 

IV. CONCLUSION 
In this paper we considered the environmental TSP, the 

first application of the TSP in an environmental dimension 
where the fuel consumption of the tour is minimized. We 
attacked in this paper two distinct fronts. We proposed a 
novel cost function the aim of which is to minimize the fuel 
consumed throughout a route. Two major limitations of 
emission calculation models have motivated this work: (a) 
they cannot cater for real-time conditions such as weather, 
traffic etc, the result being that they provide a rather myopic 
view of the actual fuel consumption when factors such as 
grade, weather and use of air condition come into play; and 
(b) they require substantial information on the type of 
vehicle, engine and either characteristics which is not 
straightforward to input in a web platform. The data we take 
into account are provided through freely available web 
APIs. The proposed EES reflects the increase or decrease of 
the nominal values (provided by any calculation model) 
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when a vehicle travels on a route segment. We based our 
model on available research and validated our results 
through comparison with an onboard diagnostic that we 
installed on a testing light-duty vehicle. The EES we 
devised feeds the objective function of the TSP. 

The solution approach we followed for the TSP is based 
on the combination of a cutting plane strategy with 2-OPT 
heuristic. The cutting plane strategy appends a cut requiring 
an even number of connection between the nodes of each 
subtour and the remaining nodes outside the subtour. The 
resulting cuts are dense but effective. Solution of the 
assignment problem augmented with these valid inequalities 
provides an effective lower bound. The 2-OPT receives the 
different subtours and construct a feasible tour (not 
necessarily optimal however) and performs a 2-OPT move 
providing an upper bound. This upper bound is fed into the 
augmented problem when performing the branch and bound 
strategy to fathom nodes in the search tree. We tested the 
concept on the asymmetric instances of the TSP-LIB. The 
convergence of the proposed algorithm is reached after a 
few iterations, typically around 12. In the case one is 
interested in a solution within 1% margin of the optimum, 
then a tour is obtained typically within 10 seconds. 

A future research direction will be to apply the 
environmental dimension of the TSP on heavy-duty vehicles 
and other transport modes. At the solution approach level, 
we will be investigating ways to make the appended cuts 
lighter (less dense) in order to benefit from economizing 
some computer memory.   
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