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Abstract—We present the results of the investigations for the 

evolution behavior of Cos-Gauss pulse by propagating it 

through a single mode optical fiber in the regime where fiber 

dispersion is dominant.  We consider both un-chirped and 

chirped pulses. For this purpose, nonlinear Schrödinger 

equation of single mode optical fiber communication is 

implemented using split-step Fourier method. Results clearly 

show that, by controlling certain parameters of Cos-Gauss 

pulse, even the compression of the pulse can be achieved rather 

than its broadening. These results also show interesting 

behavior that for positive values of input chirp, cos-Gauss pulse 

only goes to broadening. While for negative values of input 

chirp, the pulse initially experiences compression after which it 

broadens. These explorations are quite helpful to have a deeper 

view and understanding about the optical fiber response to such 

types of pulses, and they can eventually lead to achieve higher 

performance of optical fiber communication systems. 

 
Index Terms— chirped pulses, cos-Gauss pulse, dispersion 

dominant regime, single mode fiber 

I. INTRODUCTION 

ptical fiber, due to its numerous benefits including 

lower loss and higher bandwidth [1]-[3], in comparison 

to other communication media, is in commercial use for 

communication across the globe. As the contents of internet 

are becoming more and more video concentric, the demand 

for  more bandwidth at ultra-high data rate is increasing at 

much higher rate. Optical fiber, inspite of its very attractive 

benefits, is not a perfect media, and has many limitations. 

One such limitation is degradation of optical pulse that 

propagates through fiber. Such degradation eventually 

causes the communication errors. The major factors that 

degrade optical pulse propagating through single mode fiber 

(SMF) are fiber attenuation, group velocity dispersion 

(GVD) and nonlinearities [4]. Fiber loss attenuates the signal 

power and hence puts the limit on the maximum repeater- 
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less distance between the transmitter and the receiver. Group 

velocity dispersion broadens the pulse leading to inter 

symbol interference and hence limits the transmission rate of 

optical communication system. Fiber nonlinearities also 

degrade the optical pulse. More is the fiber degradation 

effects on propagating optical pulse due to GVD and 

nonlinearities, the lower would be the performance of optical 

communication system. Hence, it is of prime interest to 

investigate the evolution patterns of different types of pulses 

by propagating these through SMF. Several researchers have 

made effort in this direction by propagating various types of 

optical pulses through fibers [5]-[9]. 

In this paper, we consider Cos-Gauss (CG) optical pulse 

and investigate its various effects by propagating it through 

SMF in dispersion dominant regime. For this purpose, we 

implemented nonlinear Schrödinger equation (NLSE) using 

split-step Fourier method. We report our results both for un-

chirped and chirped Cos-Gauss pulses. These results are 

quite helpful to understand the response of SMF to such 

types of optical pulses which may ultimately lead to achieve 

higher performance of optical communication systems at 

higher data rates. 

II. THEORY 

A. Cos-Gauss Pulse 

 Cos-Gauss optical pulse is generated by the interference 

of two initially chirped complex conjugate Gaussian pulses. 

Mathematically, its spectral distribution is represented in 

accordance with reference [10] (with minor modifications in 

the terminology) as 
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here U(0,T) describes the input field, A is the amplitude of 

the field, T0 represents initial root-mean-squared width of 

each of the Gaussian pulses, c is the initial frequency chirp, 

0 is the phase difference between the two Gaussian pulses 

and  is the phase of the CG pulse. The two free parameters, 

0 and   provide the flexibility to change the shape of CG 
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pulse. When 0 is set to zero, the CG pulse becomes a pure 

Gaussian pulse. A positive value of the chirp means up-

chirp, whereas a negative value of the chirp mean down 

chirp. 

 For the analysis of various aspects of CG pulse, we 

propagate CG pulse through SMF using NLSE. To 

implement NLSE, we use split-Step Fourier method as 

described below.    

B. Split Step Fourier Model 

 In single mode optical fiber, the effects of attenuation, 

group-velocity dispersion and nonlinearities are investigated 

through the nonlinear Schrödinger equation [4], as provided 

below,   
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where A represents the slowly varying amplitude of the 

envelope, α, β2, and γ are fiber attenuation, group velocity 

dispersion parameter and nonlinear co-efficient, 

respectively. Unfortunately, NLSE can’t be solved 

analytically. Split-step Fourier method is an efficient 

technique to solve this equation numerically [4],[11]-[13]. 

The procedure to implement SSFM is briefly described 

below.  

 Eq. (3) can be represented in the following form 
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where the operator D̂  is used to investigate the effects of 

loss and GVD, whereas the nonlinear operator N̂  is used to 

include the nonlinear effect.  

 To implement NLSE using SSFM, the effects of fiber 

loss, dispersion and nonlinearity are included in two steps 

using these two operators. As a procedure, the optical fiber 

is conceptually divided into small pieces, each of length h 

meters. The optical pulse is propagated through each 

segment from z to z + h, where z is used as a running 

variable for distance along the fiber. In first step, the fiber 

loss and GVD effects are included using D̂ operator over 

distance h. In the send step, the output obtained in the first 

step is propagated using N̂ operator through the same 

segment of fiber of length h meters. The procedure of these 

two steps is represented mathematically as [4], 
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where the factor 
ˆhDe is executed in the Fourier domain using 

the mathematical formula as 
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where F denotes the Fourier-transformation, and 
T




in 

Eq. (3) is replaced with (iω) in accordance of the basic rules 

of Fourier transformation. 

 Following this procedure, the optical pulse is propagated 

from one end to the other end. The output obtained at the 

receiving end can be used to investigate various interesting 

phenomena in optical fiber transmission. Following this 

procedure, we implemented SSFM software model. In our 

model, we used step size h as 40 meter to be on very safe 

limit to meet the condition of γ.P.h << 0.1 [4], where P 

represents the peak power of the pulse at the input of each 

segment. 

 Our developed model can be used to investigate various 

effects of optical fiber on the propagating pulses. Using this 

model, we reported very interesting and useful results in 

[9],[13]-[15]. 

III. RESULTS AND DISCUSSIONS 

For the investigations presented in this paper, we consider 

initial width of CG pulse as 15 ps and it is propagated 

through a single mode fiber span of length 80 km. The 

attenuation coefficient and GVD parameter of SMF are 

considered as 0.2 dB/km and 16 ps/(nm km), respectively. 

The fiber loss was compensated using optical amplifier at 

the receiving end of the fiber. The amplifier was considered 

as noiseless because in this work we are interested to 

investigate the effects of GVD alone. The launch power in 

this work is considered too low so that nonlinearity would 

not be significant and hence can be ignored. For simulation 

results presented in this paper, we set   = ¾ 0 [10]. Here 

first we consider un-chirped (c = 0) CG pulse. 

A. Propagation of Un-chirped Cos-Gauss Pulse 

First of all, we show the effect of changing the phase 

difference 0 between two interfering Gaussian pulses on 

input CG pulse, as in Fig. 1. It illustrates that as 0  goes on 

increasing, the side lobes tends to appear.  

Response of fiber on CG pulse at various distances for 

different values of 0 can be observed by plotting output 

pulse peak power versus distance. Fig. 2 shows these results, 

in which peak power of the pulse is normalized to one at the 

input (z = 0 km). 
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       Fig. 1.  Effect of changing 0 on the shape of CG Pulse 
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             Fig. 2. Variations in CG pulse peak power versus distance  

             for various values of 0  

 

 It may also be recalled that as the fiber loss has been 

compensated using optical amplifier, so the net energy (i.e. 

areas under the curves) of input pulse and output pulse are 

same. In this view, in Fig. 2, decrease in peak power with 

distance means broadening of the pulse while increase in 

peak power with distance means compression of the pulse. It 

can easily be observed that the peak power of the pulse 

varies for different values of 0 . It happens due to the fact 

that by varying the values of 0 , the shape of the pulse 

changes. These pulses having different shapes experience 

different GVD effect in the same SMF, therefore, it leads to 

different evolution behavior which ultimately appears in 

terms of different peak power values at various distances 

through SMF. This figure also illustrates another important 

fact that for the case of 0 = 0o, the pulse becomes pure 

Gaussian and its peak power decreases enormously with 

distance which is in well accordance to already reported 

results [4]. This figure also shows an interesting observation 

that as the value of 0  goes on increasing, the peak power 

also increases. For 0  = 80o, the peak power of CG pulse 

first goes on decreasing and then becomes equal to 1 at ~ 45 

km propagated distance, after which it goes on increasing. 

 From this behavior, it is obvious that at ~ 45 km distance, 

the output pulse is identical to the input pulse. It means by 

having a suitable value of 0 , the input pulse can be 

achieved in its original shape at certain propagated distance. 

After ~ 45 km distance, increase in peak power in fact shows 

compression (rather than broadening) of the pulse. For more 

clarity, this effect is shown in Fig. 3, in which output pulse is 

compared with the input pulse. It clearly shows higher peak 

power and hence more compression of the output pulse as 

compared with the input pulse. The recovery of the input 

pulse at certain distance and compression phenomenon 

becomes possible only due to phase difference between two 

interfering Gaussian pulses that form CG pulse.  
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              Fig. 3. Comparison of input and output pulses at a distance  

              of 80 km with 0 = 80o 

 

The evolution of CG pulse through SMF at different 

distances is shown in Fig. 4, as a 3-D plot of output pulse 

power versus time and distance. It clearly shows that CG 

pulse at 0  = 80o first goes on broadening and then it 

experiences compression on increasing the propagated 

distance.  
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Fig. 4. Output pulses at different distances up to 80 km with 0 = 80o 

 

B. Propagation of Chirped Cos-Gauss Pulse 

 The above investigations were carried for initially un-

chirped CG pulse. In this section, we investigate and present 

the results by launching chirped-CG pulse at the input of the 

fiber. For this purpose, first of all the effects of positive 

chirp on the pulse evolution is observed. The results are 

shown in Fig. 5. It is observed that by increasing positive 

value of chirp, the output pulse broadens at a faster rate. By 

comparing the results of Figs. 4 and 5, it can be observed 

that by introducing positive chirp in the input CG pulse, the 

pulse goes on more and more broadening as the propagated 

distance increases. Also, no compression is observed in the 

positive chirped case. Further, the broadening rate is much 

more for positively chirped-CG pulse as compared to un-

chirped CG pulse. 
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  Fig. 5.  Effect of positive frequency chirp on output pulse 

 

As a next step, the effect of negatively introduced chirp in 

the input CG pulse is explored. The results are shown in Fig. 

6. Here it can be observed that output pulse first compresses 

and then broadens as the value of chirp becomes more and 

more negative. It is important to note that only negative 

external chirp values can lead to an output pulse which is 

similar to input pulse because pulse compression and 

broadening both are observed with negative chirp and using 

these two phenomena we can obtain an output pulse which is 

similar to the input pulse. 
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         Fig. 6. Effect of negative frequency chirp on output pulse 

 

IV. CONCLUSION 

We have investigated and presented the results for 

evolution behavior of Cos-Gauss pulse by its propagation 

through single mode optical fiber in the regime where fiber 

dispersion is dominant. We considered both un-chirped and 

chirped pulses. For this purpose, we implemented nonlinear 

Schrödinger equation for single mode optical fiber, using 

split-step Fourier technique. These results showed 

interesting phenomena that although GVD leads to 

broadening of the pulse, however by controlling certain 

parameters of Cos-Gauss pulse, even the compression of the 

pulse can be achieved, rather than its broadening.   

 

 

 

 

 

 

 

Results also illustrated that by inducing positive chirp in 

input pulse, Cos-Gauss pulse only experiences broadening. 

However, by introducing negative values of the chirp, the 

pulse first experiences compression by propagating it 

through SMF, then its shape becomes identical to the input 

pulse at certain distance, after which it goes on broadening. 

These results show the deeper insight about the response of 

optical fiber to such types of optical pulses, and their 

possible use for enhancing the performance of optical fiber 

transmission systems. 
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