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satisfactorily. Tavakolvour et al [9] investigated the AF 

control application for a flexible thin plate. Modeling of their 

system was done using finite-difference method. Their 

calculated results showed the effectiveness of the proposed 

controller to reduce vibration of the plate. Tavakolvour and 

Mailah [10] studied the AF control application for a flexible 

beam with an electromagnetic actuator. Modeling of the 

beam was done using finite-difference method. The 

effectiveness of the proposed controller was confirmed 

through simulation and experiment.  

The purposes of this research are to derive the equations of 

motion of a flexible single-link system by a finite-element 

method, to develop the computational codes in order to 

perform dynamics simulations with vibration control, to 

propose an effective control scheme of a flexible single-link 

manipulator using two control strategies, namely 

proportional (P) and active-force (AF) controls and to 

confirm the calculated results by experiments of the flexible 

link manipulator. 

The flexible manipulator used in this paper consists of an 

aluminum beam as a flexible link, a clamp-part, a servo 

motor to rotate the link and a piezoelectric actuator to control 

vibration. Computational codes on time history responses, 

FFT (Fast Fourier Transform) processing and eigenvalues - 

eigenvectors analysis were developed to calculate the 

dynamic behavior of the link and validated by the 

experimental one. Furthermore, the P and AF controls 

strategies were designed to suppress the vibration. It was 

done by adding bending moments generated by the 

piezoelectric actuator to the single-link. Finally, their 

performances were compared through calculations and 

experiments. 

II. FORMULATION BY FINITE-ELEMENT METHOD 

The link has been discretized by finite-elements [11] - [12]. 

The finite-element has two degrees of freedom, namely the 

lateral deformation v(t), and the rotational angle ψ(t). The 

length, the cross-sectional area and the area moment of 

inertia around z-axis of every element are denoted by li, Si and 

Izi respectively. Mechanical properties of every element are 

denoted as Young’s modulus Ei and mass density ρi.   

A. Kinematic 

    Figure 1 shows the position vector of an arbitrary point P 

in the link in the global and rotating coordinate frames. Let 

the link as a flexible beam has a motion that is confined in the 

horizontal plane as shown in figure 1. The O – XY frame is the 

global coordinate frame while O – xy is the rotating 

coordinate frame fixed to the root of the link. A motor is 

installed on the root of the link. The rotational angle of the 

motor when the link rotates is denoted by θ(t).  

    The position vector r(x,t) of the arbitrary point P in the link 

at time t = t, measured in the O – XY frame shown in figure 1 

is expressed by 
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The velocity of P is given by 
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O – XY: Global coordinate frame 
O – xy : Rotating coordinate frame 

Fig. 1. Position vector of an arbitrary point P in the link in the global and 

rotating coordinate frames 

B. Finite-element Method 

    Figure 2 shows the rotating coordinate frame and the link 

divided by one-dimensional and two-node elements. Then, 

figure 3 shows the element coordinate frame of the i-th 

element. Here, there are four boundary conditions together at 

nodes i and (i+1) when the one-dimensional and two-node 

element is used. The four boundary conditions are expressed 

as nodal vector as follow  

    
 T

iiiii vv 11  δ                           (5) 

 

Then, the hypothesized deformation has four constants as 

follows [13] 
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o – xy: Rotating coordinate frame 

Fig. 2. Rotating coordinate frame and the link divided by the 

one-dimensional and two-node elements 

 

 

 
 

 

oi – xi yi: Element coordinate frame of the i-th element 

Fig. 3. Element coordinate frame of the i-th element 
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The relation between the lateral deformation vi and the 

rotational angle ψi of the node i is given by 
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Furthermore, from mechanics of materials, the strain of node 

i can be defined by 
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C. Equations of motion 

Equation of motion of the i-th element is given by 

    
      

    
  iiiiiiii tt fδMKδCδM )()(2   

                (9) 

where Mi, Ci, Ki, it f)(
..

  are the mass matrix, damping matrix, 

stiffness matrix and the excitation force generated by the 

rotation of the motor respectively. The representation of the 

matrices and vector in Eq. (9) can be found in [11].    Finally, 

the equation of motion of the system with n elements 

considering the boundary conditions is given by 

 

    
  nnnnnnnn tt fδMKδCδM )()(2   

          (10)   

III. VALIDATION OF FORMULATION AND COMPUTATIONAL 

CODES 

A. Experimental Model 

Figure 4 shows the experimental model of the flexible link 

manipulator. The flexible link manipulator consists of the 

flexible aluminum beam, the clamp-part, the servo motor and 

the base.  The link is attached to the motor through the 

clamp-part. A strain gage is bonded to the position of 0.11 m 

from the origin of the link. The motor is mounted to the base. 

In the experiments, the motor was operated by an 

independent motion controller. 

 

 
 

Fig. 4. Experimental model of the flexible link manipulator  

B. Computational Model 

In this research, we defined and used two types of 

computational models of the flexible link manipulator. 

 

Model Ⅰ 

    A model of only a flexible link manipulator was used as 

Model Ⅰ. Figure 5.a shows model Ⅰ. The link and the 

clamp-part were discretized by 5 elements and 1 element 

respectively. The clamp-part is much rigid than the link. 

Therefore Young’s modulus of the clamp-part was set in 

1,000 times of the link’s. A strain gage is bonded to the 

position of Node 3 of the flexible link (0.11 m from the origin 

of the link). 

  

Model Ⅱ 

A model of the flexible link manipulator including the 

piezoelectric actuator was defined as Model Ⅱ. Figure 5.b 

shows model Ⅱ. The piezoelectric actuator was bonded to 

the one surface of element 2. The link was discretized by 22 

elements. A schematic representation on modeling of the 

piezoelectric actuator is shown in figure 6. Physical 

parameters of the flexible link manipulator model and the 

piezoelectric actuator are shown in table 1. 

   The piezoelectric actuator suppressed the vibration of the 

flexible link manipulator by adding bending moments at 

Nodes 2 and 3, M2 and M3 to the flexible link. The bending 

moments are generated by applying voltages +E to the 

piezoelectric actuator as shown in figure 6. The relation 

between the bending moments and the voltages are related by 

 

    
EdM 13,2                                            (11) 

Here d1 is a constant quantity. 

     

Furthermore, the voltage to generate the bending moments 

is proportional to the strain ε of the single-link due to the 

vibration. The relation can be expressed as follows 

 

    


2

1

d
E                                         (12) 

Here d2 is a constant quantity. Then, d1 and d2 will be 

determined by comparing the calculated results and 

experimental ones. 

 

 
(a) Model Ⅰ: Only flexible link   

 

 
(b) Model Ⅱ: Flexible link with the actuator 

 
Fig. 5. Computational models of the flexible link manipulator  

 

 

Fig. 6. Modeling of the piezoelectric actuator 
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TABLE I 

PHYSICAL PARAMETERS OF THE FLEXIBLE LINK AND THE 

PIEZOELECTRIC ACTUATOR [14] 

 

l : Total length m 3.91 × 10-1 

ll : Length of the link m 3.50 × 10-1 

lc : Length of the clamp-part m 4.10 × 10-2 

la : Length of the actuator m 2.00 × 10-2 

Sl : Cross section area of the link m2 1.95 × 10-5 

Sc : Cross section area of the clamp-part m2 8.09 × 10-4 

Sa : Cross section area of the actuator m2 1.58 × 10-5 

Izl : Cross section area moment of inertia    
      around z-axis of the link  

m4 2.75 × 10-12 

Izc : Cross section area moment of inertia   

      around z-axis of the clamp-part  
m4 3.06 × 10-8 

Iza : Cross section area moment of inertia   
       around z-axis of the actuator  

m4 1.61 × 10-11 

El : Young’s Modulus of the link GPa 7.03 × 101 

Ec : Young’s Modulus of the clamp-part GPa 7.00 × 104 

Ea : Young’s Modulus of the actuator GPa 4.40 × 101 

ρl : Density of the link kg/m3 2.68 × 103 

ρc : Density of the clamp-part kg/m3 9.50 × 102 

ρa : Density of the actuator kg/m3 3.33 × 103 

α  : Damping factor of the link - 2.50 × 10-4 

 

C. Time History Responses of Free Vibration 

Experiment on free vibration was conducted using an 

impulse force as an external one. Figure 7 shows the 

experimental time history response of strains εe on the free 

vibration at the same position in the calculation. Furthermore, 

the computational codes on time history response of Model 

Ⅰ were developed. Figure 8 shows the calculated strains at 

Node 3 of Model Ⅰ under the impulse force. 
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Fig. 7. Experimental time history response of strains on free vibration of the 
flexible link at 0.11 m from the origin of the link 
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Fig. 8. Calculated time history response of strains on free vibration at 

Node 3 of Model Ⅰ 

D. Fast Fourier Transform (FFT) Processing 

    Both the experimental and calculated time history 

responses of free vibration of Model I were transferred by 

FFT processing to find their frequencies.  
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Fig. 9. Experimental natural frequencies of the flexible link 
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Fig. 10. Calculated natural frequencies of Model Ⅰ   

 

    Figures 9 and 10 shows the experimental and calculated 

natural frequencies of the flexible link manipulator, 

respectively. The experimental first natural frequency, 6.07 

Hz well agreed with the calculated one. The second and third 

experimental natural frequencies could not be measured. 

However, in the calculation, they could be obtained as 38.00 

Hz and 105.40 Hz.  

E. Eigen-values and Eigen-vectors Analysis 

The computational codes on Eigen-values and 

Eigen-vectors analysis were developed for natural 

frequencies and vibration modes.  

 

 

 

Fig. 11. First vibration mode and natural frequency (f1 = 6.10 Hz) of 

ModelⅠ  

 

 

 

Fig. 12. Second vibration mode and natural frequency (f2 = 38.22 Hz) of 

ModelⅠ  
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Fig. 13. Third vibration mode and natural frequency (f3 = 107.19 Hz) of 

Model Ⅰ 

 

The calculated results for the first, second and third natural 

frequencies were 6.10 Hz, 38.22 Hz, and 107.19 Hz 

respectively. The vibration modes of natural frequencies are 

shown in figure 11, 12 and 13 
 

F. Time History Responses due to Base Excitation  

Another experiment was conducted to investigate the 

vibration of the flexible link due to the base excitation 

generated by rotation of the motor. In the experiment, the 

motor was rotated by the angle of π/2 radians (90 degrees) 

within 2.05 seconds. Figure 14 shows the experimental time 

history response of strains of the flexible link due to the 

motor's rotation at 0.11 m from the origin of the link. Based 

on figure 14, the angular acceleration of the motor was 

calculated. Time history response of the motor’s acceleration 

is shown in figure 15.  Furthermore, based on figures 14 and 

15, the time history response of strains at Node 3 of Model 

Ⅰwas calculated as shown in figure 16. 
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Fig. 14. Experimental time history responses of strains at 0.11 m from the 

origin of the link due to the base excitation 
 

 

 

     

 
 

Fig. 15. Time history response of angular acceleration of the motor 
 

 

   The above results show the validities of the formulation, 

computational codes and modeling the flexible link 

manipulator. 
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Fig. 16. Calculated time history responses of strains at Node 3 of  

Model Ⅰdue to the base excitation   

IV. CONTROL SCHEME 

A control scheme to suppress the vibration of the single-link 

was designed using the piezoelectric actuator. It was done by 

adding bending moments generated by the piezoelectric 

actuator to the single-link. Therefore, the equation of motion 

of the system become  

 

  )()()(2 ttt nnnnnnnnn ufδMKδCδM   
(13) 

where the vector of un(t) containing M2 and M3 is the control 

force generated by the actuator to the single-link. 

To drive the actuator, two different control strategies 

namely P and AF controls have been designed and examined. 

Their performances were compared through calculations and 

experiments. 

A. Proportional Control 

Substituting Eq. (12) to Eq. (11) gives 

 


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d

d
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Based on Eq. (14), the bending moments can be defined in 

s-domain as follows 

 

 )()()()( 3 ssss dCn  GU
 

(15) 

where εd and ε3 denote the desired and measured strains at 

Node 3, respectively. The gain of P-controller can be written 

by a vector in s-domain as follows 

 

 T
ppC KKs 000000)( G   (16) 

 

A block diagram of the proportional control strategy for the 

single-link system is shown in Fig. 17. 
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εd : Desired strain,             εi : Measured strains at Node i 

θ : Rotation angle of the motor,  Un : Applied bending moments 
 

Fig. 17. Block diagram of proportional control of the flexible link 

manipulator 
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B. Active-force Control 

Fig. 18 shows the block diagram of the AF control that is 

proposed in this research. In this strategy, vibration of the 

system is controlled by canceling bending moments acting at 

Nodes 2 and 3 due to the base excitation (excitation bending 

moments). The following steps are the way to estimate and 

cancel the excitation bending moments.  

Firstly, the strain, ε3 at Node 3 is measured to estimate the 

lateral deformation, v3 at the Node 3. Substituting Eq. (6) to 

Eq. (8) considering the boundary conditions then the relation 

between the strain and the lateral deformation can be defined 

as follows 

 
 
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(17) 

where l, x and y are the length of the link, the position of Node 

3 in x and y directions, respectively. 

Secondly, the actual force in the s-domain acting at Node 3 

can be defined in the form of the Newton’s equation of 

motion as follows 

 

 3
2

333 )( vsMsF 
 

(18) 

where M33 is the component of the mass matrix 

corresponding to Node 3.  

Thirdly, the bending moments acting at Nodes 2 and 3 are 

estimated using the following equation 

 

 dU )()( 3 sFsnt 
 

(19) 

The vector d that represents the position vector from the 

reference point to the position where the excitation force 

acting can be written as follows  

 

 Tll 000000 22 d  (20) 

Fourthly, based on Fig. 18, the excitation bending moments 

can be calculated as 

 

  )()()( ssKs nntpane UUU 
 

(21) 

where Kpa is the non-dimensional proportional gain of the 

proposed AF control. 

 

 

 

 

 

 

 

 

 

 

 

 
εd : Desired strain,           εi : Measured strains at Node i  

θ : Rotation angle of the motor,    Mii : Component of mass matrix  

A : Conversion from εi to vi,     d : Position vector 

Und : Desired bending moments,     Un : Applied bending moments   

Une : Excitation bending moments, Unt : Bending moments       

 
Fig. 18. Block diagram of active-force control of the flexible link 
manipulator 

Finally, the bending moments applying as a control force to 

control the vibration of the system can be calculated as 

follows 

  

 )()()( sss ndnen UUU 
 

(22) 

where Und (s) is the desired bending moments which is zero. 

The negative of Une (s) indicates that the bending moments 

used to cancel the vibration of the system. 

V. EXPERIMENT 

A. Experimental Set-up 

In order to investigate the validity of the proposed control 

strategies, an experimental set-up was designed. The set-up is 

shown in Fig.19. The flexible link manipulator consists of the 

flexible aluminum beam, the clamp-part, the servo motor and 

the base.  The flexible link was attached to the motor through 

the clamp-part. In the experiments, the motor was operated 

by an independent motion controller. A strain gage was 

bonded to the position of 0.11 m from the origin of the link.  

The piezoelectric actuator was attached on one side of the 

flexible manipulator to provide the blocking force against 

vibrations. A Wheatstone bridge circuit was developed to 

measure the changes in resistance of the strain gage in the 

form of voltages. An amplifier circuit was designed to 

amplify the small output signal of the Wheatstone bridge.  

Furthermore, a data acquisition board and a computer that 

have functionality of A/D (analog to digital) conversion, 

signal processing, control process and D/A (digital to analog) 

conversion were used. The data acquisition board connected 

to the computer through USB port. Finally, the controlled 

signals sent to a piezo driver to drive the piezoelectric 

actuator in its voltage range.   

 

 

                               : Measurement of strains 

                               : Vibration control 

                                       : Motion control  

 

Fig. 19.  Schematics of measurement and control system [12] 

B. Experimental Method 

The rotation of the motor was set from 0 to π/2 radians (90 

degrees) within 0.68 second. The outputs of strain gage were 

converted to voltages by the Wheatstone bridge and 

magnified by the amplifier. The noises that occur in the 

experiment were reduced by a 100 µF capacitor attached to 

the amplifier. The output voltages of the amplifier sent to the 

data acquisition board and the computer for control process. 
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Both of control strategies were implemented in the computer 

using the visual C++ program. The analog output voltages of 

the data acquisition board sent to the input channel of the 

piezo driver to generate the actuated signals for the 

piezoelectric actuator. 

VI. CALCULATED AND EXPERIMENTAL RESULTS  

A. Calculated Results 

Time history responses of strains on the uncontrolled and 

controlled systems were calculated when the motor rotated 

by the angle of π/2 radians (90 degrees) within 0.68 seconds.  

Time history responses of strains on the controlled system 

were calculated for ModelⅡunder two control strategies as 

shown in figures 17 and 18.  

Examining several gains of the P and AF controllers leaded 

to Kp = 600 [Nm] and Kpa = 0.83[-] as the better ones. Figure 

19 shows the uncontrolled and controlled time history 

responses of strains at Node 3. The maximum and minimum 

strains of uncontrolled system in positive and negative sides 

were 348.00×10-6 and -452.50×10-6, as shown in figure 19(a). 

By using P-controller they became 167.50×10-6 and 

-131.00×10-6, as shown in figure 19(b). Moreover, by using 

AF-controller they became 86.50×10-6 and -69.00×10-6, as 

shown in figure 19(c). 
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(b) Controlled by P-controller, Kp = 600 [Nm]  
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(c) Controlled by AF-controller, Kpa = 0.83 [-]  
 

Fig. 19. Calculated time history response of strains at Node 3 for 

uncontrolled and controlled Model Ⅱdue to the base excitation  

B. Experimental Results 

Experimental time history responses of the strains on the 

uncontrolled and controlled systems were measured when the 

motor rotated by the angle of π/2 radians (90 degrees) within 

0.68 seconds. Experimental time history responses on the 

controlled system were measured under two control 

strategies as shown in figures 17 and 18.  

Based on the calculated results, the experimental 

proportional gains that are non-dimensional gain, Kp’ were 

examined. The examination of gains leaded to Kp’ = 600 [-] 

as the better one. Furthermore, examining several gains of the 

active-force control leaded to Kpa = 125 [-] as the better one. 

Figure 20 shows the experimental uncontrolled and 

controlled time history responses of strains at the same 

position in the calculations. The maximum and minimum 

strains of uncontrolled system in positive and negative sides 

were 359.40×10-6 and -440.40×10-6, as shown in figure 20(a). 

By using P-controller they became 262.40×10-6 and 

-373.40×10-6, as shown in figure 20(b). Moreover, by using 

AF-controller they became 175.50×10-6 and -303.50×10-6, as 

shown in figure 20(c). 

It was verified from these results that the vibration of the 

flexible link manipulator can be more effectively suppressed 

using the proposed active-force control compared to the 

proportional one. 
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(b) Controlled by P-controller, Kp’ = 600 [-]  
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(c) Controlled by AF-controller, Kpa = 125 [-]  

Fig. 20. Experimental time history responses of strains at 0.11 m from the 

link’s origin for uncontrolled and controlled system due to the base 

excitation  
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VII. CONCLUSION 

The equations of motion for the flexible link manipulator 

had been derived using the finite-element method. 

Computational codes had been developed in order to perform 

dynamic simulations of the system. Experimental and 

calculated results on time history responses, natural 

frequencies and vibration modes show the validities of the 

formulation, computational codes and modeling of the 

system. The proportional (P) and active-force (AF) controls 

strategies were designed to suppress the vibration of the 

system. Their performances were compared through the 

calculations and experiments. The calculated and 

experimental results show the superiority of the proposed 

active-force control comparing the proportional one to 

suppress the vibration of the flexible single-link manipulator.  
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