

RFLRU: A Buffer Cache Management Algorithm

for Solid State Drive to Improve the Write

Performance on Mixed Workload
Arul Selvan Ramasamy, and Porkumaran Karantharaj

Abstract—Flash memory based Solid State Drives (SSD)

acquiring greater attention in enterprise storage computing

environment; this is primarily due to its high I/O speed. SSDs

use multiple NAND flash memory chips as a storage media and

deploy internal RAM to maintain the flash translation layer

(FTL) mapping table. The rest portion of the inner RAM is

used as a buffer. This buffer absorbs the write requests and

thus the resulting write requests to the NAND flash memory is

determined by the SSD buffer cache management algorithm.

Many of the previously proposed write buffer cache

management algorithms concentrate on improving the random

write performance either by reordering the writes, addressing

the temporal locality or evicting the clean pages etc. And they

have not concentrated enough to exploit the sequential locality

in the write pattern. Because of this, the input sequential write

patterns are not completely utilized by the Flash Translation

Layer and that reduces the number of switch merges and

increases full and partial merges in log block based FTL. In

this paper, a novel algorithm called RFLRU: Random First

Least Recently Used is proposed to improve the performance

of SSD write operation on mixed workload. The algorithm

identifies the interleaved sequential writes, constructs various

cache eviction policies and the write sequence is constructed by

contemplating the SSD characteristics. Essentially this new

technique reduces number of erase and writes operations on

SSD. An efficient RFLRU implementation is developed and

tested in a trace driven simulation environment and compared

to the previously proposed LRU FAST, BPLRU and REF

buffer management schemes. The results show that RFLRU

reduces the number of merge; erase and write operations and

the overall write performance is improved.

Index Terms—sequential write, random write, switch merge,

full merge, page replacement, buffer management, log block,

erase-before-write, write amplification, de-stage.

I. INTRODUCTION

SSD’s consists of multiple flash memory blocks, and each

block is composed of multiple pages. The scope of this

paper is limited to NAND flash memory. There are three

basic types of operations in NAND based flash memory;

read, program and erase. Page is the basic unit of read/write

operation in flash memory. Flash memory does not support

in-place update. After a page write, entire block has to be

erased before the subsequent write operation on the same

page or any of the page that belongs to the specific block,

this block is called erasure block. Thus, flash memory based

SSDs poses a well-known challenge, that is, the erase-

before-write problem.
Manuscript received Jan 07, 2014; revised August 11, 2014.

F.A. Arul Selvan Ramasamy (corresponding author) is a doctoral

research scholar, associated with the department of information and
communication engineering, Anna University, Chennai, India. (e-mail:

connectwitharul@gmail.com).

S.A. Porkumaran Karantharaj is a principal and professor, associated
with the Electrical and Electronics Engineering Department at Dr NGP

Institute of Technology, Coimbatore, affiliated to Anna university, Chennai

India (e-mail: porkumaran@gmail.com).

In SSD write procedure, the free space in flash memory

array is scanned. In general the free space can be an un-

programmed blocks of memory cells and individual pages.

In case if the space is not enough for data storage in one

location, the flash memory array data is rearranged by

erasing, rewriting and moving the data to new place within

the same memory array. This inner generated write traffic is

called write amplification [1]. And NAND flash memory

can incur only a finite number of erase operations for a

given erasure block. Therefore, increased erase operation

will impact the write performance negatively and reduce the

life span of SSD.

Random write causes lot of erase-before-write operation.

In flash delete operation, the data is obsoleted, not deleted.

Obsolete data still occupies the storage, and cannot be

deleted alone in the same erasure block. Therefore a garbage

collector is required to clean and erase the block by moving

all valid data into a free erase block, obsoleting old erase

block. Random write involves high overhead in the garbage

collection than sequential write. Random write causes

fragmentation which results in large number of live page

migration during garbage collection. To handle this special

feature of flash memory, most systems use flash translation

layer (FTL). The primary role of FTL [2] is to emulate the

functionality of block device by abstracting the erase before

write characteristics of the NAND flash memory.

In the past, the flash memory usage was uncomplicated.

For example, MP3 player and digital camera used the flash

memory to read and write only large-sized multimedia files.

And most of the read or write operations are sequential in

nature. However, recent applications for flash memory are

complex and diverse. In a real world enterprise storage

system, there are many sequential writes gets manifested as

random write because of write interleaving across

applications, this results in a mixed write workload which is

again random in nature. Random write [3] is a critical

problem for write performance and lifetime of flash

memory; this constrains the SSD’s widespread acceptance in

enterprise storage system [4]. Write amplification [1,3]

triggered by random write can be addressed from two

different perspectives.

Firstly, design the FTL address mapping scheme to

postpone and minimize block erasures. Primarily three types

of FTL mapping schemes are developed based on the

granularity of the address mapping: page-level, block-level,

and hybrid or log buffer. The hybrid mapping uses both

page mapping and block mapping. In this scheme, all

erasure blocks are separated into log blocks and data blocks,

this is also called log buffer based FTL [5]. For a write

request, the log block based FTL first sends the data to the

log block and invalidates the corresponding data in the data

block. Once the log space is utilized, the victim blocks are

selected and all the valid pages in the victim block are

Engineering Letters, 22:4, EL_22_4_02

(Advance online publication: 30 November 2014)

__

migrated to the data blocks, this migration process is called

block merge. There are three kinds of block merge

techniques [7] namely; full merge, partial merge and switch

merge. The full merge allocates a free block that is erased

beforehand, and then copies the most up-to-date pages either

from the data block or from the log block, into the new free

block. After copying all the valid pages, the free block

becomes the data block and the former data block and the

log block are erased. Therefore, a single full merge requires

read and write operations as many as the number of valid

pages in a block and two erase operations. Partial and switch

merges are special cases of the merge operation. The partial

merge takes place when all the valid pages in the data block

can be copied to the rest of the log block. Partial merge

copies only the valid pages in the data block and one erase

operation can be saved compared to the full merge. On the

other hand, if all the pages in the data block are already

invalidated, simply switch the log block to the new data

block and erase the old data block. This case is called switch

merge. Garbage collector handles the merging process. For a

better write performance on random workload, the merging

complexities have to be reduced, which requires a

sophisticated FTL address mapping technique.

Secondly, in addition to address mapping and garbage

collection algorithms, FTL has page replacement algorithm

[6]. Flash memory write performance is enhanced by

incorporating DRAM-backed buffers inside SSD in which

write requests are buffered by the SSD buffer cache. The

write operation is expensive on SSD device and most of the

time, applications demonstrates good temporal and spatial

locality. It is of advantage to incorporate a write-back cache,

building on principles used in conventional file system

cache to address the temporal and spatial locality in the

write workload. The basic policy used is write-behind, i.e.,

always data is first written into the buffer cache, and later

propagated into flash memory. The page replacement policy

of buffer cache is critical for the write performance and

device endurance as it determines the flash memory write

pattern.

The rest of the paper is organized as follows. In section2,

the problem is explored in detail, and section 3 defines the

contribution to address the defined problem. In section 4, the

related work is explored in detail, and section 5 introduces

the RFLRU scheme which is an enhanced version of

previously proposed buffer cache algorithms. Section 6

describes the prototyping environment. Experimented

results are presented in section 7 and finally the results are

concluded.

II. THE PROBLEM

SSD’s internal RAM is used as a buffer to absorb a

portion of the read and write requests by the application

such as file system. The write performance of NAND flash

memory is heavily influenced by the FTL page replacement

algorithm. SSD exhibits good read performance on

sequential and random workloads and good write

performance on sequential workload. However, SSD suffers

from random write workload. For example, most write

requests from MP3 player and movie files are sequential.

However, typically file server write request pattern exhibits

combined request of sequential and random, many times the

random writes are interleaved between sequential writes.

Firstly, SSD random write is much slower than sequential

write. Secondly, NAND flash memory can incur only a

finite number of erases for a given erasure block. Therefore,

increased erase operation due to random write shortens the

lifetime of flash memory. Finally, random writes result in

higher overhead of internal garbage collection than

sequential writes. This is due to the expensive full merge

triggered by random write. Full merge is a type of merge

operation executed by the garbage collection, which causes

extra read, erase and write operation. If the incoming writes

are randomly distributed, sooner or later all the erasure

blocks will be fragmented which results in large number of

live page migration during the garbage collection.

Though several page replacement algorithms proposed,

they have not entirely addressed the performance

degradation of mixed work load of random and sequential

write pattern. To improve the flash write performance on

mixed write workload, it is indispensable to detect the

locality of the incoming write request and build a

sophisticated FTL page replacement algorithm to absorb the

mixed workload in alignment to the flash memory

characteristics.

III. CONTRIBUTIONS

So it is very essential to contemplate the flash memory

characteristics and build a high performance FTL for the

evolving general purpose storage system based on flash

memory. This research primarily makes the following

contributions: Firstly, detect the locality type more precisely

on the write workload. Secondly, random and sequential

write requests are segregated and different write policies are

applied on them. Finally, different write enlargement

techniques are applied to reduce the merge cost during the

garbage collection process.

For these contributions, a new page replacement scheme

called a Random First Least Recently Used (RFLRU) is

developed. This scheme is an improvement to the previously

proposed block-level replacement schemes. The proposed

algorithm reduces the full and partial merge count and

increases the switch merge count during the garbage

collection process. Also the proposed algorithm improves

and springs up the best practices from the previously

proposed schemes to reduce the overall cost of page

replacement on write. Trace driven experiment is conducted

on a SSD simulation environment, and the result shows that

RFLRU performs better than BPLRU, FAST and REF page

replacement algorithms for the mixed workload of

sequential and random write pattern. Effectively, RFLRU

brings up the following benefits on flash write operation:

 Reduces the number of write and erase operations

 Reduces the costlier merge in garbage collection which

in turn reduces the number of live page migration.

IV. RELATED WORK

There have been many researches on the log buffer-based

FTLs on write workload. These researches are aimed to

improve the write performance and address the merging

complexities in the garbage collection process.

FAST [5] keeps a single sequential log block dedicated

for sequential update and the rest of the log blocks are used

for random writes. FAST scheme shows a significant

difference between the worst case block merge time and the

best block merge time due to its high block associativity.

This has been known for superior performance for random

write operations. The key idea of FAST is to rely on the full

associativity between data blocks and log blocks in order to

Engineering Letters, 22:4, EL_22_4_02

(Advance online publication: 30 November 2014)

__

avoid the log block thrashing problem and this increases the

log block utilization. SuperBlock FTL [7] scheme

demonstrated that the temporal locality can be exploited by

allowing the page level mapping in a SuperBlock which is

set of consecutive blocks. Then, the cold and hot data are

separated automatically into different blocks within a

superblock, thus the garbage collection efficiency is

improved by reducing the number of full merge operations.

However, this approach does not efficiently distinguish the

cold pages from the hot pages and addresses the temporal

the locality in write workload. LAST [8] scheme tries to

alleviate the shortcomings of FAST by providing multiple

sequential log blocks to exploit spatial locality in workloads.

It further separates random log blocks into hot and cold

regions to reduce full merge cost. In order to provide this

dynamic separation, LAST depends on an external locality

detection mechanism that determines the locality type by

comparing the size of each request with a threshold value.

However, Lee et al. themselves realize that the proposed

locality detector cannot efficiently identify sequential writes

when the small-sized write has sequential locality. FAST

does not take full advantage of temporal locality of page

writes, which results in excessive costly merge operation.

FASTer [9] was proposed to address the temporal locality

write workloads. It adopts a new hot-cold separation

strategy to exploit the dissymmetry in the online transaction

processing write requests. When a log block is chosen as a

victim for reclamation, by carrying the valid pages from the

log block over to a new log block, these pages are given a

second chance to be invalidated before being merged to the

corresponding data blocks, the log block is virtually

extended. S-FTL [10] exploits the spatial locality in the

SSD’s workloads and significantly reduce page mapping

table size without imposing any restriction on page mapping

method. By doing so, S-FTL can benefit from the page-level

mapping with a low garbage collection cost. It effectively

addresses the challenge of high garbage collection cost

experienced by the block-level mapping and hybrid mapping

such as BAST and FAST. And overcome the challenge of

limited cache size experienced by the page-level mapping

such as DFTL [11]. Unlike log buffer based FTLs, DFTL is

purely page mapped, which exploits temporal locality in

enterprise workload. Selective portion of the mapping table

is cached for the address translation and the rest of the table

is loaded on demand. DFTL improves the locality detection

proposed by LAST and identifies the sequential writes when

the small-sized write has sequential locality. WAFTL [12]

explores page mapping block to store random data and

handle large number of partial updates, and block mapping

block to store sequential data and lower overall mapping

table. Additionally WAFTL explores buffer zone to log the

data sequentially and partition data based on threshold.

There are not many researches on the buffer cache in

flash based storage system. Jo et al. [13] proposed a flash-

aware buffer (FAB) management scheme. In this scheme,

the buffers of the same erase blocks are grouped together on

LRU (least recently used) sequence and victim groups are

larger which are based on the page count on every group.

This buffer management policy evicts all the pages of a

block at a time. In sequential writes FAB is very effective.

PUD-LRU [14] differentiates blocks and judiciously de-

stages the blocks based on their frequency and recency so as

to avoid the unnecessary erasures due to repetitive updates.

PUD-LRU maximizes the number of valid pages in the de-

staged block in each erase operation. Kimet al. presented

BPLRU [6] buffer management scheme especially for

improving the performance of random writes. BPLRU

employs a page padding scheme where the log block is

padded with some clean pages from the data block to reduce

the number of full merges. BPLRU groups the buffer from

the same erasure block, and replace them together on SSD.

Compared to fully block padding technique used in BPLRU,

the partial block padding technique in BPCLC [15] reduces

the page padding overhead and therefore improves the I/O

performance. REF [16] enforces the buffer cache to evict

only the pages that belongs to the victim block. The victim

block remains unchanged as far as possible to reduce the

block thrashing and block associativity. The pages are

reordered to reduce the number of block merges. Since REF

uses padding and reordering, this outperforms FAB and

BPLRU polices. Reordering the write sequence [17] was

proposed to address the out-of-place update problems and

the sequential write constraint within a block. The reorder

space is inside the SSD and the writes are reconfigured

which prohibits write amplification. In BA-GC [18], the

garbage collection process considers the contents of a buffer

cache. This process prevents the unnecessary page

migrations as there are corresponding dirty pages in the

buffer cache for pages to be moved by the block merge at

the garbage collection time, thus improves the write

efficiency. The buffer cache is consulted during the garbage

collection process and the garbage collection takes place

whenever the log blocks are exhausted or explicitly

triggered by the host file system through the firmware TRIM

[19] command. TRIM command is designed to enable the

operating system to notify the SSD which pages no longer

contain valid data due to erases either by the user or

operating system itself. During a delete operation, the

operating system will both mark the sectors as free for new

data and send a Trim command to the SSD to be marked as

no longer valid. After that the SSD knows not to relocate

data from the affected blocks during garbage collection.

This results in fewer writes to the flash, reducing write

amplification and increasing flash memory life.

Most of the research works on the page replacement

algorithms have addressed the temporal locality in the write

workload. In some research works, random writes and write

reordering is exploited [17, 18] but insignificantly. They are

not optimized for write sequence and the write buffer is

mostly used to decrease the write traffic. As write requests

are reduced the number of invalid pages are reduced, this

extends the SSD lifespan. However, SSD life span is

exhausted by the inner-generated write amplification. And

the proposed buffer management scheme improves the SSD

performance and endurance by erasing less physical block

for the mixed workload of random and sequential write.

In summary, current FTL address mapping schemes and

page replacement algorithms can show poor performance

and device endurance for the mixed workload of sequential

and random. This is due to SSD’s inner generated write

traffic or writes amplification.

V. RFLRU – RANDOM FIRST LEAST RECENTLY USED

ALGORITHM

In this section, Random First Least Recently Used

(RFLRU) algorithm is discussed along with the write

sequence analysis in real world enterprise storage system.

RFLRU algorithm employs sequence detection mechanism

Engineering Letters, 22:4, EL_22_4_02

(Advance online publication: 30 November 2014)

__

and three new write techniques are proposed, namely

buffering the spatial locality; write random ahead and

different write enlargements. By employing these

techniques, sequential write workload is segregated from the

mixed (random and sequential) workload. And from the

segregated sequential workload, NAND friendly write

pattern is generated. NAND friendly write pattern is a

sequential pattern whose request size aligns with SSD

erasure block boundaries. NAND friendly write pattern

increases the probability for switch merge to improve the

overall I/O performance in flash memory based SSD.

A. Write sequence analysis

In various data storage applications, a storage device

receives data from multiple data sources in an interleaved

fashion. For example, the Serial Attached SCSI (SAS) [20]

protocol allows a host to send data associated with multiple

write commands in an interleaved manner. SSD operating in

accordance with the SAS protocol will receive multiple data

streams from the host operating system that are interleaved

with each other. As yet another example, SSD may receive

multiple data streams concurrently over multiple different

physical ports, so that the data of the different streams may

be interleaved with one another when arriving in the SSD.

And among the write data streams, some might be random

and others might be sequential in nature. The inefficiency of

the SSD write performance is attributed from different write

access patterns. Random writes are harmful to SSD [4] as it

incurs more live page migration and erases during the

garbage collection process. Most write request in media

player are sequential in nature with small amount of random

pattern in it. Whereas in general purpose computing has

write pattern of high temporal locality, sequential locality

and many times there are many random writes interleaved

between sequential writes. By processing the de-interleaved

data streams, write performance and subsequent read

performance can be improved significantly.

B. Sequence Identification - Defragmentation and

Reconstruction

In reality, most random write workload exhibits certain

level of sequential pattern. A sequential workload is

generally a host workload that includes request(s) of data at

logical addresses that are substantially sequential. Many

times the sequential work load is interleaved by the

multitasking nature of the operating systems. The idea is to

observe the characteristics of the I/O request pattern from

the operating system. And de-fragment the various write

streams, by identifying the data source with which each data

item is associated. In other words, the proposed algorithm

reconstructs the successive stream of data items associated

with each data source or program. Figure 1 shows the high

level work flow in the proposed RFLRU algorithm. Multiple

programs generate sequential and random write workload.

Host file system receives this in a pseudo random stream

and the sequential sequence is identified and reconstructed.

And the write operation is processed on these data streams

individually.

An effective way to detect the sequential patterns is to

maintain the recent history of write. The write buffers

contains the data for which write requests are issued by the

application program and yet to be written into the flash

memory. Upon arrival of the new write request, RFLRU

refers to the recent write history to decide if the current

write is within the proximity of the previous write to

determine sequential nature. In order to separate sequential

streams from intermingled pseudo random stream, RFLRU

uses a Pre-write Context (PWC). This PWC represents the

run-time object associated with each detected sequential

stream.

Fig. 1. RFLRU-Different stages in the write sequence

Each PWC includes the critical parameters to identify the

sequential locality in the write workload. The locality type

of each write request is related to the size and frequency.

Usually the small writes have high temporal locality and

large writes have high spatial locality. And other parameter

is closeness in space and time of the logical addresses in the

write requests. Closeness in space is measured as a distance

between the write requests. If the requests are continuing

in time or space without interruption, then there involved a

sequential write. How close the request with respect to time

is another parameter. Though the workload exhibits

sequential locality, the write requests cannot be buffered for

a long duration which is not close in time. Finally, PWC

contains pointers for maintaining itself in different data

structures such as indexing trees and PWC queues. When a

new write request comes, the request address is compared

against the most recent pre-write addresses of the existing

streams to see if there is an established write sequence. If an

extension is found, the total sequence length of the stream is

increased by current request’s length. Then statistics of this

stream are updated with attributes of this new write request.

When no PWC is available, new PWC is created. And the

locality type is determined by comparing the write size with

the predefined threshold value. Requests larger than the

threshold value are directed to the sequential buffer and the

rest of the requests are directed to the random buffer. At

times, even though the incoming write data size is less than

the threshold value and has an established write sequence,

the random buffer is moved to sequential area. PWC keeps a

record of all write requests in this stream for prediction of

the next write request’s closeness in space, e.g. recent

request’s length and timing interval.

Finally, a PWC contains address pointers for maintaining

itself in different data structures such as indexing trees and

Sequential write
logical page

numbers 1,2,3,4,5

Random write
pattern logical

page numbers

17,52,32,49

Mixed write pattern

17,1,2,52,32,3,49,4,5

Interleaved write requests of

multiple random and multiple

sequential patterns

Associate each block of data with

respective data stream

De-fragment and construct the
data blocks

Process the write operation

Host file system

Program

2
Program

1

Engineering Letters, 22:4, EL_22_4_02

(Advance online publication: 30 November 2014)

__

Fig. 2. The overall architecture of RFLRU scheme

queues. When a new write request arrives, the request

address is compared against the pre-write addresses of the

existing streams to see if it extends any of them. Figure 2

shows the typical behavior of write requests which are

generated by multiple applications and received by the FTL

and several stages in the proposed RFLRU buffer

replacement scheme. The sequence identification module

creates a new PWC if the incoming write cannot extend to

any of the existing PWC’s.

The primary complexity of this algorithm is to design an

efficient data structure to search the existing PWCs and

remove outdated PWCs. This is needed to remove the PWCs

created and kept for non-sequential requests. Indexing of

PWCs is done using a balanced tree. This decreases the

search time to locate the appropriate PWCs and the memory

consumption on the data structures. Purging process runs in

the background to delete useless PWCs including both

obsolete sequential ones and non-sequential ones.

As shown in figure 3, PWC’s are maintained in two

queues: active and passive queues. And PWC are managed

in these queues using furtherance and demotion policies. On

every new write request, a new PWC is created and it is

added to the furtherance queue. As PWCs sequential pattern

is found it is retained in furtherance queue, if not found it is

moved to the demotion queue. These two queues are ordered

based on the LRU (least recently used) policy.

Fig. 3. PWC data structures. Each PWC is linked to either active or passive
queue. And the PWC’s are indexed by a balanced tree data structure for

efficient maintenance

When the upper bound of number of active PCs is

reached, the algorithm moves the PWCs in batches from

active queue into passive queue. So that PWCs that are not

sequential or very slow sequential are purged earlier from

passive queue. For a write request, PWC is found in the

passive queue, it is moved to the active queue. To search a

PWC, RFLRU uses a balanced index tree to organize all the

PWCs. The balanced tree ensures that operations, such as

deletion, insertion, and search, can complete in O(log n)

time. Since there is a constant upper bound of the number of

PCs, the indexing and purging process involves only a small

overhead.

C. Write Random Ahead

In this section the random ahead feature of RFLRU page

cache replacement scheme is described. Write sequence

segregation will output two different workload buffers

namely, sequential and random. In the flash memory write

operation (de-stage), random blocks are given more priority

than the partially occupied sequential blocks. That is random

buffer is written into the SSD log block ahead of the

partially occupied sequential block. And the partially

occupied sequential write block is queued until the block is

completely occupied with write data or the threshold timer

expired. The write buffers are evicted based on the LRU

policy. By queuing up the sequential work load, the write

bandwidth is utilized for random data. Once the sequential

buffer reaches the erasure block size, the data is written into

the flash memory. LRU page cache replacement policy is

not effective for mixed write workload of sequential and

random. In RFLRU, sequential write is transformed into

buffered write and random write is preferred for write. Fully

occupied sequential write on the flash memory log lock will

produce switch merge during the FTL garbage collection

process. Write random ahead feature of RFLRU is depicted

in figure 4. In addition to the above described random ahead

write scheme, the RFLRU algorithm has additional polices

for the eviction. This prevents the partial merge triggered by

the partially occupied sequential blocks. The proposed

algorithm works on random buffers, at times the sequential

buffers is not ready for de-stage. This random ahead feature

is primarily useful on the slow and interleaved sequential

writes. Applying the proposed de-stage polices on sequential

and random write queue reduces the number of SSD merge

operation in the garbage collection process, thus enhancing

the SSD write performance.

Fig. 4a. RFLRU- Sequential pages 0&1 are buffered in sequential buffer

and the random pages 44,27&33 are buffered in random buffer

Fig. 4b. RFLRU-Sequential pages 0,1,2&3 are buffered and deferred for

write. And the random block which has pages 44, 27,33,40&30 are

preferred for write

Random buffer Sequential buffer

Write Requests

Sequence

segregation

Buffer selection,

Enlarge, Random first,

LRU, De-stage

Log Blocks

Data Blocks

Active Queue

Increasing Recency

PWC PWC PWC PWC PWC

Passive Queue

 Increasing Recency

PWC PWC PWC PWC PWC

27 10 33 44

0 1

44 33 27

Incoming write

27 10 33 44

0 2 1 3

2 303 40 49

44 33 27 40 30

Incoming write

Outgoing write

Engineering Letters, 22:4, EL_22_4_02

(Advance online publication: 30 November 2014)

__

Fig. 4c. RFLRU-The deferred sequential block which has pages 0,1,2,3&4

are preferred for write. And the subsequent sequentil and random pages are
deferred for write.

Fig. 4d. Sequential pages 5, 6, 7 & 8 are deferred and random block which
has pages 21,69,31,54&65 are preferred for write

D. Comparison among LRU FAST, REF and RFLRU

Fig. 5 compares the behaviors of buffer cache under LRU,

REF and RFLRU policies using an example write sequence.

More pragmatic comparisons are done in the experimental

results in section 7. In figure 5a LRU triggers full merge,

though REF reorders the write it triggers partial merge.

Reorder page numbers 0,1,2,3,27 triggers partial merge

because page 27 belongs to different data block and RFLRU

triggers switch merge. In figure 5b, LRU triggers full merge.

Here REF triggers switch merge through reordering.

However RFLRU will also trigger the switch merge either

through padding or utilizing the next write request from host

operating system

Fig. 5a. Comparison of LRU FAST, REF and RFLRU schemes

Fig. 5b. Comparison of LRU FAST, REF and RFLRU schemes

E. RFLRU Buffer Cache De-stage Control

RFLRU employs policies for de-stage sequence and de-

stage interval for effective write buffer cache utilization and

enhanced write performance. Sequential buffers are de-

staged based on multiple parameters namely average

accumulation interval, buffer size, threshold time, number of

valid pages or load factor and cache utilization ratio as

shown in figure 6. Every block has maximum wait time or

threshold time. Completely occupied sequential blocks are

de-staged with high priority. The average block

accumulation interval is measured by the average update

time of the accumulated data. If the data accumulation time

is 50% above the average block accumulation time, that

sequential buffer is ready for de-stage. Moreover, the

sequential blocks are de-staged based on the cache

utilization ratio. This utilization ratio is calculated by the

number of valid data to block capacity. The block which has

the maximum number of valid data is chosen for de-stage.

Every block has a maximum wait time, when time elapsed,

it is de-staged irrespective of other de-stage parameters. The

above said de-stage policies are applied on the LRU list. The

de-stage policies effectively utilizes the cache and assists to

reduce the complexities in the garbage collection. RFLRU

page replacement scheme is devised for the SSD write

buffer. That is RFLRU allocates and manages buffer cache

memory only for write requests from the host operating

system. And for the read request, the data is directly read

from SSD as the read operation is a low time consuming

compared write operation.

Fig. 6. RFLRU buffer de-stage flow Diagram

F. Merging Techniques for Switch Merges in Garbage

Collection

In RFLRU, the LRU policy is applied on entire block

rather than on individual page. A victim sequential buffer

may be completely occupied or partially occupied. The

blocks are aligned with SSD erasure block boundaries. That

is the buffer page offset and SSD erasure block offsets are

aligned. LRU policy is applied to the dirty pages on the

block and not on the clean pages. If a dirty page is added to

the block all pages in the same block range are placed at the

head of the LRU list. Completely occupied sequential

buffers are written into SSD, this triggers the switch merge.

However, enlargement techniques are applied on the

partially occupied sequential buffers to merge the buffer

with the clean pages from the SSD log and data block. There

27 10 33 44

2 303 40 49

5 6

21 69

0 2 1 3 4

Outgoing write

4 69

0

21 5 6

Incoming write

2 303 40 49

4 69

0

21 5 6

5 7 6 8

21 31 69 54 65

Outgoing write

7 54

0

31 65 8

Incoming write

LRU FAST

44

33

1

0

27

49

40

30

3

2

0

1

2

3

27

30

33

40

44

49

REF FAST

0

1

2

3

4

44

27

33

40

30

RFLRU FAST

4

5

6

7

8

44

27

33

40

30

REF FAST

6

5

69

21

4

8

65

54

31

7

LRU FAST

5

6

7

8

21

69

13

54

65

RFLRU FAST

Incoming write

Load factor==1 or

Timer expired?

Arrival is lower

than average?

Cache Utilization

Ratio >defined

value

Evict
Yes

Evict
Yes

No

No

No

Sequential

Buffers
Random

Buffers

Apply LRU

policy

Incoming write

Apply LRU

policy

Evict Evict

Yes

Engineering Letters, 22:4, EL_22_4_02

(Advance online publication: 30 November 2014)

__

are primarily three techniques are used namely Early, Late

and Hybrid enlargements.

1) Early Enlargement: Partially occupied sequential

buffers are enlarged through padding the clean

pages from the SSD data block; we call this as an

early write enlargement. For the reason that the

sequential buffer’s data is padded with SSD data

block before the buffer cache data is written into

SSD as shown in figure 7. A bit similar method

called block padding [8] is proposed to improve the

block utilization. Block padding manages all the

pages in buffer cache by the block level LRU

policy in FTL. The block which is not accessed for

the longest time is selected as a victim block.

BPLRU invokes switch merge through block

padding. In REF [23] the padding is done for the

blocks which has more than 80% load factor.

However in our approach the enlargement is done

intelligently based on the following three important

criteria

 Enlarge the suffix pages in the write sequence if the

incoming write is attenuated for that particular

sequence

 Enlarge the prefix pages in the write sequence if no

write sequence preceded

 Discard the enlargement, if the block eviction is

forced due to high cache utilization

These criteria’s identifies the page sequence for

which the write is either not expected or the current

write sequence is terminated. This gives the

determination that the write is not expected in the

near future. Unlike in BPLRU and REF, the

enlargement is done using the above mentioned

rationale. For the clean page addition, the data is

brought from the SSD and the whole erasure block

is written into SSD. This significantly improves the

block utilization compared to LAST [8] and FAST

[5] scheme and hence enhanced write performance.

Early enlargement prevents the garbage collection

for partially occupied write blocks.

2) Late Enlargement: In contrary to early

enlargement, in this technique the clean pages are

brought from the log block into the buffer cache as

shown in figure 8. In other words already written

log blocks are padded with the sequential buffer

cache data. This prevents the unnecessary live page

migrations. The SSD log block is looked up on

every partial block eviction. The log blocks are

identified if they have corresponding page which is

yet to be padded for the sequential buffer. The

clean pages are read from log block and the erasure

block is written along with the dirty pages in the

buffer cache. The important difference from the

early enlargement is that every partial sequential

block eviction, the log block is consulted for

padding the clean pages. This merge process

reduces the live page migration on the garbage

collection process. Moreover this merge process is

triggered on every partial sequential buffer

eviction, though it is named as late enlargement,

the merging happens well ahead of the garbage

collection process.

This enlargement technique comes in handier when

the sequential writes are discrete and slow in

nature. At times the sequential write is separated by

time; the discrete sequential data will spread across

multiple SSD log blocks. Essentially in the garbage

collection process, all these log blocks are merged

and the final data block is created. However,

garbage collection process is either triggered by the

host file system or at times the log blocks are near

completely utilized. However typically the discrete

sequential write happens in a short span of time and

eventually the late enlargement reduces the live

page migrations and saves quite a few SSD

erase/program cycles. Late enlargement prevents

the garbage collection for the log block data.

3) Hybrid Enlargement: RFLRU introduces a two

way enlargement concept where the partially

occupied sequential buffer from the buffer cache is

enlarged with the clean pages from the log block

and data block as shown in figure 9. And the final

write block is created and written into SSD. Similar

to the previous enlargement techniques, this also

reduces live page migration and eliminates SSD

erase/program cycle. However this merging

technique sets in when the late merge yields partial

erasure blocks; otherwise the environmental factors

and use cases are same as early merge.

Before the write data enlargement, we should identify

the set of associated log blocks, (), of a victim block Vi.

 () is composed of all log and data blocks which has the

clean pages to the corresponding empty pages in the victim

block. We represent () formally as follows

 () {

}

Where means a data block, means log block and

means a page.

denotes the empty pages in the victim

block and
 and

 denotes the clean pages from

the log block and data block respectively. For example,

 () in figure 8 is the log block {L0}. For each empty

page in the victim block , the clean pages are read from

the associated log and data block and moved into victim

block and finally the victim block is written into SSD.

Fig. 7. Early Enlargement-Prefix pages 0&1 and suffix page 4 are padded,
this is executed when no preceding and succeeding write sequence is

observed on the block and the block is not evicted due to high cache

utilization

VI. PROTOTYPE DESIGN AND IMPLEMENTATION

A. Experimental Setup

Trace driven simulation was implemented by extending

the FlashSim [21], a simulator for NAND Flash-based

SSD’s. And FAST [5] was chosen as a base FTL simulation

0

1

2

3

4

x x 2 3 x

0 1 2 3 4

Data Block at t0

Buffer Cache
Data Block at t1

Engineering Letters, 22:4, EL_22_4_02

(Advance online publication: 30 November 2014)

__

Fig. 8. Late Enlargement-Sequential buffer is enlarged using the clean

pages from the SSD log block. Buffer cache and log blocks are merged to

create the data block

Fig. 9. Hybrid Enlargement -Sequential buffer is enlarged using the clean

pages from log and data block

type. In addition to RFLRU implementation, for the

benchmark comparison, the page replacement policies

namely, LRU, block padding, REF are also implemented.

The SSD configuration values are identified in the table I

with a reference from [22]. Typically the capacity of SSD’s

inner DRAM ranges from 16MB to 64 MB, for our

simulation runs we have configured from 2 MB to 32MB.

TABLE I

FLASHSIM SPECIFICATIONS

Traces Read (sectors)

Page read to register 25µs

Page write from register 200µs

Block erase 1.75ms

Die (SSD)size 2GB

Block size 256KB

Page size 4KB

Data register 4KB

Number of Erase cycles 200K

Buffer cache 2MB-32MB

B. Workload Traces

Traces are collected from several different environments

and the characteristics of the traces are listed in table 2. The

traces represent typical applications. Synthetic trace is

acquired using Iometer on Linux Ext4 file system for

producing homogeneously distributed random and

sequential pattern. It creates large file with complete

partition size and then overwrites the sectors randomly, the

writes are configured for 4K with 20% random and 100%

sequential workloads are created for this test. The

Flashsim’s Run test script is executed which basically runs

the file which has the traces. Upon successful completion of

the simulation, the .outv file is analyzed and the results are

compared.

TABLE II

CHARACTERISTICS OF TRACES

VII. EXPERIMENTAL RESULTS

SSDs write behind cache is aimed at improved

performance and extending the flash memory lifespan. In

this study, the write performance is measured by number of

erased blocks, average write response time, total number of

pages read and write and number of live page migration.

Using these parameters, we characterized the behavior of the

proposed buffer management scheme. And the simulation

runs are repeated for varying buffer cache size and

compared against previously proposed buffer management

schemes.

A. DRAM size and performance

We have analysed the buffer cache size impact on write

performance; figure 10 shows the execution time for each of

the workloads with cache sizes varying in a large range. As

RFLRU uses buffer cache to hold the segregated work load,

a large cache would help to hold larger portion of

workload’s working set in the cache until one of the de-

stage specified threshold value is reached. When cache size

is small, the sequential buffers are evicted before it grows

till the erasure block size for the IOR (interleaved or

random) workload. This triggers the write enlargement and

inner generated write traffic or writes amplification.

However the write enlargement is done intelligently by

identifying the write attenuation of ongoing sequential

writes. When the buffer cache size is increases beyond

16MB, further increase in response time is observed. This

demonstrates that RFLRU performs better when the cache

size increases especially with IOR workload. Figure 10

shows the execution times for each evaluated schemes by

varying the size of the buffer cache between 2MB to 32 MB.

In general the execution time declines at times the buffer

cache size is more. Overall, RFLRU shows better

performance than the rest of the buffer management

schemes across all buffer sizes. Particularly, RFLRU

demonstrates good I/O performance when the size of the

buffer cache is large. For example, BPLRU and REF require

32 MB to achieve the write performance, whereas at 16MB

RFLRU attains the same performance. The increased

performance is observed when there is more buffers to

queue the identified sequence in the write pattern. However

at smaller buffer zones, RFLRU performs marginally better

than BPLRU and REF as the size of the buffer cache

influences the performance. However the performance of

LRU FAST is not greatly affected by the buffer cache size.

For the 100% sequential load, all the buffer management

performs almost similarly.

Table 3 represent the average response time in Iometer

20%random workload with varying buffer cache size. The

response time of the request refers to the time period

between its arrival at the device and the completion of the

Traces
Read

(sectors)

Write

(sectors)

Read/Write

 Exchange 27246735 33823876 1/1.24

Financial OLTP(Online

transaction processing)

21510794 77982370 1/3.6

Iometer-20% random 10167847 49101834 1/4.8

Iometer-100% sequential 12149099 51100398 1/4.2

x x x 3 4

Buffer Cache

x x x 3 4

0

1

2

3

4

Log Bloc

0 1 2 x x

Data Block at t0

Data Block at t1

Log Block

{L0}

0 21 3 4

x xx x 4

0 21 3 4

Buffer cache

Log block

Data block

0

1

2

3

4

Data block

Engineering Letters, 22:4, EL_22_4_02

(Advance online publication: 30 November 2014)

__

Fig. 10a. Exchange I/O Execution time comparison for different page

replacement schemes

Fig. 10b. Finance I/O Execution time comparison for different page

replacement schemes

Fig. 10c. Iometer20%random I/O Execution time comparison for

different page replacement schemes

Fig. 10d. Iometer 100% sequential I/O Execution time comparison for

different buffer cache management schemes

write operation. This time includes the locality detection,

write buffering and garbage collection. As we increase the

size of buffer cache, RFLRU surpasses FAST, BPLRU and

REF schemes. It may be argued that on the slow writes,

RFLRU’s response time is poor due to the sequential

buffering nature. However this can be improved by

increasing the wait time on the LRU queue. The latency of

the write workload heavily depends on the full merge

triggered by the write sequence. The write response

increases on high buffer sizes as the garbage collection over

head is reduced due to large amount of switch merge

invocation and frequent log block merging is reduced. The

faster response time is also attributed by the specified

enlargement techniques on the partially occupied data

blocks. RFLRU accomplishes marginally better response on

lower buffer cache size, whereas BPLRU and REF need

more buffer cache to achieve the similar response time.

From the response time table 3, it is understood that RFLRU

performs better as the buffer cache size goes up.

TABLE III

AVERAGE RESPONSE TIME ACROSS DIFFERENT BUFFER

SCHEMES ON ALL WORK LOADS

Average

response

time

(ms)

4MB 8MB 12MB 16MB 20MB 24MB 28MB 32MB

LRU FAST 4.84 4.46 4.2 3.92 3.7 3.2 2.96 3.17

BPLRU 3.4 3.25 3. 18 3.1 2.21 1.75 1.09 1.13

REF 3.5 3.18 3.25 2.98 2.01 1.28 0.78 0.97

RFLRU 3.9 3.01 2.76 2.01 1.48 0.67 0.38

0.21

B. Impact of RFLRU’s Random Ahead Technique

Using two different buffers for sequential and random

write sequences, the write ahead random technique can

recognize more and longer write sequences. In other words,

with the given cache size, the technique is expected to hold

larger portion of sequential write pattern so this reduces the

live page migration cost in FTL garbage collection process.

As shown in figure 10, the financial workload receives most

significant improvements, up to 82% compared to pure

sequential writes. As financial workload has many random

writes, it can easily break long sequences, leading to

relatively low full merges.

C. Write Back Buffer Schemes Comparison

We compare the RFLRU with FAST LRU, BPRLU and

REF buffer management policies. BPLRU is a classical

write buffer policy for SSD, it has been extensively

evaluated. REF is a recently proposed policy which has

write ordering along with BPLRU’s padding technique. The

experimental results are presented in figure 11 and 12. As

shown in figure 11, RFLRU erases least physical blocks on

most of the workloads. To further explain why RFLRU

achieves this lower erase count, we compare the number of

live page migration, which is explained in figure 12. Merge

operation in the garbage collection process, causes extra

read and write generated by the background operations. A

superior buffer cache page replacement scheme should help

to reduce the number of page read and write, thus alleviate

the write amplification. As merging a block indicates

migrating pages from one physical block to another physical

block, which is a live migration. BPLRU arranges the dirty

and clean pages in a logical block group, these groups are

the atomic units replaced by the LRU buffer replacement

policy. However, though the block associativity is low,

BPLRU increases the inner generated read traffic for the

clean page padding, and this affects the overall write

throughput. In FAST scheme the block associativity of each

log block is typically high because the dirty pages are

written using the simple LRU policy.

However in REF the dirty pages are reordered to reduce

the high log block association. Whereas in our proposed

RFLRU buffer management scheme, the log block

associativity is naturally reduced by identifying the

sequential write pattern and buffering the sequential data

stream. In addition to this, RFLRU uses enlargement

0

2000

4000

6000

8000

10000

4 8 12 16 20 24 28 32

LRU FAST BPLRU

REF RFLRU

Buffer Size (MB) T
o

ta
l

I/
O

 E
x

ec
u

ti
o
n

 T
im

e
(s

ec
)

0

1000

2000

3000

4000

4 8 12 16 20 24 28 32

LRU FAST BPLRU

REF RFLRU

T
o

ta
l

I/
O

 E
x

ec
u

ti
o
n

 T
im

e
(s

ec
)

Buffer Size (MB)

0

1000

2000

3000

4000

5000

4 8 12 16 20 24 28 32

LRU FAST BPLRU REF RFLRU

T
o

ta
l

I/
O

 E
x

ec
u

ti
o
n

 T
im

e

(s
ec

)

Buffer Size (MB)

0

1000

2000

3000

4000

4 8 12 16 20 24 28 32

LRU FAST BPLRU
REF RFLRU

T
o

ta
l

I/
O

 E
x

ec
u

ti
o
n

 T
im

e
(s

ec
)

Buffer Size (MB)

Engineering Letters, 22:4, EL_22_4_02

(Advance online publication: 30 November 2014)

__

different techniques to increase the block utilization and the

merging activity is done ahead of the garbage collection

 Fig. 11a. Exchange - Erase blocks comparison for different buffer

cache management schemes

 Fig. 11b. Finance - Erase blocks comparison for different buffer

cache management schemes

Fig. 11c. Iometer 20%random - Erase blocks comparison for different

buffer cache management schemes

Fig. 11d. Iometer 100% sequential - Erase blocks comparison for

different buffer cache management schemes

 Fig. 12a. Exchange -Live page migration count comparison for

different buffer cache management schemes

process. Though the block associativity is one of the crucial

parameter for comparing the performance across the buffer

management schemes, and block associativity is

proportional to the number of page migrations in the

merging process triggered by the garbage collection. So we

have used the live page migration count for comparing the

performance across different schemes. RFLRU exhibits low

Fig. 12b. Finance - Live page migration count comparison for different

buffer cache management schemes

Fig. 12c. Iometer 20%random - Live page migration comparison for

different buffer cache management schemes

Fig. 12d. Iometer 100% sequential - Live page migration count comparison

for different buffer cache management schemes

live page migration on most of the workloads, especially on

OLTP work load. Whereas in pure sequential workload the

performance improvement is not very significant, refer

figure 12d, as the page migration count is almost equal

across different buffer management schemes.

D. Assumptions and Discussion

Theoretically the logical sequential pages are located

consecutively in SSD and the file system allocates pages

sequentially. Again this assumption is also depends on the

FTL and the workload characteristics. In continuous

sequential workloads, the data placement in SSD is most

likely sequential. So the logical sequential write will get

translated into physical sequential write, this leads to

reduced write amplification. On discontinuous sequential

work workloads, the data on the SSD may not be placed

adjustment to each other. So identifying the local infrequent

sequential pattern in the workload sometimes may not be

yield desired write optimization. For example, few file

systems maintain an in-memory pre-allocation for every file

data. This influences the sequential placement of physical

pages in flash memory though the generated sequential

writes are discrete in nature. This in-memory pre-allocation

helps the slow sequential writes to get written consecutively

in SSD, so file system’s intervention is required for

sequential placement of data in the flash memory.

0

2

4

6

8

4 8 12 16 20 24 28 32

LRU FAST BPLRU REF RFLRU

E
ra

se
d

 B
lo

ck
s
𝑥
1
0
8

Buffer Size (MB)

0

2

4

6

4 8 12 16 20 24 28 32

LRU FAST BPLRU REF RFLRU

E
ra

se
d

 B
lo

ck
s
𝑥
1
0
8

Buffer Size (MB)

0

1

2

3

4

4 8 12 16 20 24 28 32

LRU FAST BPLRU REF RFLRU

Buffer Size (MB)

E
ra

se
d

 B
lo

ck
s
𝑥
1
0
8

0

50

100

150

4 8 12 16 20 24 28 32

LRU FAST BPLRU REF RFLRU

L
iv

e
m

ig
ra

ti
o
n

 c
o
u
n

t
𝑥
1
0
8

Buffer Size (MB)

0

50

100

150

4 8 12 16 20 24 28 32

LRU FAST BPLRU REF RFLRU

L
iv

e
m

ig
ra

ti
o
n

 c
o
u
n

t
𝑥
1
0
8

Buffer Size (MB)

0

20

40

60

4 8 12 16 20 24 28 32

LRU FAST BPLRU

Buffer Size (MB) L
iv

e
m

ig
ra

ti
o
n
 c

o
u

n
t
𝑥
1
0
8

0

1

2

3

4

5

4 8 12 16 20 24 28 32

LRU FAST BPLRU REF RFLRU

E
ra

se
d

 B
lo

ck
s
𝑥
1
0
8

Buffer Size (MB)

0

10

20

30

40

50

4 8 12 16 20 24 28 32

LRU FAST BPLRU REF RFLRU

L
iv

e
m

ig
ra

ti
o
n

 c
o
u
n

t
𝑥
1
0
8

Buffer Size (MB)

Engineering Letters, 22:4, EL_22_4_02

(Advance online publication: 30 November 2014)

__

In LRU write policy, the page references are kept in

sorted temporal order. When a page frame is accessed, the

page needs to be moved to the most recently used position.

This operation requires a global lock to protect the data

structures from the concurrent access. Since the page access

are common and such a frequent rearrangement of data

structure would be expensive. We have used the LRU policy

against block level instead of page level, so the LRU

approximation algorithms such as Clock [23] may not be

required.

Though RFLRU increases the scope for switch merge, the

scope is determined by the FTL buffer size, and the buffer

cache management is heavily influenced by the host file

system through the flush command. If the host file system

frequently issues the flush command, the write performance

will get heavily affected negatively. This is because the dirty

pages have to be written immediately into flash array.

Readers may argue that the buffering high temporal locality

workload might reduce the number of writes as proposed in

the previously proposed algorithms. In RFLRU, sequential

buffer eviction is based on multiple parameters listed in de-

stage control, however we have not factored the high

temporal locality workloads on the random buffers as the

study is primarily intended to address the interleaved

sequential writes along with little amount of random

workload generated from the meta data modification on the

file system.

VIII. CONCLUSION

The proposed RFLRU page replacement scheme is an

enhancement of LRU FAST, BPLRU and REF based FTL’s

for flash memory based SSD. This research makes the

following contributions namely, sequence identification,

write random ahead, techniques for SSD write enlargement

and buffer cache de-stage rules. By analyzing the incoming

write sequence, the interleaved sequential write patterns are

identified and buffered. And the partial sequential blocks are

enlarged with the clean pages through early or late or hybrid

enlargement techniques and written into flash memory.

More importantly the random data is preferred for write

while buffering the sequential data stream; this random

ahead technique addresses the slow and interleaved

sequential write. The simulation result shows that the

proposed scheme reduces the SSD’s inner generated write

traffic with reduced erase/programs cycles. Additionally, the

improved write performance comes up with no increase in

SSD log block area with better write response time.

REFERENCES

[1] Eran Gal, Sivan Toledo, School of Computer Science, Tel-Aviv

University, ―Mapping Structures for Flash Memories: Techniques
and Open Problems". In Proceedings of the IEEE International

Conference on Software Science, Technology and Engineering,

2005.
[2] Understanding the Flash Translation Layer (FTL) Specification,

Application Note, Intel Corporation, 1998.

[3] Min, C., Kim, K., Cho, H., Lee, S., and Eom, Y,‖ Sfs: Random write
considered harmful in solid state drives”. In FAST'12: Proceedings

of the 10th Conference on File and Storage Technologies, 2012.

[4] F. Chen, D. A. Koufaty and X.D.Zhang, ―Understanding intrinsic
characteristics and system implications of flash memory based solid

state drives‖, In Proc. of SIGMETRICS’09, 2009.

[5] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J.
Song, ―A log buffer-based flash translation layer using fully

associative sector translation‖,ACM Transactions on Embedded

Computing Systems, vol. 6, no. 3, 2007.

[6] H. Kim and S. Ahn, ―BPLRU: A buffer management scheme for

improving random writes in flash storage,‖ in Proc. of USENIX
Conference on File and Storage Technologies, pp. 239-252, 2008.

[7] J. Kang, H. Jo, J. Kim, and J. Lee, ―A superblock-based flash

translation layer for NAND flash memory‖, In Proc. of ICES’06,
2006.

[8] S. Lee, D. Shin, Y. Kim, and J. Kim, ―LAST: Locality-Aware Sector

Translation for NAND Flash Memory-Based Storage
Systems‖,In Proc. SPEED’08, Feburary 2008.

[9] Sang-Phil Lim, Sang-Won Lee, Bongki Moon, ―FASTer FTL for

Enterprise-Class Flash Memory SSDs‖, International Workshop on
Storage Network Architecture and Parallel I/Os 2010.

[10] Song Jiang, Lei Zhangy, XinHao Yuany, Hao Huy and Yu Chen, ‖S-
FTL: An efficient address translation for flash memory by exploiting

spatial locality‖,IEEE 27th Symposium on Mass Storage Systems and

Technologies (MSST), 2011.
[11] Aayush Gupta, Youngjae Kim, Bhuvan Urgaonkar,―DFTL:a flash

translation layer employing demand-based selective caching of page-

level address mappings‖,In Proceedings of the 14th International
Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS 2009), Washington, DC, USA,

March 7-11, 2009.
[12] Qingsong Wei ; Bozhao Gong ; Pathak, S. ; Veeravalli, B. ;Lingfang

Zeng ; Okada, K,―WAFTL: A workload adaptive flash translation

layer with data partition‖, IEEE 27th Symposium on Mass Storage
Systems and Technologies (MSST), 2011.

[13] H. Jo, J. U. Kang, S. Y. Park, J. S. Kim, and J. Lee. ―FAB: Flash-
aware buffer management policy for portable media players,‖ IEEE

Transactions on Consumer Electronics, vol. 52, no. 2, pp. 485-493,

2006.
[14] Jian Hu, Hong Jiang, Lei Tian and Lei Xu Department of Computer

Science & Engineering University of Nebraska – Lincoln,―PUD-

LRU: An Erase-Efficient Write Buffer Management Algorithm for
Flash Memory SSD‖, Modeling, Analysis & Simulation of Computer

and Telecommunication Systems (MASCOTS), IEEE International

Symposium, Pages 69 - 78, 2010.
[15] Hui Zhao, Peiquan Jin, Puyuan Yang, Lihua Yue, ―BPCLC: An

Efficient Write Buffer Management Scheme for Flash-Based Solid

State Disks‖, International Journal of Digital Content Technology
and its Applications Volume 4, Number 6, September 2010.

[16] Dongyoung Seo, Samsung Electron, Suwon, Dongkun

Shin,―Recently-evicted-first buffer replacement policy for flash
storage devices‖,IEEE Transactions on Consumer Electronics,

Volume:54, Issue:3, Aug 2008.

[17] Zhi-Guang Chen, Nong Xiao, Fang Liu, Yi-Mo Du,‖Reorder Write
Sequence by Hetero-Buffer to Extend SSD's Lifespan‖, Journal of

computer science and technology, Jan 2013.

[18] Sungjin Lee, Dongkun Shiny and Jihong Kim,―Buffer-Aware
Garbage Collection for NAND Flash Memory-Based Storage

Systems‖,IEEE Transactions on Computers, volume-62, Issue-

11 ,September 2012.
[19] F. Shu and N. Obr. ―Data set management commands proposal for

ATA8- ACS2‖, http://www.t13.org/, 2007.

[20] http://www.scsita.org/library/white%20papers/SAS_SATA%20Com
patibility.pdf

[21] Youngjae Kim, Brendan Tauras, Aayush Gupta, Dragos Mihai

Nistor, Bhuvan Urgaonkar, "FlashSim: A Simulator for NAND
Flash-Based Solid-State Drives", Advances in System Simulation,

2009. SIMUL '09. First International Conference on 2009.

[22] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis,M. Manasse,
and R. Panigrahy. Design tradeoffs for SSD performance. In Proc. of

USENIX’08, June 2008.

[23] Biplob Debnath, Sunil Subramanya, David Du, David J. Lilja,
―Large Block CLOCK (LB-CLOCK): A Write Caching Algorithm

for Solid State Disks‖, In 17th IEEE International Symposium on

Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, 2009.

Arul Selvan Ramasamy received the Bachelor of
Engineering degree in Electrical and Electronics

Engineering from Madras University, Chennai, India

in 1996. He received the Master of Engineering degree
in Applied Electronics from PSG College of

Technology, Coimbatore, India in 2000. At present, he

is a doctoral research scholar at Anna University
Chennai, India. His research interest includes de-

duplication, context aware solutions, file systems and flash memory.

Engineering Letters, 22:4, EL_22_4_02

(Advance online publication: 30 November 2014)

__

http://www.scsita.org/library/white%20papers/SAS_SATA%20Compatibility.pdf
http://www.scsita.org/library/white%20papers/SAS_SATA%20Compatibility.pdf

Dr.K.Porkumaran received the Bachelor of

Engineering degree in Instrumentation & control
Engineering from Madras University, Chennai, India

in 1996. He received the Master of Engineering degree

in Control Systems from PSG College of Technology,
Coimbatore, india in 2000. He received Doctor of

Philosophy in Control Systems Engineering from PSG

College of Technology, Coimbatore, India in 2006. He
is currently a professor and principal at Dr. N.G.P. Institute of Technology

Coimbatore, India. His research interests include embedded software,

multimedia and real-time systems, storage and file systems.

Engineering Letters, 22:4, EL_22_4_02

(Advance online publication: 30 November 2014)

__

