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Abstract—Flash memory based Solid State Drives (SSD) 

acquiring greater attention in enterprise storage computing 

environment; this is primarily due to its high I/O speed. SSDs 

use multiple NAND flash memory chips as a storage media and 

deploy internal RAM to maintain the flash translation layer 

(FTL) mapping table. The rest portion of the inner RAM is 

used as a buffer. This buffer absorbs the write requests and 

thus the resulting write requests to the NAND flash memory is 

determined by the SSD buffer cache management algorithm. 

Many of the previously proposed write buffer cache 

management algorithms concentrate on improving the random 

write performance either by reordering the writes, addressing 

the temporal locality or evicting the clean pages etc. And they 

have not concentrated enough to exploit the sequential locality 

in the write pattern. Because of this, the input sequential write 

patterns are not completely utilized by the Flash Translation 

Layer and that reduces the number of switch merges and 

increases full and partial merges in log block based FTL. In 

this paper, a novel algorithm called RFLRU: Random First 

Least Recently Used is proposed to improve the performance 

of SSD write operation on mixed workload. The algorithm 

identifies the interleaved sequential writes, constructs various 

cache eviction policies and the write sequence is constructed by 

contemplating the SSD characteristics. Essentially this new 

technique reduces number of erase and writes operations on 

SSD. An efficient RFLRU implementation is developed and 

tested in a trace driven simulation environment and compared 

to the previously proposed LRU FAST, BPLRU and REF 

buffer management schemes. The results show that RFLRU 

reduces the number of merge; erase and write operations and 

the overall write performance is improved. 
 

Index Terms—sequential write, random write, switch merge, 

full merge, page replacement, buffer management, log block, 

erase-before-write, write amplification, de-stage. 

I. INTRODUCTION 

SSD’s consists of multiple flash memory blocks, and each 

block is composed of multiple pages. The scope of this 

paper is limited to NAND flash memory. There are three 

basic types of operations in NAND based flash memory; 

read, program and erase. Page is the basic unit of read/write 

operation in flash memory. Flash memory does not support 

in-place update. After a page write, entire block has to be 

erased before the subsequent write operation on the same 

page or any of the page that belongs to the specific block, 

this block is called erasure block. Thus, flash memory based 

SSDs poses a well-known challenge, that is, the erase-

before-write problem.  
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In SSD write procedure, the free space in flash memory 

array is scanned. In general the free space can be an un-

programmed blocks of memory cells and individual pages. 

In case if the space is not enough for data storage in one 

location, the flash memory array data is rearranged by 

erasing, rewriting and moving the data to new place within 

the same memory array. This inner generated write traffic is 

called write amplification [1]. And NAND flash memory 

can incur only a finite number of erase operations for a 

given erasure block. Therefore, increased erase operation 

will impact the write performance negatively and reduce the 

life span of SSD. 

Random write causes lot of erase-before-write operation.  

In flash delete operation, the data is obsoleted, not deleted. 

Obsolete data still occupies the storage, and cannot be 

deleted alone in the same erasure block. Therefore a garbage 

collector is required to clean and erase the block by moving 

all valid data into a free erase block, obsoleting old erase 

block. Random write involves high overhead in the garbage 

collection than sequential write. Random write causes 

fragmentation which results in large number of live page 

migration during garbage collection. To handle this special 

feature of flash memory, most systems use flash translation 

layer (FTL). The primary role of FTL [2] is to emulate the 

functionality of block device by abstracting the erase before 

write characteristics of the NAND flash memory. 

In the past, the flash memory usage was uncomplicated. 

For example, MP3 player and digital camera used the flash 

memory to read and write only large-sized multimedia files. 

And most of the read or write operations are sequential in 

nature. However, recent applications for flash memory are 

complex and diverse. In a real world enterprise storage 

system, there are many sequential writes gets manifested as 

random write because of write interleaving across 

applications, this results in a mixed write workload which is 

again random in nature. Random write [3] is a critical 

problem for write performance and lifetime of flash 

memory; this constrains the SSD’s widespread acceptance in 

enterprise storage system [4]. Write amplification [1,3] 

triggered by random write can be addressed from two 

different perspectives. 

Firstly, design the FTL address mapping scheme to 

postpone and minimize block erasures. Primarily three types 

of FTL mapping schemes are developed based on the 

granularity of the address mapping: page-level, block-level, 

and hybrid or log buffer. The hybrid mapping uses both 

page mapping and block mapping. In this scheme, all 

erasure blocks are separated into log blocks and data blocks, 

this is also called log buffer based FTL [5]. For a write 

request, the log block based FTL first sends the data to the 

log block and invalidates the corresponding data in the data 

block. Once the log space is utilized, the victim blocks are 

selected and all the valid pages in the victim block are 
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migrated to the data blocks, this migration process is called 

block merge. There are three kinds of block merge 

techniques [7] namely; full merge, partial merge and switch 

merge. The full merge allocates a free block that is erased 

beforehand, and then copies the most up-to-date pages either 

from the data block or from the log block, into the new free 

block. After copying all the valid pages, the free block 

becomes the data block and the former data block and the 

log block are erased. Therefore, a single full merge requires 

read and write operations as many as the number of valid 

pages in a block and two erase operations. Partial and switch 

merges are special cases of the merge operation. The partial 

merge takes place when all the valid pages in the data block 

can be copied to the rest of the log block. Partial merge 

copies only the valid pages in the data block and one erase 

operation can be saved compared to the full merge. On the 

other hand, if all the pages in the data block are already 

invalidated, simply switch the log block to the new data 

block and erase the old data block. This case is called switch 

merge. Garbage collector handles the merging process. For a 

better write performance on random workload, the merging 

complexities have to be reduced, which requires a 

sophisticated FTL address mapping technique. 

Secondly, in addition to address mapping and garbage 

collection algorithms, FTL has page replacement algorithm 

[6]. Flash memory write performance is enhanced by 

incorporating DRAM-backed buffers inside SSD in which 

write requests are buffered by the SSD buffer cache. The 

write operation is expensive on SSD device and most of the 

time, applications demonstrates good temporal and spatial 

locality. It is of advantage to incorporate a write-back cache, 

building on principles used in conventional file system 

cache to address the temporal and spatial locality in the 

write workload. The basic policy used is write-behind, i.e., 

always data is first written into the buffer cache, and later 

propagated into flash memory. The page replacement policy 

of buffer cache is critical for the write performance and 

device endurance as it determines the flash memory write 

pattern. 

The rest of the paper is organized as follows. In section2, 

the problem is explored in detail, and section 3 defines the 

contribution to address the defined problem. In section 4, the 

related work is explored in detail, and section 5 introduces 

the RFLRU scheme which is an enhanced version of 

previously proposed buffer cache algorithms. Section 6 

describes the prototyping environment. Experimented 

results are presented in section 7 and finally the results are 

concluded. 

II. THE PROBLEM 

SSD’s internal RAM is used as a buffer to absorb a 

portion of the read and write requests by the application 

such as file system. The write performance of NAND flash 

memory is heavily influenced by the FTL page replacement 

algorithm. SSD exhibits good read performance on 

sequential and random workloads and good write 

performance on sequential workload. However, SSD suffers 

from random write workload. For example, most write 

requests from MP3 player and movie files are sequential. 

However, typically file server write request pattern exhibits 

combined request of sequential and random, many times the 

random writes are interleaved between sequential writes. 

Firstly, SSD random write is much slower than sequential 

write. Secondly, NAND flash memory can incur only a 

finite number of erases for a given erasure block. Therefore, 

increased erase operation due to random write shortens the 

lifetime of flash memory. Finally, random writes result in 

higher overhead of internal garbage collection than 

sequential writes. This is due to the expensive full merge 

triggered by random write. Full merge is a type of merge 

operation executed by the garbage collection, which causes 

extra read, erase and write operation. If the incoming writes 

are randomly distributed, sooner or later all the erasure 

blocks will be fragmented which results in large number of 

live page migration during the garbage collection. 

Though several page replacement algorithms proposed, 

they have not entirely addressed the performance 

degradation of mixed work load of random and sequential 

write pattern. To improve the flash write performance on 

mixed write workload, it is indispensable to detect the 

locality of the incoming write request and build a 

sophisticated FTL page replacement algorithm to absorb the 

mixed workload in alignment to the flash memory 

characteristics. 

III. CONTRIBUTIONS 

So it is very essential to contemplate the flash memory 

characteristics and build a high performance FTL for the 

evolving general purpose storage system based on flash 

memory. This research primarily makes the following 

contributions: Firstly, detect the locality type more precisely 

on the write workload. Secondly, random and sequential 

write requests are segregated and different write policies are 

applied on them. Finally, different write enlargement 

techniques are applied to reduce the merge cost during the 

garbage collection process. 

For these contributions, a new page replacement scheme 

called a Random First Least Recently Used (RFLRU) is 

developed. This scheme is an improvement to the previously 

proposed block-level replacement schemes. The proposed 

algorithm reduces the full and partial merge count and 

increases the switch merge count during the garbage 

collection process. Also the proposed algorithm improves 

and springs up the best practices from the previously 

proposed schemes to reduce the overall cost of page 

replacement on write. Trace driven experiment is conducted 

on a SSD simulation environment, and the result shows that 

RFLRU performs better than BPLRU, FAST and REF page 

replacement algorithms for the mixed workload of 

sequential and random write pattern. Effectively, RFLRU 

brings up the following benefits on flash write operation: 

 Reduces the number of write and erase operations 

 Reduces the costlier merge in garbage collection which 

in turn reduces the number of live page migration. 

IV. RELATED WORK 

There have been many researches on the log buffer-based 

FTLs on write workload. These researches are aimed to 

improve the write performance and address the merging 

complexities in the garbage collection process. 

FAST [5] keeps a single sequential log block dedicated 

for sequential update and the rest of the log blocks are used 

for random writes. FAST scheme shows a significant 

difference between the worst case block merge time and the 

best block merge time due to its high block associativity. 

This has been known for superior performance for random 

write operations. The key idea of FAST is to rely on the full 

associativity between data blocks and log blocks in order to 
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avoid the log block thrashing problem and this increases the 

log block utilization. SuperBlock FTL [7] scheme 

demonstrated that the temporal locality can be exploited by 

allowing the page level mapping in a SuperBlock which is 

set of consecutive blocks. Then, the cold and hot data are 

separated automatically into different blocks within a 

superblock, thus the garbage collection efficiency is 

improved by reducing the number of full merge operations. 

However, this approach does not efficiently distinguish the 

cold pages from the hot pages and addresses the temporal 

the locality in write workload. LAST [8] scheme tries to 

alleviate the shortcomings of FAST by providing multiple 

sequential log blocks to exploit spatial locality in workloads. 

It further separates random log blocks into hot and cold 

regions to reduce full merge cost. In order to provide this 

dynamic separation, LAST depends on an external locality 

detection mechanism that determines the locality type by 

comparing the size of each request with a threshold value. 

However, Lee et al. themselves realize that the proposed 

locality detector cannot efficiently identify sequential writes 

when the small-sized write has sequential locality. FAST 

does not take full advantage of temporal locality of page 

writes, which results in excessive costly merge operation. 

FASTer [9] was proposed to address the temporal locality 

write workloads. It adopts a new hot-cold separation 

strategy to exploit the dissymmetry in the online transaction 

processing write requests. When a log block is chosen as a 

victim for reclamation, by carrying the valid pages from the 

log block over to a new log block, these pages are given a 

second chance to be invalidated before being merged to the 

corresponding data blocks, the log block is virtually 

extended. S-FTL [10] exploits the spatial locality in the 

SSD’s workloads and significantly reduce page mapping 

table size without imposing any restriction on page mapping 

method. By doing so, S-FTL can benefit from the page-level 

mapping with a low garbage collection cost. It effectively 

addresses the challenge of high garbage collection cost 

experienced by the block-level mapping and hybrid mapping 

such as BAST and FAST. And overcome the challenge of 

limited cache size experienced by the page-level mapping 

such as DFTL [11]. Unlike log buffer based FTLs, DFTL is 

purely page mapped, which exploits temporal locality in 

enterprise workload. Selective portion of the mapping table 

is cached for the address translation and the rest of the table 

is loaded on demand. DFTL improves the locality detection 

proposed by LAST and identifies the sequential writes when 

the small-sized write has sequential locality. WAFTL [12] 

explores page mapping block to store random data and 

handle large number of partial updates, and block mapping 

block to store sequential data and lower overall mapping 

table. Additionally WAFTL explores buffer zone to log the 

data sequentially and partition data based on threshold. 

There are not many researches on the buffer cache in 

flash based storage system. Jo et al. [13] proposed a flash-

aware buffer (FAB) management scheme. In this scheme, 

the buffers of the same erase blocks are grouped together on 

LRU (least recently used) sequence and victim groups are 

larger which are based on the page count on every group. 

This buffer management policy evicts all the pages of a 

block at a time. In sequential writes FAB is very effective. 

PUD-LRU [14] differentiates blocks and judiciously de-

stages the blocks based on their frequency and recency so as 

to avoid the unnecessary erasures due to repetitive updates. 

PUD-LRU maximizes the number of valid pages in the de-

staged block in each erase operation. Kimet al. presented 

BPLRU [6] buffer management scheme especially for 

improving the performance of random writes. BPLRU 

employs a page padding scheme where the log block is 

padded with some clean pages from the data block to reduce 

the number of full merges. BPLRU groups the buffer from 

the same erasure block, and replace them together on SSD. 

Compared to fully block padding technique used in BPLRU, 

the partial block padding technique in BPCLC [15] reduces 

the page padding overhead and therefore improves the I/O 

performance. REF [16] enforces the buffer cache to evict 

only the pages that belongs to the victim block. The victim 

block remains unchanged as far as possible to reduce the 

block thrashing and block associativity. The pages are 

reordered to reduce the number of block merges. Since REF 

uses padding and reordering, this outperforms FAB and 

BPLRU polices. Reordering the write sequence [17] was 

proposed to address the out-of-place update problems and 

the sequential write constraint within a block. The reorder 

space is inside the SSD and the writes are reconfigured 

which prohibits write amplification. In BA-GC [18], the 

garbage collection process considers the contents of a buffer 

cache. This process prevents the unnecessary page 

migrations as there are corresponding dirty pages in the 

buffer cache for pages to be moved by the block merge at 

the garbage collection time, thus improves the write 

efficiency. The buffer cache is consulted during the garbage 

collection process and the garbage collection takes place 

whenever the log blocks are exhausted or explicitly 

triggered by the host file system through the firmware TRIM 

[19] command. TRIM command is designed to enable the 

operating system to notify the SSD which pages no longer 

contain valid data due to erases either by the user or 

operating system itself. During a delete operation, the 

operating system will both mark the sectors as free for new 

data and send a Trim command to the SSD to be marked as 

no longer valid. After that the SSD knows not to relocate 

data from the affected blocks during garbage collection. 

This results in fewer writes to the flash, reducing write 

amplification and increasing flash memory life. 

Most of the research works on the page replacement 

algorithms have addressed the temporal locality in the write 

workload. In some research works, random writes and write 

reordering is exploited [17, 18] but insignificantly. They are 

not optimized for write sequence and the write buffer is 

mostly used to decrease the write traffic. As write requests 

are reduced the number of invalid pages are reduced, this 

extends the SSD lifespan. However, SSD life span is 

exhausted by the inner-generated write amplification. And 

the proposed buffer management scheme improves the SSD 

performance and endurance by erasing less physical block 

for the mixed workload of random and sequential write. 

In summary, current FTL address mapping schemes and 

page replacement algorithms can show poor performance 

and device endurance for the mixed workload of sequential 

and random. This is due to SSD’s inner generated write 

traffic or writes amplification. 

V. RFLRU – RANDOM FIRST LEAST RECENTLY USED 

ALGORITHM 

In this section, Random First Least Recently Used 

(RFLRU) algorithm is discussed along with the write 

sequence analysis in real world enterprise storage system. 

RFLRU algorithm employs sequence detection mechanism 
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and three new write techniques are proposed, namely 

buffering the spatial locality; write random ahead and 

different write enlargements. By employing these 

techniques, sequential write workload is segregated from the 

mixed (random and sequential) workload. And from the 

segregated sequential workload, NAND friendly write 

pattern is generated. NAND friendly write pattern is a 

sequential pattern whose request size aligns with SSD 

erasure block boundaries. NAND friendly write pattern 

increases the probability for switch merge to improve the 

overall I/O performance in flash memory based SSD. 

A. Write sequence analysis 

In various data storage applications, a storage device 

receives data from multiple data sources in an interleaved 

fashion. For example, the Serial Attached SCSI (SAS) [20] 

protocol allows a host to send data associated with multiple 

write commands in an interleaved manner. SSD operating in 

accordance with the SAS protocol will receive multiple data 

streams from the host operating system that are interleaved 

with each other. As yet another example, SSD may receive 

multiple data streams concurrently over multiple different 

physical ports, so that the data of the different streams may 

be interleaved with one another when arriving in the SSD. 

And among the write data streams, some might be random 

and others might be sequential in nature. The inefficiency of 

the SSD write performance is attributed from different write 

access patterns. Random writes are harmful to SSD [4] as it 

incurs more live page migration and erases during the 

garbage collection process. Most write request in media 

player are sequential in nature with small amount of random 

pattern in it. Whereas in general purpose computing has 

write pattern of high temporal locality, sequential locality 

and many times there are many random writes interleaved 

between sequential writes. By processing the de-interleaved 

data streams, write performance and subsequent read 

performance can be improved significantly. 

B. Sequence Identification - Defragmentation and 

Reconstruction 

In reality, most random write workload exhibits certain 

level of sequential pattern. A sequential workload is 

generally a host workload that includes request(s) of data at 

logical addresses that are substantially sequential. Many 

times the sequential work load is interleaved by the 

multitasking nature of the operating systems. The idea is to 

observe the characteristics of the I/O request pattern from 

the operating system. And de-fragment the various write 

streams, by identifying the data source with which each data 

item is associated. In other words, the proposed algorithm 

reconstructs the successive stream of data items associated 

with each data source or program. Figure 1 shows the high 

level work flow in the proposed RFLRU algorithm. Multiple 

programs generate sequential and random write workload. 

Host file system receives this in a pseudo random stream 

and the sequential sequence is identified and reconstructed. 

And the write operation is processed on these data streams 

individually. 

An effective way to detect the sequential patterns is to 

maintain the recent history of write. The write buffers 

contains the data for which write requests are issued by the 

application program and yet to be written into the flash 

memory. Upon arrival of the new write request, RFLRU 

refers to the recent write history to decide if the current 

write is within the proximity of the previous write to 

determine sequential nature. In order to separate sequential 

streams from intermingled pseudo random stream, RFLRU 

uses a Pre-write Context (PWC). This PWC represents the 

run-time object associated with each detected sequential 

stream.  

 
Fig.  1. RFLRU-Different stages in the write sequence 

Each PWC includes the critical parameters to identify the 

sequential locality in the write workload. The locality type 

of each write request is related to the size and frequency. 

Usually the small writes have high temporal locality and 

large writes have high spatial locality. And other parameter 

is closeness in space and time of the logical addresses in the 

write requests. Closeness in space is measured as a distance 

between the write requests. If the requests are continuing 

in time or space without interruption, then there involved a 

sequential write. How close the request with respect to time 

is another parameter. Though the workload exhibits 

sequential locality, the write requests cannot be buffered for 

a long duration which is not close in time. Finally, PWC 

contains pointers for maintaining itself in different data 

structures such as indexing trees and PWC queues. When a 

new write request comes, the request address is compared 

against the most recent pre-write addresses of the existing 

streams to see if there is an established write sequence. If an 

extension is found, the total sequence length of the stream is 

increased by current request’s length. Then statistics of this 

stream are updated with attributes of this new write request. 

When no PWC is available, new PWC is created. And the 

locality type is determined by comparing the write size with 

the predefined threshold value. Requests larger than the 

threshold value are directed to the sequential buffer and the 

rest of the requests are directed to the random buffer.  At 

times, even though the incoming write data size is less than 

the threshold value and has an established write sequence, 

the random buffer is moved to sequential area. PWC keeps a 

record of all write requests in this stream for prediction of 

the next write request’s closeness in space, e.g. recent 

request’s length and timing interval.  

Finally, a PWC contains address pointers for maintaining 

itself in different data structures such as indexing trees and  
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Fig.  2.  The overall architecture of RFLRU scheme 

queues. When a new write request arrives, the request 

address is compared against the pre-write addresses of the 

existing streams to see if it extends any of them. Figure 2 

shows the typical behavior of write requests which are 

generated by multiple applications and received by the FTL 

and several stages in the proposed RFLRU buffer 

replacement scheme. The sequence identification module 

creates a new PWC if the incoming write cannot extend to 

any of the existing PWC’s.  

The primary complexity of this algorithm is to design an 

efficient data structure to search the existing PWCs and 

remove outdated PWCs. This is needed to remove the PWCs 

created and kept for non-sequential requests. Indexing of 

PWCs is done using a balanced tree. This decreases the 

search time to locate the appropriate PWCs and the memory 

consumption on the data structures. Purging process runs in 

the background to delete useless PWCs including both 

obsolete sequential ones and non-sequential ones. 

As shown in figure 3, PWC’s are maintained in two 

queues: active and passive queues. And PWC are managed 

in these queues using furtherance and demotion policies. On 

every new write request, a new PWC is created and it is 

added to the furtherance queue. As PWCs sequential pattern 

is found it is retained in furtherance queue, if not found it is 

moved to the demotion queue. These two queues are ordered 

based on the LRU (least recently used) policy. 

 

 
 

Fig.  3. PWC data structures. Each PWC is linked to either active or passive 
queue. And the PWC’s are indexed by a balanced tree data structure for 

efficient maintenance 

 

When the upper bound of number of active PCs is 

reached, the algorithm moves the PWCs in batches from 

active queue into passive queue. So that PWCs that are not 

sequential or very slow sequential are purged earlier from 

passive queue. For a write request, PWC is found in the 

passive queue, it is moved to the active queue. To search a 

PWC, RFLRU uses a balanced index tree to organize all the 

PWCs. The balanced tree ensures that operations, such as 

deletion, insertion, and search, can complete in O(log n) 

time. Since there is a constant upper bound of the number of 

PCs, the indexing and purging process involves only a small 

overhead. 

C. Write Random Ahead 

In this section the random ahead feature of RFLRU page 

cache replacement scheme is described. Write sequence 

segregation will output two different workload buffers 

namely, sequential and random. In the flash memory write 

operation (de-stage), random blocks are given more priority 

than the partially occupied sequential blocks. That is random 

buffer is written into the SSD log block ahead of the 

partially occupied sequential block. And the partially 

occupied sequential write block is queued until the block is 

completely occupied with write data or the threshold timer 

expired. The write buffers are evicted based on the LRU 

policy. By queuing up the sequential work load, the write 

bandwidth is utilized for random data. Once the sequential 

buffer reaches the erasure block size, the data is written into 

the flash memory. LRU page cache replacement policy is 

not effective for mixed write workload of sequential and 

random. In RFLRU, sequential write is transformed into 

buffered write and random write is preferred for write. Fully 

occupied sequential write on the flash memory log lock will 

produce switch merge during the FTL garbage collection 

process. Write random ahead feature of RFLRU is depicted 

in figure 4. In addition to the above described random ahead 

write scheme, the RFLRU algorithm has additional polices 

for the eviction. This prevents the partial merge triggered by 

the partially occupied sequential blocks.  The proposed 

algorithm works on random buffers, at times the sequential 

buffers is not ready for de-stage. This random ahead feature 

is primarily useful on the slow and interleaved sequential 

writes. Applying the proposed de-stage polices on sequential 

and random write queue reduces the number of SSD merge 

operation in the garbage collection process, thus enhancing 

the SSD write performance.  

 

 
 

Fig. 4a.  RFLRU- Sequential pages 0&1 are buffered in sequential buffer 

and the random pages 44,27&33 are buffered in random buffer 
 

 
 

Fig. 4b.  RFLRU-Sequential pages 0,1,2&3 are buffered and deferred for 

write. And the random block which has pages 44, 27,33,40&30 are 

preferred for write  
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Fig.  4c.  RFLRU-The deferred sequential block which has pages 0,1,2,3&4 

are preferred for write. And the subsequent sequentil and random pages are 
deferred for write. 

 
 

Fig.  4d. Sequential pages 5, 6, 7 & 8 are deferred and random block which 
has pages 21,69,31,54&65 are preferred for write 

D. Comparison among LRU FAST, REF and RFLRU  

Fig. 5 compares the behaviors of buffer cache under LRU, 

REF and RFLRU policies using an example write sequence. 

More pragmatic comparisons are done in the experimental 

results in section 7. In figure 5a LRU triggers full merge, 

though REF reorders the write it triggers partial merge. 

Reorder page numbers 0,1,2,3,27 triggers partial merge 

because page 27 belongs to different data block and RFLRU 

triggers switch merge. In figure 5b, LRU triggers full merge. 

Here REF triggers switch merge through reordering. 

However RFLRU will also trigger the switch merge either 

through padding or utilizing the next write request from host 

operating system 

 

 
Fig.  5a. Comparison of LRU FAST, REF and RFLRU schemes 

 

 
Fig. 5b.  Comparison of LRU FAST, REF and RFLRU schemes 

 

E. RFLRU Buffer Cache De-stage Control 

RFLRU employs policies for de-stage sequence and de-

stage interval for effective write buffer cache utilization and 

enhanced write performance. Sequential buffers are de-

staged based on multiple parameters namely average 

accumulation interval, buffer size, threshold time, number of 

valid pages or load factor and cache utilization ratio as 

shown in figure 6. Every block has maximum wait time or 

threshold time. Completely occupied sequential blocks are 

de-staged with high priority. The average block 

accumulation interval is measured by the average update 

time of the accumulated data. If the data accumulation time 

is 50% above the average block accumulation time, that 

sequential buffer is ready for de-stage. Moreover, the 

sequential blocks are de-staged based on the cache 

utilization ratio. This utilization ratio is calculated by the 

number of valid data to block capacity. The block which has 

the maximum number of valid data is chosen for de-stage. 

Every block has a maximum wait time, when time elapsed, 

it is de-staged irrespective of other de-stage parameters. The 

above said de-stage policies are applied on the LRU list. The 

de-stage policies effectively utilizes the cache and assists to 

reduce the complexities in the garbage collection. RFLRU 

page replacement scheme is devised for the SSD write 

buffer. That is RFLRU allocates and manages buffer cache 

memory only for write requests from the host operating 

system. And for the read request, the data is directly read 

from SSD as the read operation is a low time consuming 

compared write operation. 

 
 

Fig.  6. RFLRU buffer de-stage flow Diagram 

F. Merging Techniques for Switch Merges in Garbage 

Collection 

In RFLRU, the LRU policy is applied on entire block 

rather than on individual page. A victim sequential buffer 

may be completely occupied or partially occupied. The 

blocks are aligned with SSD erasure block boundaries. That 

is the buffer page offset and SSD erasure block offsets are 

aligned. LRU policy is applied to the dirty pages on the 

block and not on the clean pages. If a dirty page is added to 

the block all pages in the same block range are placed at the 

head of the LRU list. Completely occupied sequential 

buffers are written into SSD, this triggers the switch merge. 

However, enlargement techniques are applied on the 

partially occupied sequential buffers to merge the buffer 

with the clean pages from the SSD log and data block. There 
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are primarily three techniques are used namely Early, Late 

and Hybrid enlargements. 

1) Early Enlargement: Partially occupied sequential 

buffers are enlarged through padding the clean 

pages from the SSD data block; we call this as an 

early write enlargement. For the reason that the 

sequential buffer’s data is padded with SSD data 

block before the buffer cache data is written into 

SSD as shown in figure 7. A bit similar method 

called block padding [8] is proposed to improve the 

block utilization. Block padding manages all the 

pages in buffer cache by the block level LRU 

policy in FTL. The block which is not accessed for 

the longest time is selected as a victim block. 

BPLRU invokes switch merge through block 

padding. In REF [23] the padding is done for the 

blocks which has more than 80% load factor. 

However in our approach the enlargement is done 

intelligently based on the following three important 

criteria 
 

 Enlarge the suffix pages in the write sequence if the 

incoming write is attenuated for that particular 

sequence 

 Enlarge the prefix pages in the write sequence if no 

write sequence preceded 

 Discard the enlargement, if the block eviction is 

forced due to high cache utilization 

 

These criteria’s identifies the page sequence for 

which the write is either not expected or the current 

write sequence is terminated. This gives the 

determination that the write is not expected in the 

near future. Unlike in BPLRU and REF, the 

enlargement is done using the above mentioned 

rationale. For the clean page addition, the data is 

brought from the SSD and the whole erasure block 

is written into SSD. This significantly improves the 

block utilization compared to LAST [8] and FAST 

[5] scheme and hence enhanced write performance. 

Early enlargement prevents the garbage collection 

for partially occupied write blocks. 

2) Late Enlargement: In contrary to early 

enlargement, in this technique the clean pages are 

brought from the log block into the buffer cache as 

shown in figure 8. In other words already written 

log blocks are padded with the sequential buffer 

cache data. This prevents the unnecessary live page 

migrations. The SSD log block is looked up on 

every partial block eviction. The log blocks are 

identified if they have corresponding page which is 

yet to be padded for the sequential buffer. The 

clean pages are read from log block and the erasure 

block is written along with the dirty pages in the 

buffer cache. The important difference from the 

early enlargement is that every partial sequential 

block eviction, the log block is consulted for 

padding the clean pages. This merge process 

reduces the live page migration on the garbage 

collection process. Moreover this merge process is 

triggered on every partial sequential buffer 

eviction, though it is named as late enlargement, 

the merging happens well ahead of the garbage 

collection process. 

This enlargement technique comes in handier when 

the sequential writes are discrete and slow in 

nature. At times the sequential write is separated by 

time; the discrete sequential data will spread across 

multiple SSD log blocks. Essentially in the garbage 

collection process, all these log blocks are merged 

and the final data block is created. However, 

garbage collection process is either triggered by the 

host file system or at times the log blocks are near 

completely utilized. However typically the discrete 

sequential write happens in a short span of time and 

eventually the late enlargement reduces the live 

page migrations and saves quite a few SSD 

erase/program cycles. Late enlargement prevents 

the garbage collection for the log block data. 

3) Hybrid Enlargement: RFLRU introduces a two 

way enlargement concept where the partially 

occupied sequential buffer from the buffer cache is 

enlarged with the clean pages from the log block 

and data block as shown in figure 9. And the final 

write block is created and written into SSD. Similar 

to the previous enlargement techniques, this also 

reduces live page migration and eliminates SSD 

erase/program cycle. However this merging 

technique sets in when the late merge yields partial 

erasure blocks; otherwise the environmental factors 

and use cases are same as early merge. 

Before the write data enlargement, we should identify 

the set of associated log blocks,  (   ), of a victim block Vi. 

 (   ) is composed of all log and data blocks which has the 

clean pages to the corresponding empty pages in the victim 

block. We represent  (   ) formally as follows 

 

 (   )  {
                

     
       

      

                
     

       
     

} 

 

Where   means a data block,    means log block and    

means a page.   
     

denotes the empty pages in the victim 

block and   
       and   

     denotes the clean pages from 

the log block and data block respectively. For example, 

 (   ) in figure 8 is the log block {L0}. For each empty 

page in the victim block    , the clean pages are read from 

the associated log and data block and moved into victim 

block     and finally the victim block is written into SSD. 
 

 

 

 

 

 

 

 

 
Fig. 7.  Early Enlargement-Prefix pages 0&1 and suffix page 4 are padded, 
this is executed when no preceding and succeeding write sequence is 

observed on the block and the block is not evicted due to high cache 

utilization 

VI. PROTOTYPE DESIGN AND IMPLEMENTATION 

A. Experimental Setup  

Trace driven simulation was implemented by extending 

the FlashSim [21], a simulator for NAND Flash-based 

SSD’s. And FAST [5] was chosen as a base FTL simulation  
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Fig. 8.  Late Enlargement-Sequential buffer is enlarged using the clean 

pages from the SSD log block. Buffer cache and log blocks are merged to 

create the data block 

 
 

Fig. 9.  Hybrid Enlargement -Sequential buffer is enlarged using the clean 

pages from log and data block 

type. In addition to RFLRU implementation, for the 

benchmark comparison, the page replacement policies 

namely, LRU, block padding, REF are also implemented. 

The SSD configuration values are identified in the table I 

with a reference from [22]. Typically the capacity of SSD’s 

inner DRAM ranges from 16MB to 64 MB, for our 

simulation runs we have configured from 2 MB to 32MB. 

 
TABLE I 

FLASHSIM SPECIFICATIONS 

Traces Read (sectors) 

Page read to register 25µs 

Page write from register 200µs 

Block erase 1.75ms 

Die (SSD)size 2GB 

Block size 256KB 

Page size 4KB 

Data register 4KB 

Number of Erase cycles 200K 

Buffer cache 2MB-32MB 

 

B. Workload Traces 

Traces are collected from several different environments 

and the characteristics of the traces are listed in table 2. The 

traces represent typical applications. Synthetic trace is 

acquired using Iometer on Linux Ext4 file system for 

producing homogeneously distributed random and 

sequential pattern. It creates large file with complete 

partition size and then overwrites the sectors randomly, the 

writes are configured for 4K with 20% random and 100% 

sequential workloads are created for this test. The 

Flashsim’s Run test script is executed which basically runs 

the file which has the traces. Upon successful completion of 

the simulation, the .outv file is analyzed and the results are 

compared. 

 

 

 

TABLE II 

CHARACTERISTICS OF TRACES 

VII. EXPERIMENTAL RESULTS 

SSDs write behind cache is aimed at improved 

performance and extending the flash memory lifespan. In 

this study, the write performance is measured by number of 

erased blocks, average write response time, total number of 

pages read and write and number of live page migration. 

Using these parameters, we characterized the behavior of the 

proposed buffer management scheme. And the simulation 

runs are repeated for varying buffer cache size and 

compared against previously proposed buffer management 

schemes. 

A. DRAM size and performance 

We have analysed the buffer cache size impact on write 

performance; figure 10 shows the execution time for each of 

the workloads with cache sizes varying in a large range. As 

RFLRU uses buffer cache to hold the segregated work load, 

a large cache would help to hold larger portion of 

workload’s working set in the cache until one of the de-

stage specified threshold value is reached. When cache size 

is small, the sequential buffers are evicted before it grows 

till the erasure block size for the IOR (interleaved or 

random) workload. This triggers the write enlargement and 

inner generated write traffic or writes amplification. 

However the write enlargement is done intelligently by 

identifying the write attenuation of ongoing sequential 

writes. When the buffer cache size is increases beyond 

16MB, further increase in response time is observed. This 

demonstrates that RFLRU performs better when the cache 

size increases especially with IOR workload. Figure 10 

shows the execution times for each evaluated schemes by 

varying the size of the buffer cache between 2MB to 32 MB. 

In general the execution time declines at times the buffer 

cache size is more. Overall, RFLRU shows better 

performance than the rest of the buffer management 

schemes across all buffer sizes. Particularly, RFLRU 

demonstrates good I/O performance when the size of the 

buffer cache is large. For example, BPLRU and REF require 

32 MB to achieve the write performance, whereas at 16MB 

RFLRU attains the same performance. The increased 

performance is observed when there is more buffers to 

queue the identified sequence in the write pattern. However 

at smaller buffer zones, RFLRU performs marginally better 

than BPLRU and REF as the size of the buffer cache 

influences the performance. However the performance of 

LRU FAST is not greatly affected by the buffer cache size. 

For the 100% sequential load, all the buffer management 

performs almost similarly. 

Table 3 represent the average response time in Iometer 

20%random workload with varying buffer cache size. The 

response time of the request refers to the time period 

between its arrival at the device and the completion of the  
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Fig. 10a. Exchange I/O Execution time comparison for different page 

replacement schemes 

  
Fig. 10b. Finance I/O Execution time comparison for different page 

replacement schemes 

 
Fig. 10c. Iometer20%random I/O Execution time comparison for 

different page replacement schemes 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10d. Iometer 100% sequential I/O Execution time comparison for 

different buffer cache management schemes 
 

write operation. This time includes the locality detection, 

write buffering and garbage collection. As we increase the 

size of  buffer cache, RFLRU surpasses FAST, BPLRU and 

REF schemes. It may be argued that on the slow writes, 

RFLRU’s response time is poor due to the sequential 

buffering nature. However this can be improved by 

increasing the wait time on the LRU queue. The latency of 

the write workload heavily depends on the full merge 

triggered by the write sequence. The write response 

increases on high buffer sizes as the garbage collection over 

head is reduced due to large amount of switch merge 

invocation and frequent log block merging is reduced. The 

faster response time is also attributed by the specified 

enlargement techniques on the partially occupied data 

blocks. RFLRU accomplishes marginally better response on 

lower buffer cache size, whereas BPLRU and REF need 

more buffer cache to achieve the similar response time. 

From the response time table 3, it is understood that RFLRU 

performs better as the buffer cache size goes up. 

 
TABLE III 

AVERAGE RESPONSE TIME ACROSS DIFFERENT BUFFER 

SCHEMES ON ALL WORK LOADS 

Average 

response 

time 

(ms) 

4MB 8MB 12MB 16MB 20MB 24MB 28MB 32MB 

LRU FAST 4.84 4.46 4.2 3.92 3.7 3.2 2.96 3.17 

BPLRU 3.4 3.25 3. 18 3.1 2.21 1.75 1.09 1.13 

REF 3.5 3.18 3.25 2.98 2.01 1.28 0.78 0.97 

RFLRU 3.9 3.01 2.76 2.01 1.48 0.67 0.38 

 

0.21 

 

B. Impact of RFLRU’s Random Ahead Technique 

Using two different buffers for sequential and random 

write sequences, the write ahead random technique can 

recognize more and longer write sequences. In other words, 

with the given cache size, the technique is expected to hold 

larger portion of sequential write pattern so this reduces the 

live page migration cost in FTL garbage collection process. 

As shown in figure 10, the financial workload receives most 

significant improvements, up to 82% compared to pure 

sequential writes. As financial workload has many random 

writes, it can easily break long sequences, leading to 

relatively low full merges. 

C. Write Back Buffer Schemes Comparison 

We compare the RFLRU with FAST LRU, BPRLU and 

REF buffer management policies. BPLRU is a classical 

write buffer policy for SSD, it has been extensively 

evaluated. REF is a recently proposed policy which has 

write ordering along with BPLRU’s padding technique. The 

experimental results are presented in figure 11 and 12. As 

shown in figure 11, RFLRU erases least physical blocks on 

most of the workloads. To further explain why RFLRU 

achieves this lower erase count, we compare the number of 

live page migration, which is explained in figure 12. Merge 

operation in the garbage collection process, causes extra 

read and write generated by the background operations. A 

superior buffer cache page replacement scheme should help 

to reduce the number of page read and write, thus alleviate 

the write amplification. As merging a block indicates 

migrating pages from one physical block to another physical 

block, which is a live migration. BPLRU arranges the dirty 

and clean pages in a logical block group, these groups are 

the atomic units replaced by the LRU buffer replacement 

policy. However, though the block associativity is low, 

BPLRU increases the inner generated read traffic for the 

clean page padding, and this affects the overall write 

throughput. In FAST scheme the block associativity of each 

log block is typically high because the dirty pages are 

written using the simple LRU policy. 

However in REF the dirty pages are reordered to reduce 

the high log block association. Whereas in our proposed 

RFLRU buffer management scheme, the log block 

associativity is naturally reduced by identifying the 

sequential write pattern and buffering the sequential data 

stream. In addition to this, RFLRU uses enlargement 
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different techniques to increase the block utilization and the 

merging activity is done ahead of the garbage collection  

 

 
         Fig. 11a. Exchange - Erase blocks comparison for different buffer 

cache management schemes 

 
    Fig.  11b.  Finance - Erase blocks comparison for different buffer 

cache management schemes 

 

 
 

 

 
 
 

 

 
 

 

 
Fig.  11c. Iometer 20%random - Erase blocks comparison for different 

buffer cache management schemes 
 

Fig.  11d. Iometer 100% sequential - Erase blocks comparison for 

different buffer cache management schemes

  Fig. 12a. Exchange -Live page migration count comparison for 

different buffer cache management schemes 

process. Though the block associativity is one of the crucial 

parameter for comparing the performance across the buffer 

management schemes, and block associativity is 

proportional to the number of page migrations in the 

merging process triggered by the garbage collection. So we 

have used the live page migration count for comparing the 

performance across different schemes. RFLRU exhibits low  

 
Fig. 12b. Finance - Live page migration count comparison for different 

buffer cache management schemes 

 
Fig.  12c. Iometer 20%random - Live page migration comparison for 

different buffer cache management schemes 

 

 

 

 

 

 

 

 

 

 
Fig. 12d.  Iometer 100% sequential - Live page migration count comparison 

for different buffer cache management schemes 

 

live page migration on most of the workloads, especially on 

OLTP work load. Whereas in pure sequential workload the 

performance improvement is not very significant, refer 

figure 12d, as the page migration count is almost equal 

across different buffer management schemes. 

D. Assumptions and Discussion 

Theoretically the logical sequential pages are located 

consecutively in SSD and the file system allocates pages 

sequentially. Again this assumption is also depends on the 

FTL and the workload characteristics. In continuous 

sequential workloads, the data placement in SSD is most 

likely sequential. So the logical sequential write will get 

translated into physical sequential write, this leads to 

reduced write amplification. On discontinuous sequential 

work workloads, the data on the SSD may not be placed 

adjustment to each other. So identifying the local infrequent 

sequential pattern in the workload sometimes may not be 

yield desired write optimization. For example, few file 

systems maintain an in-memory pre-allocation for every file 

data. This influences the sequential placement of physical 

pages in flash memory though the generated sequential 

writes are discrete in nature. This in-memory pre-allocation 

helps the slow sequential writes to get written consecutively 

in SSD, so file system’s intervention is required for 

sequential placement of data in the flash memory. 
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In LRU write policy, the page references are kept in 

sorted temporal order. When a page frame is accessed, the 

page needs to be moved to the most recently used position. 

This operation requires a global lock to protect the data 

structures from the concurrent access. Since the page access 

are common and such a frequent rearrangement of data 

structure would be expensive. We have used the LRU policy 

against block level instead of page level, so the LRU 

approximation algorithms such as Clock [23] may not be 

required. 

Though RFLRU increases the scope for switch merge, the 

scope is determined by the FTL buffer size, and the buffer 

cache management is heavily influenced by the host file 

system through the flush command. If the host file system 

frequently issues the flush command, the write performance 

will get heavily affected negatively. This is because the dirty 

pages have to be written immediately into flash array. 

Readers may argue that the buffering high temporal locality 

workload might reduce the number of writes as proposed in 

the previously proposed algorithms. In RFLRU, sequential 

buffer eviction is based on multiple parameters listed in de-

stage control, however we have not factored the high 

temporal locality workloads on the random buffers as the 

study is primarily intended to address the interleaved 

sequential writes along with little amount of random 

workload generated from the meta data modification on the 

file system. 

VIII. CONCLUSION 

The proposed RFLRU page replacement scheme is an 

enhancement of LRU FAST, BPLRU and REF based FTL’s 

for flash memory based SSD. This research makes the 

following contributions namely, sequence identification, 

write random ahead, techniques for SSD write enlargement 

and buffer cache de-stage rules. By analyzing the incoming 

write sequence, the interleaved sequential write patterns are 

identified and buffered. And the partial sequential blocks are 

enlarged with the clean pages through early or late or hybrid 

enlargement techniques and written into flash memory. 

More importantly the random data is preferred for write 

while buffering the sequential data stream; this random 

ahead technique addresses the slow and interleaved 

sequential write. The simulation result shows that the 

proposed scheme reduces the SSD’s inner generated write 

traffic with reduced erase/programs cycles. Additionally, the 

improved write performance comes up with no increase in 

SSD log block area with better write response time. 
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