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Abstract—This paper presents an approach to characterize
power system loads through estimation of contributions from in-
dividual load types. In contrast to methods that fit one aggregate
model to observed load behavior, this approach estimates the
inventory of separate components that compose the total power
consumption. Common static and dynamic models are used to
represent components of the load, and parameter estimation
is used to determine the amount each load contributes to
the cumulative consumption. Trajectory sensitivities form the
basis of the parameter estimation algorithm and give insight
into which parameters are well-conditioned for estimation.
Parameters of interest are contributions to total load and initial
conditions for dynamic loads. Results are presented for two
simulation-based studies and demonstrate the feasibility of the
approach. In the first study, the composition of multiple loads
connected to a bus was estimated by subjecting the bus to a
step change in voltage. The second study utilized a disturbance
in the WSCC nine-bus test system to facilitate estimates of the
combination of loads connected at a bus in the system.

Index Terms—electric power systems, load modeling,
simulation, trajectory sensitivities, parameter estimation,
measurement-based, load inventory.

I. INTRODUCTION

As power system models and simulations used for plan-
ning and stability studies become more advanced, higher
fidelity models of all power system components are needed.
Loads are particularly difficult to describe due to their diverse
composition and variation in time, yet their importance to
dynamic behavior and stability of the overall power system
has been recognized [1]–[8]. While a variety of load models
have been adopted (for example, see [3], [9]), the approaches
to load modeling can typically be categorized as either
measurement-based or component-based [8]. Measurement-
based approaches utilize data collected from a substation or
feeder to develop a model that matches observed behavior
[10]–[22]. Disturbances such as a loss of load or power
line, or movement of an under load tap changer (ULTC)
are often needed to have measurements sufficiently rich for
effective measurement-based techniques. Advances in tech-
nology such as power quality meters, disturbance monitors
and Phasor Measurement Units (PMUs) with the ability to
sample at high rates have facilitated growth in measurement-
based approaches. Component-based approaches combine a
knowledge of the load and known models of all devices that
make up the load for simulation, analysis and/or aggregation
[5], [8], [23]–[26]. A combination of the approaches, known
as identification of load inventory, has been developed where
measurements are used to estimate the amount (e.g., fraction
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or percentage) each set of similar devices within a load
contributes to the aggregate power consumed [18], [27]–[30].

The focus of this paper is development of a load inventory
model where parameter estimation is used to determine
the amount each component contributes to the total power
consumption. Parameter estimation is achieved via a Gauss-
Newton method based upon trajectory sensitivities (see [31],
[32] for background and other applications) which computes
parameters that best fit simulated model responses to simu-
lated measurements on a single phase. The results indicate
which load contributions are well-conditioned for estimation
and that those parameters can be accurately estimated in
the presence of measurement error. Initial conditions of the
dynamic states in the load models are difficult to identify;
however, the load contribution coefficients are identifiable.

II. LOAD MODELING

A wide variety of load models exist to mathematically
represent the power consumed by a load and its dependencies
on voltage, frequency, type and composition. Three common
mathematical models for loads in power systems are pre-
sented below and utilized in the proposed approach. In all
cases, it is assumed that powers and voltages are normalized
by base values such that their units are in per unit (p.u.) [33],
[34].

A. ZIP

A polynomial model is commonly used to represent loads
and capture their voltage dependency. The average and
reactive powers of the load are written as a sum of constant
impedance (Z), constant current (I) and constant power (P),
and referred to as the ZIP model [4], [34].

P = P0(K1p

(
V

V0

)2

+K2p
V

V0
+K3p) (1)

Q = Q0(K1q

(
V

V0

)2

+K2q
V

V0
+K3q) (2)

where P , Q are the average and reactive power consumed
by the load, respectively, P0, Q0 represent the nominal
average and reactive power of the load, respectively, V is the
magnitude of the sinusoidal voltage at the bus to which the
load is connected, V0 is the magnitude of the nominal voltage
at the bus, and coefficients K1p, K2p, K3p, K1q , K2q and
K3q define the proportion of each component of the model.
Coefficients for many load types have been experimentally
determined and reported [5], [8], [11], [12], [17].
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B. Exponential Recovery
The power profile is defined by

P =
xp
Tp

+ P0

(
V

V0

)αt
(3)

Q =
xq
Tq

+Q0

(
V

V0

)βt
(4)

where P , Q are the average and reactive power consumed
by the load, respectively, P0, Q0 are the nominal average
and reactive power, respectively, V is the magnitude of the
sinusoidal voltage at the bus to which the load is connected,
and V0 is the magnitude of the nominal voltage at the bus.
Parameters Tp and Tq are the average and reactive load re-
covery time constants, respectively, αs and βs are the steady-
state dependence of average and reactive powers on voltage,
respectively, and αt and βt are the transient dependence of
average and reactive powers on voltage, respectively. The
parameters govern the behavior of the load model, and are
generally fit to measurements. States xp and xq are average
and reactive power recovery, respectively, and are governed
by the differential equations [15], [35], [36]:

ẋp =
−xp
Tp

+ P0

((
V

V0

)αs
−
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)αt)
(5)

ẋq =
−xq
Tq

+Q0

((
V

V0

)βs
−
(
V

V0

)βt)
. (6)

Parameters for different load types have been experimentally
determined and reported [15], [36].

C. Induction Motor
The induction motor’s voltages of interest are V ejθ =

V cos(θ) + jV sin θ at the stator terminal and V ′ejθ
′

=
v′d + jv′q at the voltage behind transient reactance. The

stator current is I = id + jiq = V ejθ−V ′ejθ
′

Rs+jX′
s

where
X ′s = Xs + XrXm

Xr+Xm
is the transient reactance. Additional

parameters are stator resistance and leakage reactance, Rs
and Xs, respectively, magnetizing reactance, Xm, and rotor
resistance and leakage reactance, Rr, Xr, respectively. The
transient equivalent circuit for the induction motor with
voltages, currents and parameters labeled is shown in Figure
1.

−

+

V ejθ

I
Rs j(Xs + XrXm

Xr+Xm
)

+

−

V ′ejθ
′

Fig. 1. Transient-equivalent circuit of induction motor

The voltage V ′ejθ
′

= v′d + jv′q has real and imaginary
parts governed by the differential equations [34], [37]

dv′d
dt

= − Rr
Xr +Xm

[
v′d +

(
X2
m

Xr +Xm

)
iq

]
+ sv′q(7)

dv′q
dt

= − Rr
Xr +Xm

[
v′q −

(
X2
m

Xr +Xm

)
id

]
− sv′d(8)
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1

2H

(
Tmo (1− s)2 − Te

)
(9)

where s = ωs−ωr
ωs

is slip, ωr is rotor speed, ωs is angular
velocity of the stator field, Tmo is a load torque constant,
Te = v′did + v′qiq is electromagnetic torque, and H is the
motor and motor load inertia.

The average power P and reactive power Q consumed by
the motor are then given by

P = Re(V ejθI∗)

=
1

R2
s +X ′2s

(
Rs(V

2 + V cos(θ)v′d − V sin(θ)v′q)

−X ′s(V cos(θ)v′q − V sin(θ)v′d)
)

(10)

Q = Im(V ejθI∗)

=
1

R2
s +X ′2s

(
Rs(V cos(θ)v′q − V sin(θ)v′d)

+X ′s(V
2 − V cos(θ)v′d − V sin(θ)v′q)

)
(11)

where (·)∗ denotes complex conjugate of the complex quan-
tity, Re(·) and Im(·) denote the real and imaginary parts
of a complex number, respectively. Parameters for different
load types have been experimentally determined and reported
[12], [17], [26], [34], [38]–[40].

D. Load Inventory Concept

Load behavior will be modeled by using an aggregation
of ZIP, exponential recovery and induction motor models
from above with appropriate parameters selected for each to
represent the load’s components. This is shown conceptually
in Figure 2 with the total complex power consumed PL+jQL
the sum of the power consumed by all the individual load
elements. The parameters of interest will be the contribution
coefficients µi for i = 1, 2, . . . , NL where NL is the number
of unique types of loads assumed to be connected to the bus
as well as the initial conditions needed for each dynamic
model.

Load 1
µ1(P1 + jQ1)

Load 2
µ2(P2 + jQ2)

...

Load NL
µNL(PNL + jQNL)

V ejθ

PL + jQL

Fig. 2. Concept of load inventory

In summary, the aggregate load with average power PL
and reactive power QL will be the weighted sum of each
individual type of model. Each model represents a candidate
load that might exist in the inventory and its contribution
(multiplier), indicated by µi, is the parameter of interest
for determining the inventory of loads. Total (aggregate)

Engineering Letters, 23:1, EL_23_1_04

(Advance online publication: 17 February 2015)

 
______________________________________________________________________________________ 



complex power is the sum of all load powers

PL + jQL = µ1(P1 + jQ1) + µ2(P2 + jQ2)

+ · · ·+ µNL(PNL + jQNL). (12)

III. TRAJECTORY SENSITIVITIES

Differential-algebraic models are often utilized to repre-
sent the dynamic behavior of electric power systems [32].
When all loads are taken at a bus for the load inventory
approach, the combined models presented above for loads
can be represented in a manner similar to that of the broader
power system:

ẋ = f(x, V ) (13)
y = g(x, V, µ). (14)

Here x is the vector of dynamic states (e.g., xp, xq , v′d, v′q ,
s for dynamic loads) that satisfy the differential equations
(13), y = [PL, QL]T is the 2 × 1 vector of total average
and reactive powers consumed by the aggregate load, V is
the magnitude of the voltage at the bus (treated as an input)
and µ is the vector of contributions µi=1,2,...,NL taken as
parameters.

Trajectory sensitivities provide a means to quantify the
effect of small changes in parameters and/or initial conditions
on a dynamic system’s trajectory. Trajectory sensitivities will
be utilized to guide the choice of how the parameters (here
taken to be contributions µ and initial conditions x0) should
be altered to “best” match simulated trajectories to measure-
ments of average power and reactive power consumed by
the aggregate load. Following the presentation of trajectory
sensitivities in [31], [32], flows of x and y that describe the
response of (13), (14) are defined as

x(t) = φx(λ, V, t) (15)
y(t) = g(φx(λ, V, t), λ, V, t) = φy(λ, V, t) (16)

where x(t) satisfies (13), all parameters of interest are com-
bined into the vector λ = [x0, µ]T of dimension M×1, and
flows show the dependence of the trajectories on parameters
λ (here initial conditions and fractional contributions), input
V and time t. To obtain the sensitivity of the trajectories
to small changes in the parameters ∆λ, a Taylor series
expansion of (15), (16) can be formed. Neglecting higher
order terms in the expansion yields

∆x(t) = φx(λ+ ∆λ, V, t)− φx(λ, V, t) (17)

≈ ∂φx(λ, V, t)

∂λ
∆λ ≡ xλ(t)∆λ (18)

∆y(t) = φy(λ+ ∆λ, V, t)− φy(λ, V, t) (19)

≈ ∂φy(λ, V, t)

∂λ
∆λ ≡ yλ(t)∆λ. (20)

The time-varying partial derivatives xλ and yλ are known as
the trajectory sensitivities, and can be obtained by differen-
tiating (13) and (14) with respect to λ. This differentiation
gives

ẋλ = fx(t)xλ (21)
yλ = gx(t)xλ + gλ(t) (22)

where fx ≡ ∂f
∂x , gx ≡ ∂g

∂x and gλ ≡ ∂g
∂λ are time-varying

Jacobian matrices, and fλ ≡ ∂f
∂λ = 0. Along the trajectory

of the aggregate loads described by (13), (14) the trajectory

sensitivities will evolve according to the linear, time-varying
differential equations (21), (22). Initial conditions for xλ are
obtained from (15) by noting x(t0) = φx(λ, V, t0) = x0 such
that xλ(t0) = [I, 0] which is a matrix with the same number
of rows as states in x and number of columns equal to the
number of parameters M [31], [41]. I is the identity matrix
and 0 is a matrix of zeros. Initial conditions for yλ follow
directly from the algebraic equation (22) to yield yλ(t0) =
gx(t0) + gλ(t0).

The N × M sensitivity matrix for the ith output yi is
now defined by taking sensitivities (22) at discrete times
tk=0,1,...,N−1

Si(λj) =


yiλ(t0)

yiλ(t1)
...

yiλ(tN−1)

 (23)

where N is the number of discrete values of time at which
values are taken from the trajectory sensitivity (22) found by
numerically solving the coupled system (13), (14), (21), (22);
M is the number of parameters in λ; λj is the particular set
of values for parameters used when computing the trajectory
and associated sensitivities; and for this particular application
y1λ = PLλ , y2λ = QLλ and the complete sensitivity matrix

S(λj) =

[
S1(λj)

S2(λj)

]
is of dimension 2N ×M .

As an example of computing the equations that will be
solved for trajectory sensitivities, assume the total power is
given by (12) and P1, Q1 are consumed by a load represented
as the exponential recovery model’s powers (3), (4). The
sensitivities of PL, QL to parameter µ1 are

∂PL
∂µ1

≡ PLµ1 = P1 =
xp
Tp

+ P0

(
V
V0

)αt
(24)

∂QL
∂µ1

≡ QLµ1 = Q1 =
xq
Tq

+Q0

(
V
V0

)βt
(25)

where the states xp, xq will come from numerical solution
of (5), (6) and V will be a specified input. The sensitivities
of PL, QL to the initial conditions xp(0), xq(0) are

∂PL
∂xp(0)

≡ PLxp(0) = µ1
1
Tp

∂xp
∂xp(0)

= µ1
1
Tp
xpxp(0) (26)

∂PL
∂xq(0)

≡ PLxq(0) = 0 (27)

∂QL
∂xp(0)

≡ QLxp(0) = 0 (28)

∂QL
∂xq(0)

≡ QLxq(0) = µ1
1
Tq

∂xq
∂xq(0)

= µ1
1
Tq
xqxq(0) (29)

where the sensitivities xpxp(0) ≡
∂xp
∂xp(0)

, xqxq(0) ≡
∂xq
∂xq(0)

will
be the solution to the following differential equations that
govern the trajectory sensitivities found by differentiating (5),
(6) with respect to the initial conditions xp(0), xq(0)

∂

∂xp(0)
ẋp ≡ ẋpxp(0) = − 1

Tp

∂xp
∂xp(0)

= − 1
Tp
xpxp(0) (30)

∂

∂xq(0)
ẋp ≡ ẋpxq(0) = 0 (31)

∂

∂xp(0)
ẋq ≡ ẋqxp(0) = 0 (32)
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∂

∂xq(0)
ẋq ≡ ẋqxq(0) = − 1

Tq

∂xq
∂xq(0)

= − 1
Tq
xqxq(0) . (33)

Note the order of the derivatives (with respect to parameter
and time) were interchanged in the process.

The differential equations (30), (33) that govern the trajec-
tory sensitivities are solved numerically in parallel with the
differential equations (5), (6) that govern the model such that
trajectories are obtained for both. Calculations of sensitivities
for all load models to all parameters are given in [27]. Ma et
al. [17] also present trajectory sensitivities for an induction
motor’s internal parameters, and use them to determine which
parameters have observable effects on measured quantities.

IV. PARAMETER ESTIMATION

Parameter estimation will be cast as a nonlinear least
squares problem and solved using a Gauss-Newton iterative
procedure [32]. Measurements of average and reactive power
consumed by a load during a disturbance will be used to
estimate the unknown model parameters (here contributions
and initial conditions). The aim of parameter estimation is
to determine parameter values that achieve the closest match
between the measured samples and the model’s simulated
trajectory. Let measurements of the total average power
PL and reactive power QL (denoted by PLm and QLm ,
respectively) consumed by the aggregate load be given by
the appended sequences of N measurements

~ym =

[
[PLm(t0), PLm(t1), . . . , PLm(tN−1)]

T

[QLm(t0), QLm(t1), . . . , QLm(tN−1)]
T

]
(34)

with the corresponding simulated trajectory from numerically
solving (13), (14) given by

~y =

[
[PL(t0), PL(t1), . . . , PL(tN−1)]

T

[QL(t0), QL(t1), . . . , QL(tN−1)]
T

]
(35)

to get corresponding values at times tk=0,1,2,...,N−1. The
mismatch between the measurements and corresponding
model’s trajectory can be written in vector form as

~e(λ) = ~y(λ)− ~ym (36)

where the notation is used to show the dependence of the
trajectory, and correspondingly the error, on the parameters
λ. The vectors ~e, ~y and ~ym will be of dimension 2N×1 as N
measurements of PL and QL are assumed. The best match
between model and measurement is obtained by varying the
parameters so as to minimize the error vector ~e(λ) by some
measure. One common measure is the two-norm (sum of
squares) of the error vectors expressed as a cost function

C(λ) =
1

2
‖~e(λ)‖22 =

1

2

∑2N−1

k=0
ek(λ)2. (37)

The error ek(λ) is the kth element of ~e and can be linearly
approximated via a Taylor series expansion about an initial
value of λ = λj which yields

ek(λ) ≈ ek(λj) +
∂ek(λj)

∂λ
(λ− λj) (38)

= ek(λj) + yλk(λj)∆λ (39)

where ∂ek(λ
j)

∂λ = ∂yk(λ
j)

∂λ = yλk(λj) since the measurements
ymk are independent of λ and the definition ∆λ = λ−λj is

utilized. The new value of λj denoted λj+1 will be chosen
to minimize the following cost function with linearized error.

C(λ) =
1

2

∑2N−1

k=0
(ek(λj) + yλk(λj)∆λ)2

=
1

2

∑2N−1

k=0
(ek(λj) + Sk(λj)∆λ)2

=
1

2

∥∥~e(λj) + S(λj)∆λ
∥∥2
2

(40)

where Sk is the kth row of the sensitivity matrix S.
Minimizing the cost function of linearized error (40) can

now be performed via the Gauss-Newton method [32]. The
process starts with an initial guess λ0 for parameter values
and then parameters are updated according to iterations of
the following two steps.

S(λj)TS(λj)∆λj+1 = −S(λj)T e(λj) (41)
λj+1 = λj + αj+1∆λj+1 (42)

where S is the trajectory sensitivity matrix defined in (23),
αj+1 is a scalar that determines step size, and iterations stop
when ∆λj+1 is sufficiently small. The resulting parameter
values λj+1 will be a local minimum for the cost function
(37) due to the linearization and will be dependent on the
initial guess λ0. An additional note is that the parameter
estimation process breaks down if STS is ill-conditioned,
i.e., nearly singular. This leads to the concept of identifiabil-
ity and quantification of parametric effects [17], [32], [42],
[43]. The invertibility of STS can be investigated through
its singular values and condition number, eigenvalues, or
magnitude of sensitivities over a trajectory via the 2-norm.
The less-rigorous, 2-norm will be utilized here to gain insight
into the condition of STS. The 2-norm will be defined for
the sensitivity of the ith output yi to the jth parameter λj
summed over discrete times tk as∥∥Sij∥∥2

2
=
N−1∑
k=0

Sij(tk, λ)2. (43)

The size of the values computed via (43) will give an
indication of the effect of parameters on the trajectory, and in
turn give guidance as to which parameters can be estimated.

V. APPLICATION TO ONE BUS VIA SIMULATION

The parameter estimation approach described above was
implemented through simulation to estimate load contribu-
tions and initial conditions. Five loads, each represented by
one of five models, were taken as connected to a bus as
shown in Figure 2 with magnitude V of the bus’s phasor
voltage taken to be the input to the models, and average
and reactive powers PL, QL, respectively, taken to be the
(measurable) outputs. Load 1 was an exponential recovery
model, load 2 was the model of a residential induction motor,
load 3 was a model of a small industrial induction motor,
load 4 was a model of a large industrial induction motor, and
load 5 was a ZIP model. That made the M = 16 unknown
parameters

λ =
[
xp1(0), xq1(0), v′d2(0), v′q2(0), s2(0), v′d3(0), v′q3(0),

s3(0), v′d4(0), v′q4(0), s4(0), µ1, µ2, µ3, µ4, µ5

]T
(44)

which includes initial conditions for all the states in the
individual models as well as the fractional contributions of
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each load model to the aggregate power consumed. For the
five loads considered, the total load is given by

PL + jQL = µ1(P1 + jQ1) + µ2(P2 + jQ2)

+ µ3(P3 + jQ3) + µ4(P4 + jQ4)

+ µ5(P5 + jQ5) (45)

with NL = 5; µi=1,2,...,5 the fractional contributions of
each load model; P1, Q1 given by (3), (4); P2, Q2 given by
(10), (11); P3, Q3 given by (10), (11); P4, Q4 given by (10),
(11); and P5, Q5 given by (1), (2). Representative values for
parameters used in each model were taken from [8], [36],
[38], [39] and are given in Table I, and the nominal bus
voltage is taken to be V0 = 1p.u.

TABLE I
PARAMETER VALUES FOR MODELS OF LOADS

Load Model and Parameters

1 Exponential Recovery
P0 TP αs αt Q0 Tq βs βt

1.25 60 0 2 0.5 60 0 2
2 Induction Motor - Residential

Rs Xs Xm Rr Xr H T0

0.077 0.107 2.22 0.079 0.098 0.74 0.46
3 Induction Motor - Small Industrial

Rs Xs Xm Rr Xr H T0

0.031 0.1 3.2 0.018 0.18 0.7 0.6
4 Induction Motor - Large Industrial

Rs Xs Xm Rr Xr H T0

0.013 0.067 3.8 0.009 0.17 1.5 0.8
5 ZIP

P0 K1p K2p K3p Q0 K1q K2q K3q

1.0 0.15 0.6 0.25 0.7 0.05 -0.05 1.0

A. Results when no error in measurements

For study in simulation, a 3% decrease in the magnitude
of the bus’s voltage V was taken to be the input. The voltage
was dropped from its nominal value of 1p.u. to 0.97p.u. at 50
seconds. With the initial conditions and load contributions at
specified values, the simulation was run to generate synthetic,
“measured” data to represent data that might be collected by
a voltage disturbance monitor or phasor measurement unit. A
sampling rate of 10Hz was used to record the total average
and reactive powers consumed by the five loads. Nominal
values for parameters are given in Table II, and plots of
the aggregate power consumption PL and QL are given in
Figures 3 and 4, respectively, as the solid lines.

The simulation was then modified to run with initial
guesses for parameter values, and the iterative Gauss-Newton
process described by (41), (42) implemented to update the
values of the parameters until they converged to within a
specified tolerance. At each iteration, the system’s model
(13), (14) and trajectory sensitivities (21), (22) were nu-
merically solved using Matlab’s ode15s() solver for a new
trajectory using updated values of the parameters. The results
of the iterative process can be seen Figure 5 and show
convergence of the load contributions to values used to create
the synthetic measurements. The final, estimated values of all
parameters (both initial conditions and load contributions) are
given in Table II. The simulated trajectories for PL and QL

as the parameters are updated can be seen as the dashed lines
in Figures 3 and 4.

TABLE II
VALUES, GUESSES AND ESTIMATES OF PARAMETERS

Load Model and Estimated Parameters

1 Exponential Recovery
xp(0) xq(0) µ1

value: 0.0010 0.0007 0.1000
guess: 0.0025 0.0015 0.3000
estimate: 0.0010 0.0007 0.1000

2 Induction Motor - Residential
v′d(0) v′q(0) s(0) µ2

value: 0.8659 0.1439 0.0399 0.2000
guess: 0.9000 0.1800 0.0550 0.3000
estimate: 0.8659 0.1439 0.0399 0.2001

3 Induction Motor - Small Industrial
v′d(0) v′q(0) s(0) µ3

value: 0.8842 0.0527 0.0120 0.2000
guess: 0.9000 0.0750 0.0600 0.1000
estimate: 0.8840 0.0527 0.0121 0.2001

4 Induction Motor - Large Industrial
v′d(0) v′q(0) s(0) µ4

value: 0.9124 0.0308 0.0078 0.3000
guess: 0.8900 0.5000 0.0150 0.2000
estimate: 0.9125 0.0308 0.0078 0.2999

5 ZIP
µ5

value: 0.2000
guess: 0.1000
estimate: 0.2000

Fig. 3. Average power consumed by aggregate load; simulated measure-
ments are solid line and trajectories for updated parameter estimates are
dashed lines

B. Study of identifiability

For the sample application above where no measurement
error was introduced, the 2-norm of all sensitivities was
calculated and shown in Table III. Of particular note is that
the sensitivities of the average and reactive power are at
least an order of magnitude larger for load contributions than
initial conditions. This indicates that the load contributions
have a larger impact on the trajectory and in turn should be
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Fig. 4. Reactive power consumed by aggregate load; simulated measure-
ments are solid line and trajectories for updated parameter estimates are
dashed lines
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Fig. 5. Estimates of parameters (as markers/symbols) representing load
contributions over iterations; dashed lines are actual values

more readily identified through parameter estimation. When
no measurement error was assumed, both initial conditions
and load contributions were identified, but when random
error was introduced (as discussed in the next section) the
estimates of the initial conditions were inaccurate. The zero
entries in the table imply that the load models’ powers do
not depend on that particular parameter.

As an additional check of identifiability for the parameters
of interest, both the condition number and eigenvalues were
computed for the matrix STS. The condition number was
2.281×1015 with sensitivities for initial conditions included

TABLE III
2-NORM OF TRAJECTORY SENSITIVITIES FOR PARAMETERS (LOAD

CONTRIBUTIONS AND INITIAL CONDITIONS) OF INTEREST

Load Model and 2-norm of Trajectory Sensitivities

1 Exponential Recovery
xp(0) xq(0) µ1

‖SPL‖
2
2: 0.029 0 7.920

‖SQL‖
2
2: 0 0.027 15.37

2 Induction Motor - Residential
v′d(0) v′q(0) s(0) µ2

‖SPL‖
2
2: 0.005 0.003 0.002 14.37

‖SQL‖
2
2: 0.002 0.001 0.001 13.59

3 Induction Motor - Small Industrial
v′d(0) v′q(0) s(0) µ3

‖SPL‖
2
2: 0.001 0.003 0.002 1.116

‖SQL‖
2
2: 0.081 0.003 0.008 3.220

4 Induction Motor - Large Industrial
v′d(0) v′q(0) s(0) µ4

‖SPL‖
2
2: 0.004 0.003 0.003 4.095

‖SQL‖
2
2: 0.009 0.005 0.007 4.725

5 ZIP
µ5

‖SPL‖
2
2: 75.97

‖SQL‖
2
2: 64.89

which confirmed an ill-conditioned matrix and potential diffi-
culty in estimating initial conditions. When sensitivities were
removed from STS leaving only those to load contributions,
the condition number improved to 202.4 which indicated
load contributions are identifiable. Eigenvalues of STS were
computed and further confirmed identifiable parameters as
small eigenvalues were associated with the initial conditions
and much larger eigenvalues were associated with the load
contributions.

C. Results with 2% random error in measurements

The study described above was repeated, but this time
with an error in each measurement achieved by adding a
normally distributed random number to each measurement
with mean 0 and standard deviation 2%. The method of
estimating parameters worked well for the load contributions,
but not the initial conditions. This is attributed to the issues
with identifiability discussed above. Table IV shows the
“true values”, initial guesses and estimates of the parameters
representing load contributions in this case.

VI. APPLICATION TO 9-BUS SYSTEM VIA SIMULATION

The second application of the approach is through simu-
lation of the Western System Coordinating Council (WSCC)
three-machine, nine-bus test system shown in Figure 6 where
details, parameters and a load flow solution are given in Sauer
and Pai [44] and Dembart et al. [45]. The three generators are
represented by two-axis machine models with IEEE-Type I
exciters [44] and the transformers and transmission lines are
modeled by admittances from which an admittance matrix,
and ultimately power balance equations can be developed
[33], [44]. The three loads at buses five, six and eight are
taken to be combinations of various models presented in
Section II.

The load at bus eight was taken to be the one of interest
and consisted of two components connected to the bus
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TABLE IV
VALUES, GUESSES AND ESTIMATES OF PARAMETERS WHEN 2%

RANDOM ERROR IN MEASUREMENTS

Load Model and Estimated Parameters

1 Exponential Recovery
µ1 value guess estimate

0.1000 0.3000 0.1231
2 Induction Motor - Residential

µ2 value guess estimate
0.2000 0.3000 0.1698

3 Induction Motor - Small Industrial
µ3 value guess estimate

0.2000 0.1000 0.1740
4 Induction Motor - Large Industrial

µ4 value guess estimate
0.3000 0.2000 0.3102

5 ZIP
µ5 value guess estimate

0.2000 0.1000 0.2272

as shown conceptually in Figure 2. Component one was
an exponential recovery model given by equations (3)-(6)
and component two was the model of an induction motor
given by equations (7)-(11). Representative parameters were
selected to be consistent with those presented in [8], [12],
[36], [38], [39] for both models and are provided in Table
V. The unknown parameters are taken to be

λ =
[
µ1, µ2

]T
(46)

which are the M = 2 contributions of each component’s
model to the aggregate average power PL and reactive power
QL via

PL + jQL = µ1(P1 + jQ1) + µ2(P2 + jQ2) (47)

where NL = 2; P1, Q1 are given by (3), (4); and P2, Q2 are
given by (10), (11).

The scenario adopted to generate simulated measurements
for bus eight’s voltage V , and average and reactive powers
PL, QL, respectively, was to reduce bus five’s load by
10%. This loss in load was enough to make the unknown
parameters λ identifiable as discussed in Section V-B such
that the approach to parameter estimation was viable. The
simulated measurements of V , PL, and QL at bus eight that
result from the disturbance at bus five are shown in Figures
7, 8 and 9, respectively, where the sampling rate was 100 Hz
and contributions of the load’s components were taken to be
µ1 = µ2 = 1.0.

TABLE V
PARAMETER VALUES FOR MODELS OF LOADS AT BUS EIGHT

Load Model and Parameters

1 Exponential Recovery
P0 TP αs αt Q0 Tq βs βt

0.497 150 0.5 1.75 0.1905 75 4 5
2 Induction Motor

Rs Xs Xm Rr Xr H T0

0.046 0.097 2.571 0.056 0.115 0.627 1.073

The simulation was then modified to run with initial
guesses for parameter values now assumed to be unknown,
and the iterative Gauss-Newton process described by (41),

∼
G2 2

∼
G33

∼ G1

1

T2 T3

T1

7 9

4

8

5 6

Fig. 6. One-line diagram of WSCC 9-bus system
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(42) was implemented to update the values of the two
parameters until they converged to within a specified toler-
ance. At each iteration, the system’s model (13), (14) and
trajectory sensitivities (21), (22) were numerically solved
using Matlab’s ode15s() solver for a new trajectory using
updated values of the parameters. The results of the iterative
process can be seen in Figure 10 and show convergence of
the estimated contributions to actual values used to create
the synthetic measurements. The simulated trajectories for
PL, QL are shown in Figures 11, 12, respectively, and show
convergence of the simulated trajectories (lines in the figures)
to the simulated measurements (large dots in figure) as the
iterations proceed.

VII. CONCLUSION

This paper presented an application of trajectory sensitivi-
ties and parameter estimation to estimate an aggregate load’s
composition. Two examples are presented using simulated
data. The first example used five types of loads modeled
by an exponential recovery model, three induction motor
models with different parameters, and a ZIP model connected
to a bus that experienced a step change in voltage. The
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load at bus eight

second example was the WSCC nine-bus system for which
a disturbance enabled the contributions from two loads at a
bus to be identified. Both simulation examples demonstrate
that the approach has merit and holds promise for real-
world application. Future work will be to incorporate and
investigate additional models, and apply the approach to real
data collected from a voltage disturbance monitor or phasor
measurement unit.
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