
Counting Falsifying Assignments of a 2-CF via
Recurrence Equations

Guillermo De Ita Luna, J. Raymundo Marcial Romero, Fernando Zacarias Flores,
Meliza Contreras González and Pedro Bello López

Abstract—We consider the problem #2UNSAT (counting the

number of falsifying assignments for two conjunctive forms).

Because #2SAT (F) = 2 n �#2UNSAT (F), results about

#2UNSAT can dually be established for solving #2SAT . We

establish the kind of two conjunctive formulas with a minimum

number of falsifying assignment. As a result, we determine the

formulas with a maximum number of models among the set of

all 2-CF formulas with a same number of variables.

We have shown that for any 2-CF Fn with n variables,

#UNSAT (Fn) � #SAT (Fn) with the exception of totally

dependent formulas. Thus, if #UNSAT (Fn) p(n) for a poly-

nomial on n , then #SAT (Fn) p(n) too, and then #SAT (Fn)
can be computed in polynomial time on the size of the formula.

Index Terms—#SAT , Binary Patterns, Enumerative Combi-

natorics.

I. INTRODUCTION

T

HERE are many real-life problems that can be ab-
stracted as counting combinatorial objects on graphs.

For instance, reliability network issues are often equivalent
to connected component issues on graphs, e.g. the probability
that a graph remains connected is given by the probabilities
of failure over each edge, which is essentially the same as
counting the number of ways that the edges could fail without
losing connectivity [9],[10].

The combinatorial problems that we are going to address
are the computation of the number of models and falsifying
assignment for Boolean formulas in two Conjunctive Forms
(2-CF), denoted as #2SAT and #2UNSAT respectively,
based on string patterns formed by their set of falsifying
assignments [11]. Both problems are classical #P -complete
problems even for the restricted cases of monotone and Horn
formulas.

Among the class of #P�complete problems,#SAT is
considered a fundamental instance due to both its application
in deduction issues and its relevance in establishing a bound-
ary between efficient and intractable counting problems.

Previous studies have developed levels of complexity for
counting #SAT and due to the duality between #SAT and
#UNSAT , bounds can be set for the latter .

Several algorithms have been designed for computing
#UNSAT (F) as finer or shorter versions of the application
of the inclusion-exclusion formula [6], [5], [7]. However,
there are no concise algorithms or procedures which establish

Manuscript received December 15, 2014; revised January 2, 2015.
G. De Ita, F. Zacarias,M. Contreras, P. Bello are with the Faculty of

Computer Science, Benemerita Universidad Autónoma de Puebla, Puebla,
52570 México e-mail: {deita,fzacarias,mcontreras,pbello}@cs.buap.mx

J. R. Marcial is with the Department of Computation Faculty of Engineer-
ing, Universidad Autónoma del Estado de México, Toluca, 50110 México
e-mail: rmarcial@fi.uaemex.mx

the cases in which #UNSAT (F) can be computed in
polynomial time considering its constrained graph.

Since #SAT (F) = 2

n �#UNSAT (F), analogous re-
sults can be proved for both. We investigate about the
minimum number of falsifying assignments that a 2-CF could
have. In this paper, we show some cases where #SAT (F)
can be upper bounded by considering a binary pattern
analysis over its set of falsifying assignments.

II. PRELIMINARIES

Let X = {x1 , . . . , xn} be a set of n boolean variables. A
literal is either a variable xi or a negated variable ¬xi .

A clause is a disjunction of different and non complemen-
tary literals (sometimes, we also consider a clause as a set
of literals, e.g. x1 _ x2 = {x1 , x2}). For a positive integer
k, a k-clause is a clause consisting of exactly k literals. A
variable x 2 X appears in a clause c if either x or ¬x is an
element of c.

A conjunctive form (CF) F is a conjunction of non-
tautological clauses. We say that F is a monotone positive
CF if all of its variables appear in unnegated form. A k -CF
is a CF containing only k -clauses. (k)-CF denotes a CF
containing clauses with at most k literals. A 2-CF formula
F is said to be strict only if each clause of F is binary.

We use �(X) to represent the variables involved in the
object X , where X could be a literal, a clause or a CF.
For instance, for the clause c = {¬x1 , x2}, �(c) = {x1 , x2}.
Lit(F) is the set of literals appearing in F , i.e. if X = �(F),
then Lit(F) = X [¬X = {x1 ,¬x1 , ..., xn ,¬xn}. We de-
note the set of n first integers by [[n]] and the cardinality
of a set A by |A|.

An assignment s for F is a boolean function
s : �(F) ! {0 , 1}. An assignment s can also be considered
as a set of non-complementary pairs of literals, e.g., if l 2 s ,
then ¬l 62 s , in other words s turns l true and ¬l false. Let
c be a clause and s an assignment, c is satisfied by s if and
only if c \ s 6= ;. On the other hand, if for all l 2 c, ¬l 2 s ,
then s falsifies c. If n = |�(F)|, then there are 2

n possible
assignments defined over �(F). Let S (F) be the set of 2

n

assignments defined over �(F).
Let F be a CF. F is satisfied by an assignment s if each

clause in F is satisfied by s . F is contradicted by s if any
clause in F is falsified by s . A model of F is an assignment
for �(F) that satisfies F . A falsifying assignment of F is an
assignment for �(F) that contradicts F . The SAT problem
consists of determining whether F has a model. SAT (F)
denotes the set of models of F , then SAT (F) ✓ S (F). Let
UNSAT (F) = S (F)� SAT (F), i.e. UNSAT (F) is the set
of assignments from S (F) that falsify F .

Engineering Letters, 23:2, EL_23_2_04

(Advance online publication: 24 April 2015)

__

The #SAT problem (or #SAT (F)) consists of count-
ing the number of models of F defined over �(F),
#2SAT denotes #SAT for formulas in 2-CF. So
#UNSAT (F) = 2

n �#SAT (F).
A 2-CF F can be represented by an undirected

graph, called the constrained graph of F , and deter-
mined as: GF = (V (F),E (F)), where V (F) = �(F) and
E (F) = {{�(x), �(y)} : {x , y} 2 F}. I.e. the vertices of
GF are the variables of F , and for each clause {x , y} in
F there is an edge {�(x), �(y)} 2 E (F).

In order to compute #SAT (F), we can consider first the
connected components of the constrained graph GF of F .
Such connected components {G1 , . . . ,Gk} of GF can be de-
termined in linear time with respect to the number of clauses
in the formula, and then #SAT (F) = #SAT (G

F

) =Q
k

i=1 #SAT (G
i

).
The set of connected components of GF conforms a

partition of F . So, from now on, we will work with a
connected component graph. We say that a 2-CF F is a path,
a cycle, or a tree if its corresponding constrained graph GF

represents a path, a cycle, or a tree, respectively.

III. COMPUTING #2UNSAT VIA RECURRRENCE
EQUATIONS

Let F = {C1 ,C2 , . . . ,Cm} be a strict 2-CF (a conjunc-
tion of binary clauses) and let n = |�(F)|. The size of F

is n +m . Let k be a positive integer parameter such that
k < 2

n . The values of k where #SAT (F) = k can be
determined in polynomial time have been proved for the
following cases [8].

If k = 0 or k = 1 the Transitive Closure procedure pre-
sented in [1] can be applied. Such procedure has a linear
time complexity on the size of the 2-CF.

If k is upper bounded by a polynomial function on n , e.g.
k p(n), then in [2], an exact algorithm was shown for
determining when #SAT (F) p(n). Such algorithm has a
polynomial time complexity on the size of F .

So, the cases where a polynomial time complexity algo-
rithm has not been found to answer whether #SAT (F) = k

are given when k > p(n). We further bounded those cases
by the following theorem (proved in [4]).

Theorem 1. [4] Let F = {C1 ,C2 , . . . ,Cm} be a 2-CF
and n = |�(F)|. If m n then #SAT (F) is computed
efficiently.

In this section we present the binary patterns used to
represent the set of falsifying assignments of a 2-CF. Those
patterns allow us to design efficient procedures for computing
#2UNSAT . We firstly present some previous results to give
a context to this paper.

Lemma 1. [4] Let F = {C1 , . . . ,Cm} be a 2-CF and
n = |�(F)|. Then #UNSAT (F) has at least 2n�2 elements.

Let F = {C1 , . . . ,Cm} be a 2-CF and n = |�(F)|. As-
sume an enumeration over the variables of �(F), e.g.
x1 , x2 , . . . , xn . For each Ci = {xj , xk}, let Ai be a set of
binary strings such that the length of each string is n .
The values at the j -th and k -th positions of each string,
1 j , k n represent the truth value of xj and xk that
falsifies Ci . E.g., if xj 2 Ci then the j -th element of Ai

is set to 0. On the other hand, If ¬xj 2 Ci then the j -th
element of Ai is set to 1. The same argument applies to xk .

We will use the symbol ⇤ to represent the elements that can
take any truth value in the set Ai , e.g. if F = {C1 , . . . ,Cm}
is a 2-CF, n = |�(F)|, C1 = {x1 , x2} and C2 = {x2 , x3}
then we will write A1 = 00 ⇤ ⇤ . . . ⇤ and A2 = ⇤00 ⇤ . . . ⇤.
This abuse of notation will allow us to present a concise and
clear representation in the rest of the paper, for considering
the string Ai as a binary pattern that represents the falsifying
assignments of the clause Ci . We call A Falsifying String.

It is known [5] that for any pair of clauses
Ci and Cj , it holds that #UNSAT (Ci [Cj) =
#UNSAT (Ci) + #UNSAT (Cj)�#UNSAT (Ci \ Cj).
The following lemmas show when the number of models
can be reduced.

Lemma 2. [4] Let F be a 2-CF, n = |�(F)|. If Ci 2 F and
Cj 2 F , i 6= j have no complementary pairs of literals and
they share a literal (e.g. Ci \ Cj 6= ;), then there are exactly
2

n�1 � 2

n�3 assignments from S (F) falsifying Ci [Cj .

Lemma 3. [4] Let F be a 2-CF, n = |�(F)|. If Ci 2 F

and Cj 2 F , i 6= j contain complementary literals, that is
xk 2 Ci and ¬xk 2 Cj , the unsatisfied set of assignments Ai

and Aj form a disjoint set of assignments. Consequently, both
clauses suppress exactly 2

n�2 + 2

n�2 = 2

n�1 assignments
from S (F).

Definition III.1. [5] Given two binary clauses Ci , Cj , If
they have at least one complementary literal, it is said that
they are independent. Otherwise, we say that both clauses
are dependent.

Definition III.2. Let F = {C1 ,C2 , · · ·Cm} be a 2-CF.
F is called independent if for each pair of clauses
Ci ,Cj 2 F , i 6= j , it holds that xk 2 Ci and ¬xk 2 Cj , oth-
erwise F is called dependent.

Let C be a clause and let x be any variable, we have that

C = (C _ ¬x) ^ (C _ x) (1)

Furthermore, this reduction preserves the
number of falsifying assignments, since
#UNSAT (C) = 2

n�(|C |+1) + 2

n�(|C |+1) =
#UNSAT ((C _ ¬x)^(C _ x)), because (C _ ¬x)
^(C _ x) are two independent clauses.

Given a pair of dependent clauses C1 and C2 . Let us
assume that there exist literals in C1 which are not in C2 ,
and let x1 , x2 , ..., xp be these literals. There exists a reduction
to transform C2 (or C1) to be independent with C1 (or C2),
we will call this transformation the independence reduction,
and this works in the following way. By (1) one can write:
C1 ^ C2 = C1 ^ (C2 _ ¬x1) ^ (C2 _ x1). Now C1 and
(C2 _ ¬x1) are independent. Applying (1) to (C2 _ x1):
C1 ^ C2 = C1 ^ (C2 _ ¬x1) ^ (C2 _ x1 _ ¬x2) ^ (C2_
x1 _ x2) The first three clauses are independent. Repeating
the independence reduction until xp , we have that C1 ^ C2

can be written as:
C1 ^ (C2 _ ¬x1) ^ (C2 _ x1 _ ¬x2) ^ ...^
(C2 _ x1 _ x2 _ ... _ ¬xp) ^ (C2 _ x1 _ x2 _ ... _ xp).

The last clause contains all literals of C1 , so it can be
eliminated, and then

Engineering Letters, 23:2, EL_23_2_04

(Advance online publication: 24 April 2015)

__

C1 ^ C2 = C1 ^ (C2 _ ¬x1) ^ (C2 _ x1 _ ¬x2) ^ . . .^
(C2 _ x1 _ x2 _ . . . _ ¬x

p

) (2)

Clauses on the right hand side of (2) are independent by
construction.

For any independent formula F = {C1 , . . . ,Cm}
involving n variables, we have that:
#UNSAT (F) =

Pm
i=1 2

n�|Ci |. In particular, if F is
a k -CF then #UNSAT (F) =

Pm
i=1 2

n�k . And as F is
unsatisfiable when #UNSAT (F) = 2

n , then all k -CF with
at least 2 k independent clauses will be unsatisfiable.

On the other hand, a pair of dependent binary clauses can
be one of the following two types:

a) with one common literal.
b) without any variable in common.
Case (a): Let Ci ,Cj be two binary dependent clauses

involved in a formula with n variables such that xk 2 Ci

and xk 2 Cj . The number of falsifying assignments for this
pair of clauses is: 2n�1 � 2

n�2 , given by one application
of the independence reduction:

Case (b): let Ci = {xi1 , xi2} and Cj = {xj1 , xj2} such
that all the variables involved in Ci and Cj are different. The
number of falsifying assignments for this pair of clauses is:
2

n�2 + 2

n�3 + 2

n�4 , according to a double application of
the independence reduction.

Example III.1. Let Ci ,Cj 2 F , where Ci = (x1 _ x2),
Cj = (x3 _ x4), the transformation to obtain independent
clauses is applied over C

j

as shown:
(x1 _ x2) ^ (x3 _ x4) = (x1 _ x2) ^ (¬x1 _ x3 _ x4) ^ (x1
_¬x2 _ x3 _ x4). Since the last three

clauses are independent we have:
#UNSAT (Ci ^ Cj) = 2

n�2 + 2

n�3 + 2

n�4 .

Lemma 4. Let F (n,m) be a 2-CF with n variables and m

clauses. Let C = {x , y} be a binary clause not in F . It holds
that #UNSAT (F ^ C) � #UNSAT (F).

Proof:

It is well known that: A \ B ✓ A , A \ B ✓ B hence:

(UNSAT (F) \ UNSAT (C)) ✓ UNSAT (C)

which means that �#(UNSAT (F) \ UNSAT (C)) �
�#UNSAT (C). Adding the number of falsifying
assignments of F and C to both sides of the inequality:
#UNSAT (F) + #UNSAT (C)� (#UNSAT (F)\
#UNSAT (C)) � #UNSAT (F) + #UNSAT (C)�
#UNSAT (C).
The left hand size in the inequality is #UNSAT (F ^ C),
while the right hand size is #UNSAT (F).

Definition III.3. A formula F = {C1 ,C2 , · · ·Cm} in which
Ci = {x1 , li}, 8Ci 2 F and each li is a literal which comes
from a different variable, such formula is called totally
dependent. The formula is also totally dependent if each
Ci = {¬x1 , li}, 8Ci 2 F and li involves a different variable
with any other lj , i 6= j = 1 , . . . ,m . We will call such F

a totally dependent positive formula in the first case, and a
totally dependent negative formula in the second case.

Notice that in a totally dependent formula with m clauses
there are m + 1 different variables involved.

Theorem 2. Let Fd(n,n � 1) be a totally dependent
formula with n variables and n � 1 clauses, then for
any 2-CF F (n,m1), with m1 � n � 1 , it holds that
#UNSAT (Fd) #UNSAT (F). In other words, a totally
dependent formula has the minimum number of falsifying
assignments into the set of all 2-CF with the same number
of variables and at least the same number of clauses.

Proof: Let F (n,m1) be a 2-CF such that m1 > n

(the number of clauses is greater than the number of
variables). By the result of lemma 4, clauses in F can
be chosen until a subformula F1 (n,n � 1) ✓ F (n,m1)
is obtained such that the n variables are considered
and #UNSAT (F1 (n,n � 1)) #UNSAT (F (n,m1).
It remains to be shown that
#UNSAT (F1 (n,n � 1)) � #UNSAT (Fd(n,n � 1)).
The proof is by induction on the number of clauses in Fd .

i) For m = 1 , it holds, since
#UNSAT (Fd(2 , 1)) = 1 #UNSAT (F1 (2 , 1)).

ii) If m = 2 , Fd(3 , 2) = {(x1 , x2), (x1 , x3)} where
#UNSAT (Fd(3 , 2)) = 3 . It can also be easily
verified for F1 (3 , 2).

iii) We asume that the theorem holds for m � 1

clauses, that is: #UNSAT (Fd(m,m � 1))
 #UNSAT (F1 (m,m � 1)).

iv) We show that it holds for formulas with m clauses.
Let F1 = {C1 , ..,Cm} be a 2-CF with m clauses
and m + 1 variables. Let Cm be the only clause
where xm+1 appears and for any other clause
Ci 2 F1 , i = 1 , . . . ,m � 1 , xm+1 does not appear
(hence GF1 is an acyclic graph). As {C1 , . . . ,Cm�1}
has less than m clauses, we apply the inductive hy-
pothesis and there exists a totally dependent formula
Fd(m,m � 1) such that #UNSAT (Fd(m,m � 1))
 #UNSAT ({C1 , . . . ,Cm�1}). Let us analyze the
different cases for (Fd(m,m � 1) ^ Cm).
a) If Cm = {x1 , xm+1}, then (Fd(m,m � 1) ^ Cm)

continues being totally dependent and the theorem
holds. Notice that #UNSAT (Fd(m + 1 ,m)) =
(#UNSAT (Fd(m,m � 1))) ⇤ 2 + 1 .

b) If Cm = {x1 , xm+1} then Cm is
independent with any other clause of
Fd(m,m � 1) and #UNSAT (Fd(m + 1 ,m))
= #UNSAT (Fd(m,m � 1) ^ Cm)
= (#UNSAT (Fd(m,m � 1))) ⇤ 2 + 2

m�1

c) If Cm = {xi , xm+1}, where �(xi) 6= �(x1). By
one application of the independence reduction over
Cm we obtain C

0
m = {¬x1 _ xi _ xm+1} indepen-

dent with any other clause in Fd(m,m � 1) and
#UNSAT (Fd(m,m � 1) ^ Cm)
= #UNSAT (Fd(m,m � 1) ^ C

0
m), then:

#UNSAT (Fd(m + 1 ,m)) =
#UNSAT (Fd(m,m � 1) ^ Cm)
= (#UNSAT (Fd(m,m � 1))) ⇤ 2 + 2

m�2

As #UNSAT (Fd(m + 1 ,m)) =
(#UNSAT (Fd(m,m � 1)) ⇤ 2 + 1

 (#UNSAT (Fd(m,m � 1)) ⇤ 2 + 2

m�2

 (#UNSAT (Fd(m,m � 1)) ⇤ 2 + 2

m�1 ,

Engineering Letters, 23:2, EL_23_2_04

(Advance online publication: 24 April 2015)

__

for m > 2 . Then, #UNSAT (Fd(m + 1 ,m))
 #UNSAT (F1 (m + 1 ,m)).

A totally dependent formula Fd(n,n � 1) can be rep-
resented by a tree of height 2, where the root (level
1) represents the shared literals and each child of the
root (level 2) represents the non common literals. In
Figure 1 we show a totally dependent positive formula.
Notice that #UNSAT (Fd(n,n � 1)) can be computed
from the value #UNSAT (Fd(n � 1 ,n � 2)) according
to the following recurrence: #UNSAT (Fd(n,n � 1)) =
#UNSAT (Fd(n � 1 ,n � 2)) · 2 + 1 , and developing such
recurrence until the base case #UNSAT (Fd(2 , 1)) = 1 , we
obtain that #UNSAT (Fd(n,n � 1)) = 2

n�1 � 1 .

 x1

 x2

 x3 xn

. . .

+

+

+

Fig. 1. A totally dependent positive formula

Lemma 5. For any 2-CF Fn with n variables which
is not a totally dependent formula, it holds that
#UNSAT (Fn) � #SAT (Fn).

Proof: As only the totally dependent formula
holds that #UNSAT (F) = 2

n�1 � 1 . For any
other formula Fn with n variables, we have that
#UNSAT (Fn) � 2

n�1 , so the lemma is derived from the
fact that #UNSAT (Fn) + #SAT (Fn) = 2

n .
Then, according to this last lemma, an upper bound for

the value #SAT (Fn) is the same value of #UNSAT (Fn).

IV. AN INCREMENTAL COMPUTATION FOR #2UNSAT
Let Fd(n,n � 1) be a totally dependent formula and

let C = {xi , xj} be a clause such that �(C) ⇢ �(Fd),
and �(x1) /2 �(C). This means that (Fd ^ C) has a tri-
angle (see Figure 2)(the cycle: x1 � xi � xj � x1). It is
not hard to compute #UNSAT (Fd ^ C) because with
just one application of the independence reduction on
C and Ci 2 Fd , the clause C

0 = {¬x1 , xi , xj} is inde-
pendent with each clause in Fd , and as the indepen-
dence reduction preserves the number of unsatisfied as-
signments, #UNSAT (Fd ^ C) = #UNSAT (Fd ^ C

0) =
#UNSAT (Fd) + #UNSAT (C 0) = 2

n�1 � 1 + 2

n�3 .

 x1

 x2 x3
 xn

C1

C2

Cn-1

C

...

Fig. 2. A triangle in a totally dependent formula

In fact, the above procedure gives us an easy way to
compute #UNSAT (F ^ C) when the value #UNSAT (F)
has already been computed. The procedure consists
of applying the independence reduction on C and
the clauses in F involving the variables �(C) until

TABLE I
THE FALSIFYING STRINGS FOR THE CLAUSES IN F1

x1 x2 x3 x4 x5 x6

C1 0 1 * * * *
C2 * 0 1 * * *
C3 * * 0 1 * *
C4 * * * 0 0 *
C5 * * * * 0 0
CC * 0 * 0 * *

a new clause C

0 is built which will be independent
with all clauses Ci 2 F where �(C) \ �(Ci) 6= ;
and then #UNSAT (F ^ C) = #UNSAT (F ^ C

0) =
#UNSAT (F) + #UNSAT (C 0).

In [2], it was proved that if the constrained graph G

F

of the formula is a path, then #UNSAT (F) is computed
applying the following recurrence (↵i ,�i) =

8
>>>><

>>>>:

(µi�1 + (2i�2 � ↵i�1),µi�1) if (✏i, �i) = (0, 0)

(µi�1 ,µi�1 + (2i�2 � ↵i�1)) if (✏i, �i) = (0, 1)

(µi�1 + (2i�2 � �i�1),µi�1) if (✏i, �i) = (1, 0)

(µi�1 ,µi�1 + (2i�2 � �i�1)) if (✏i, �i) = (1, 1)

(3)

Let P = {Ci}5i=1 be the path in Figure 3, then
F1 = P [{CC}. #UNSAT (P) = 53 and if we want to
compute (P ^ CC), CC has to be made independent with
each clause from P which is contained by the endpoints of
the clause CC . In Table 1, we analyze the falsifying strings
of each clause in F1 [3].

 x1 x2 x3

C1 C2 C4C3

x4 x5

+ +

Cc
GF1

+ - +

-

- + - + +

(0,0) (1,0) (3,1) (7,4) (11,15)

++

x6

C5

(26,27)

Fig. 3. Computing #UNSAT for the path in the graph.

By one application of the independence reduction
between CC and C2 , the new string for C

0
C is formed

as: ⇤000 ⇤ ⇤ and C

0
C is independent with C3 . And

as only C2 and C3 are the clauses embraced by the
back edge in the cycle formed by x2 � x3 � x4 � x2 ,
then #UNSAT (F1) = #UNSAT (P ^ CC) =
#UNSAT (P ^ C

0
C) = #UNSAT (P) + #UNSAT (C 0

C) =
53 + 2

n�|C 0
C | = 53 + 8 = 61 .

By duality, we have that
#SAT (F1) = 2

n �#UNSAT (F1) = 2

6 � 61 = 3 .
In the case that �(C) \ �(F) = ;, C must be tranformed,

via independence reductions until a new clause C

0 is formed
from C and F such that C 0 is independent with any other
clause Ci 2 F .

Definition IV.1. The constrained graph GF = (�(F),E) of
a 2-CF formula F = {C1 , . . . ,Cm} is called a tree if the
following holds:

1) There exist j clauses 1 < j < n such that
T

Cj 6= ;.
2) For any F

0 ⇢ F whose constrained graph is a path,
there are no transitive clauses from F

0 in F , and F

has no cycles.

Lemma 6. If GF is a path, then
F = {C1 ,C2 , . . . ,Cm} = {{x ✏1

1 , x

�1
2 }, {x ✏2

2 , x

�2
3 }, . . . ,

Engineering Letters, 23:2, EL_23_2_04

(Advance online publication: 24 April 2015)

__

{x ✏m
m , x

�m
m+1}}, where �i , ✏i 2 {0 , 1}, i 2 [[m]]. Let

f

i

be a family of clauses of the formula F built as
follows: f1 = ;; f

i

= {C
j

}
j<i

, i 2 [[m]]. Notice that
n = |�(F)| = m + 1, f

i

⇢ f

i+1, i 2 [[m � 1]]. Let
SAT (f

i

) = {s : s satisfies f

i

}, A

i

= {s 2 SAT (f
i

) :
x

i

2 s}, B

i

= {s 2 SAT (f
i

) : ¬x
i

2 s}. Let
↵

i

= |A
i

|; �
i

= |B
i

| and µ

i

= |SAT (f
i

)| = ↵

i

+ �

i

.
For every node x 2 G

F

, a pair (↵
x

,�

x

) is computed,
where ↵

x

indicates how many times the variable x is true and
�

x

indicates the number of times that the variable x is false
in the set of models of F . The first pair is (↵1,�1) = (1, 1)
since x1 can be true or false in order to satisfy f1. The
pairs (↵

x

,�

x

) associated to each node x

i

,i = 2, . . . ,m are
computed according to the signs (✏

i

, �

i

) of the literals in the
clause c

i

. Let F = {C1 , . . . ,Cm} be a 2-CF where GF is a
tree. For each father node xp with two branches, one of size
i (it has i clauses), and the other of size j (j clauses are
involved), the recurrence for updating the charge associated
to the node xp : (↵p ,�p), is given as:

↵

p

= ↵

i

· (2j � ↵

j

) + ↵

j

· (2i � ↵

i

) + ↵

i

· ↵
j

�

p

= �

i

· (2j � �

j

) + �

j

· (2i � �

i

) + �

i

· �
j

(4)

Proof: If two different branches, one of size i and
the other of size j meet in the same father node, then
there are two charges (↵i ,�i) and (↵j ,�j) associated at
the same variable xp (the father node). (↵i ,�i) initially
denotes the number of falsifying assignments for the branch
i , and then it updates considering all the assignments for the
other branches minus the corresponding number of falsifying
assignments (2 j � ↵j or 2

j � �j assignments). A similar
argument is given when (↵j ,�j) is considered. Respectively
we have to add the common falsifying assignments for the
variable xp ; ↵i · ↵j for the value ↵p and �i · �j for �p .

It is obvious that acyclic graphs can be represented
by trees. Let GT be a tree, Figure 4 shows the
result after applying equations (4) and (3) on GT . In
this instance, #2UNSAT (GT) = 103 + 116 = 219 .
Then, we obtain from the duality principle that
#2SAT (GT) = 2

7 �#2UNSAT (GT) = 256 � 219 =
37 . Thus, we have the following theorem.

Fig. 4. Applying the formulas for #UNSAT on a Tree

Theorem 3. Let F be a 2-CF where GF is an acyclic graph.
#2UNSAT (F) is computed in linear time on the number of
nodes in GF .

Proof: A postorder traversal of the tree computes
#UNSAT (F) while #2UNSAT (F) is calculated by ap-
plying the recurrences (3) and (4).

Remember that the hard cases to answer
whether #SAT (F) = k , is when k > p(n) for

a polynomial p(n) where n = |�(F)|. Discarding
the minimum dependent trees, we have that 2

n =
#UNSAT (Fn) + #SAT (Fn) � 2

n�1 + k then the value
k is upper bounded by 2

n � 2

n�1 = 2

n�1 . So, the hard
cases for answering whether #SAT (F) = k , are those
where p(n) < k < 2

n�1 . Thus, we can work over the
computation of #UNSAT (F) as an upper bound for the
value of #SAT (F).

V. CONCLUSION

We have determined the kind of 2-CF formulas with a
minimum number of falsifying assignments from the set of
all 2-CF formulas with the same number of variables and at
least the same number of clauses. As a result of the duality
property between #2SAT and #2UNSAT , we determine
the formulas with a maximum number of models from the
set of all 2-CF formulas with the same number of variables
and at least the same number of clauses.

We have shown that for any 2-CF Fn with n variables,
#UNSAT (Fn) � #SAT (Fn) with the exception of the
totally dependent formulas. If #UNSAT (Fn) p(n) for
a polynomial on n , then #SAT (Fn) p(n) too, and then
#SAT (Fn) can be computed in polynomial time on the size
of the formula.

REFERENCES

[1] V. Dahllöf,P. Jonsson and M. Wahlström, ”Counting models for 2SAT
and 3SAT formulae”, Theoretical Computer Sciences, vol. 332, no. 3,
pp. 265-291, Feb. 2005.

[2] G De Ita, R. Marcial Romero and J.A. Hernández,” A threshold for a
Polynomial Solution of #2SAT”, Fundamenta Informaticae, vol. 113,
no.1, pp. 63-77, Jan. 2011.

[3] G. De Ita, P. Bello and M. Contreras, ”New Polynomial Classes
for #2SAT Established Via Graph-Topological Structure”, Engineering

Letters, vol. 15, pp. 250-258,Nov. 2007.
[4] G. De Ita and J.R. Marcial Romero, ”Computing #2SAT and #2UNSAT

by Binary Patterns”, Lecture Notes in Computer Sciences, Vol. 7329,
pp. 273-282, Jun. 2012.

[5] O. Dubois, ”Counting the number of solutions for instances of satisfia-
bility”, Theoretical Computer Sciences., vol. 81, pp. 49-64, Apr. 1991.

[6] N. Linial and N. Nisan,” Approximate inclusion-exclusion”. Combina-

torica, vol. 10, no. 4, pp. 349-365, Dec.1993.
[7] E. Lozinskii E,” Counting propositional models”, Information Process-

ing Letters , vol. 41, no. 4, pp. 327-332, Apr. 1992.
[8] D. Roth, ”On the hardness of approximate reasoning,” Artificial Intel-

ligence, vol 82, pp. 273-302, Apr. 1996.
[9] S.P. Vadhan,” The Complexity of Counting in Sparse, Regular, and

Planar Graphs”, SIAM Journal on Computing, vol. 31, no.2, pp. 398-
427, Sep. 2000.

[10] M. Wahlström, ”A Tighter Bound for Counting Max-Weight Solutions
to 2SAT Instances”, Lecture Notes in Computer Sciences , vol. 5018,
pp. 202-213, May. 2008.

[11] J. Zhou, M. Yin and C. Zhou, ”New Worst-Case Upper Bound for
#2-SAT and #3-SAT with the Number of Clauses as the Parameter”, in
Proceedings of the AAAI 2010, pp. 217-222.

Engineering Letters, 23:2, EL_23_2_04

(Advance online publication: 24 April 2015)

__

