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Abstract—One potential method for the treatment of brain
tumors is the use of thermal nuetrons flux. These type of
neutrons are produced by the nuclear fission of uranium-235.
When the nuclear fission occurs at the core of a reactor, part
of the thermal neutrons flux go into the Hohlraum generating
an isotopic expansion. To successfully carry out this radiation
technique, it is necessary to evaluate the performance of the
thermal neutrons flux at the Hohlraum during he isotropic
expansion. In this paper, the classification of the resultant flux
is achieved using a Multilayer Perceptron Artificial Neural
Network (ANN). For the ANN topology configuration, a set of
parameters specific to the structure of the horizontal thermal
column of the Hohlraum reactor have been determined. Ex-
perimental results show the viability of the model and provide
additional support to the reactor facilities remodeling tasks.

Keywords: Artificial Neural Networks, Multilayer percep-
tron, Back propagation algorithm, Thermal neutrons.

I. INTRODUCTION

The National Institute for Nuclear Research (ININ, for its
Spanish acronym) in Mexico boasts a TRIGA MARK III
nuclear reactor, designed for nuclear research purposes, as
well as for the production of radioisotopes and for operative
staff training. The reactor routinely operates in steady state
mode at thermal power levels up to 1000 KW and it is able
to be repeatedly pulsed up to a peak power of approximately
2000 KW. Similarly, the ININ boasts research facilities to
carry out gamma radiation and neutrons studies, as well as
tests on the effects of large doses of radiation and sample
activation [1]. The thermal column of the reactor is located
at the north side of the pool structure, it goes from the outer
structure of the core of the reactor to the external structure
of the concrete shield construction (See figure 1).

Access to the thermal column is through a concrete gate
similar to the one in the exposition room, only smaller.
Inside the facilities there is an empty space or Hohlraum
of size 91x91x100 cm, shrouded with borated polyethylene
and graphite. Neutron shielding in this area is made using
a large amount of graphite, the concrete structure, a 30 cm
thick steel plate located at the top of the horizontal thermal
column and next to the liner, and a wall of lead blocks right
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next to the reactor core used to reduce the levels of gamma
radiation [2] (See Figure 2).

On one of the Hohlraum surfaces, there is a 15 cm diame-
ter intake for the neutrons flux at various energy levels, e.g.,
cold, thermal, epithermal, slow, medium, fast and ultrafast.
The neutrons flux interacts inside the reactor to generate the
isotropic expansion and thus, irradiate the samples contained
within.

Amongst the available neutrons, those of interest to our
study are the thermal neutrons, as they are the ones with
lessen energy suitable to be used in the the boron neutron
capture therapy (BNCT) for the treatment of brain tumors. A
small number of studies have been focused to the detection
of thermal neutrons, due to that most of the elements in the
Periodic Table yield nuclear reactions of type (n,g), causing
the formation of radioactive nucleus [3].

In the treatment of brain tumors, BNCT is based in the
nuclear reaction that takes place when the stable nucleus
of Boron-10 is irradiated with thermal neutrons (0.025 eV)
to produce an alfa particle (2He4) and a nucleus of Li-
7. These particles have a motion length of approximately
a cellular diameter (5 – 9 µm), producing a high linear
energy transference. Only the alfa particles at a narrow
interval of 1.7 MeV produced during this nuclear reaction
are enough to direct the cellular nucleus and destroy them.
This destructive action occurs mainly in the cancer cells that
have accumulated boron. Other cells with low concentrations
of boron are not significantly damaged. As a result, the
current tendency is to consider BNCT as a complementary
therapy that could be more relevant for the treatment of
tumors resistant to other therapies. Nevertheless, in order to
make it viable at the ININ, it is required to evaluate the
neutrons flux profile because when the TRIGA MARK III is
fully operational, the behavior and the displacement of the
produced thermal neutrons inside the Hohlraum cannot be
verified, due to the lack of some measuring instrument or
simulation that allow us to know the state of these particles.

In this study, an Artificial Neural Network (ANN) is used
to model the thermal neutron flux in the Hohlraum to provide
additional support for the reactor remodeling facilities.

An ANN is defined as a non-linear mapping system which
structure is based on principles observed in the biological hu-

Fig. 1. Longitudinal view of the reactor.

Engineering Letters, 23:2, EL_23_2_05

(Advance online publication: 24 April 2015)

 
______________________________________________________________________________________ 



Fig. 2. Hohlraum.

man systems. It has a large number of simple neurons linked
by a net of weighted connections. Each neuron takes input
from other neurons and produces a single scalar output that
depends on the available local information internally stored
or arriving from the incoming connections as weights[4].

Some uses of ANNs are [5]: image classification, voice
synthesis, sonar echoes classification, knowledge based sys-
tems, information coding, and many other classification and
perception problems. They have also been used for different
optimization problems, such as passenger transit time reduc-
tion in airports [6], artificial climate control and optimization
in hotels [7], control and optimization of eolic turbines [8],
among others.

In this paper, a study to estimate the neutron flux with re-
spect to their energy of the thermal column in the Hohlraum
of the TRIGA MARK III nuclear reactor using an ANN
is presented. This study will be used for remodeling the
facilities containing the reactor, as well as for evaluating the
BNCT in patients suffering from brain tumors.

The overall organization of the paper discusses some
basic terminology of thermal neutrons in Section II. Section
III details the ANN model used, Section IV describes the
methodology used in our study. Section V shows the exper-
imental results of the work, and Section VI lists the paper
conclusions and some possible future research work.

II. THERMAL NEUTRONS

The neutrons produced by a nuclear reactor are unstable
when they are outside the nucleus, and decay through the beta
emission yielding a proton, an electron, and an antineutrino.
The average decay time is 12.8 minutes. Depending on the
energy groups or the given magnitude of energy, it is possible
to find different types of neutrons as shown in Table I.

TABLE I
NEUTRON ENERGY CLASSIFICATION

Type Energy (eV) Velocity (cm/s)

Cold 0.005 9.66× 104

Thermal 0.025 2.2× 105

Epithermal 1 1.4× 106

Slow 102 1.4× 107

Intermediate 104 1.4× 108

Fast 106 1.4× 109

Ultrafast 108 1.4× 1010

1) Thermal Neutrons. Neutrons in thermal equilibrium
with the medium they are interacting with in terms
of their energy, which is much lower than those of the
fast neutrons initially produced by fission.

2) Resonance or Intermediate Neutrons. They have aver-
age kinetic energy greater than the thermal ones, found
in the 0.5 eV a 10 KeV interval.

3) Fast Neutrons. A neutron with a kinetic energy between
10 KeV and 10 MeV.

4) Relativistic Neutrons. The highest energy neutrons.
They move at relativistic speeds (the speed of light)
with energy greater than 10 MeV.

This study will be focused on the thermal neutrons. The
speed distribution of thermal neutrons practically follows the
Maxwell distribution, typical in the kinetic theory of gases
[9]. The most probable speed has been shown to be:

vo =
2KT

mn

where K is the Boltzmann constant, T is the absolute
temperature, and mn is the neutron mass. For t = 20 oC, v0
yields a value of 2.200 m/s [9].

For the absorption case, it is defined as the lost of the
neutron that becomes part of the new nucleus forming a
composite nucleus. The absorption of a neutron could lead to
a posterior fission process called radioactive capture forming
radioisotopes or triggering the emission of loaded or neutral
particles [10].

The neutrons are projectiles capable of inducing fission
reactions in some elements that can emit or absorb the
released energy in heavy nucleus. Such nuclear reactions are
amongst the most important due to their various applications
[3]. The most important properties of these processes are the
following:

1) Fission is an atypical nuclear reaction in which a
nucleus, usually heavy, is divided into two fragments,
releasing 2 or 3 neutrons and a large amount of energy
(about 200 MeV per fission).

2) Thermal neutrons are capable of inducing fission in
heavy nucleoids of an odd mass number, such as
235U and 239Pu. Fast neutrons are capable of causing
fission in some heavy nucleus, although with reduced
probabilities or efficient sections.

3) The resulting fragments of the nucleus fission have
many neutrons and are primary links of the beta
negative disintegration chain.

4) The fact that on each fission process induced by the
absorption, 2 a 3 neutrons are released, suggests the
possibility that a chain reaction could be caused.

III. ARTIFICIAL NEURAL NETWORK

One of the most popular models of an ANN is the
Multilayer Perceptron due to its applicability on multi-class
problems non-linearly separable using several neuron layers,
i.e., the output of each neuron from one layer is an input to
each neuron in the next layer, and the size of the input layer
determines the size of the input pattern vector. The output
layer will contain the number of neurons, i.e., classes, to
classify[11].

The Back-propagation algorithm is commonly used to
train the Multilayer ANNs [12]. The purpose of this al-
gorithm is to adjust the weights in order to minimize the
Mean Square Error (MSE) used to quantify the difference
between the ANN output and the expected output given by
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a set of training patterns. The whole process involves two
stages, namely, Forward propagation and Back propagation.

A. Forward propagation

When a pattern x of n features is presented as input of
an ANN, it is propagated through each weight wji, from the
input layer to the hidden layer. In this way, the total input
that a hidden neuron j takes is netj =

∑n
i=1 wij · xi + θ;

where x1, x2, . . . , xn are the input signals; w1, w2, . . . , wn

are the synaptic of the neuron j and θ is the bias (usually
set to 1).

On the other hand, the output value of a hidden neuron
j, Zj , is computed using an activation function f(.) over
its total input: Zj = f(netj); where f(net) is the sigmoid
function:

f(netj) =
1

1 + exp [− (net+ θ)]
(1)

Similarly, the total input that takes an output neuron t,
nett, is defined as:

nett =
c∑

j=1

wij · Zj + θj (2)

Lastly, the value of the output neuron t, Zt, is:

Zt = f(nett) (3)

B. Back propagation

The minimization of the MSE is calculated using a gradi-
ent descent method that computes the gradient of the MSE
of the link weights. The error function to be minimized for
each pattern x is as follows:

Ex =
1

2

c∑
t=1

(st − Zt)
2 (4)

Where Zi is the desired output for the neuron t after ob-
serving pattern x, and yields 1 if x ∈ c, or 0 otherwise. From
this expression, a general error measure can be computed
using the following equation:

Eavg =
1

m

m∑
x=1

Ex (5)

To adjust the weights values, the back propagation algo-
rithm uses the gradient descent [13]. The gradient moves in
the direction of the fastest error increment, while the opposite
direction (negative) determines the fastest error decrement.
Taking into account that Ex is a function of all the weights
of the ANN, the gradient of Ex is a vector equal to the
partial derivative of Ex with respect to each weight. Thus, the
error can be reduced adjusting each weight in the following
direction:

∆wij = −η δEx

δwij
(6)

where η is the learning rate. The value of η has a crucial
role during the training process of the ANN because it
controls the change size of the weights on each iteration.
Therefore, the adjustment of the weights is computed by

Fig. 3. Data distribution. The X axis corresponds to the pattern values and
the Y axis corresponds to the classes under consideration.

∆w(I + 1) = η· δ·Z, where I is the iteration, Z the output
of the neuron and δ is the local gradient defined as:

δ =

{
(st = Zt) f

′ (nett) output layer neurons
f ′ (neti)Zi

∑
t δtwt,i hidden layer neurons

(7)

It can be seen that the delta value associated to a neuron
of the hidden layer j is determined by the sum of the errors
that take place in the t output neurons that take as input the
output of the hidden neuron j. Thus the algorithm’s name
back propagation.

IV. METHODOLOGY

A. Data set

The data set used for training the ANN, consists of setting
a grid on the 6 flat surfaces of the Hohlraum. Each surface
was divided in 90 columns and 90 rows of 90x90 cm, which
represent all the space under study of the Hohlraum. In this
way, a balanced data set of 6 classes was obtained (front,
intake, left, right, up, down), each with 90 patterns. Figure
3 shows the pattern distribution in the representation space
where a disjoint distribution of the classes can be observed
because each one corresponds to one of the Hohlraum sides.

For validation purposes, the k-cross-fold-validation [14]
with 5 repetitions was used. We consider 80% of the patterns
for training purposes of the ANN, and the remaining 20% for
testing. With this model of the Hohlraum, the experiments
followed the steps shown in Figure 2.

B. ANN configuration

The ANN configuration used in this study uses the
Backpropagation training algorithm [12], considering 5000
iterations and a momentum factor of 0.2, i.e., the learning
starts with an initial phase of forward propagation and a
second phase of backward propagation of the error, which
yields the synaptic weights and reduces the MSE. In the
hidden layers the neurons use a transference sigmoid function
(logsig) and a value of 0.05 as the learning rate. The number
of hidden layers varied from 0 to 5.

V. EXPERIMENTAL RESULTS

The experimental results shown in this section were ob-
tained using the WEKA software (Waikato Environment for
Knowledge Analysis) [15].

A confusion matrix was used to analyze the ANN results
[16]. A confusion matrix is a table layout that shows the
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classification performance of the ANN with respect to the
test data. It is a 2D matrix, indexed in one dimension by the
true class of the data and in the other by the response of
the classifier under scrutiny [17]. A location m[i, j] of the
confusion matrix indexes the data points from surface i of
the Hohlraum that have been classified as hitting or striking
surface j. Thus, all correct guesses are located in the diagonal
of the table, and the classifier errors are represented by the
values outside the diagonal.

A number of measures of classification performance are
defined in terms of the confusion matrix values, namely, the
Kappa Statistic, the General Precision, the Recall and the
ROC curve.

The Kappa Statistic is a metric that compares the observed
accuracy with an expected accuracy, and also compares the
agreement among different ANN models with the accuracy
that could be observed by random chance. When all test
cases are correctly classified the maximum value agreement
of the index is achieved, i.e., Kappa =1. When the values of
the coefficient is 0, the observed agreement is considered the
same as the observed by random chance.

On the other hand, the General Precision is the number
of correctly classified test cases for each of the classes
considered. In its formulation, two cases are involved: the
true positives (TP) and the false positives (FP). The TP are
actual neutron surface strikes that were correctly classified,
whereas the FP are strikes that were incorrectly labeled as
correct surface hits. Thus,

Precision =
TP

TP + FP
(8)

The Recall is the ratio of test cases that are correctly
classified,

Recall =
TP

TP + FN
(9)

Lastly, the f-measure represents the test’s accuracy and
represents the weighted average of the precision and recall.
The closest a f-measure is to 1, the higher is the accuracy of
the classifier.

f −meaure =
2× Precision×Recall
Precision+Recall

(10)

Table II summarizes the average results of different ANNs
models. Table II shows that a bigger number of hidden
neurons yields a better classification of the neutron surface
strike. Similarly, as the General Precision increases, the ROC
curve achieves a higher agreement when using 5 hidden
neuron in the ANN.

A closer look to the FP with respect to the precision
levels reveals something interesting. On one hand, the general
precision increases as more hidden layers are added to the
ANN, however, FP remains stable, mainly when adding 0 to
2 hidden layers. This suggests that despite the FP, the ANN
achieves an increasing classification rate. This behavior is
confirmed by analyzing the MSE among the different ANN
models (Figure 4).

Lastly, the ROC curve analysis yields information to select
a possible optimal model and, thus, avoid sub-optimal models
regardless of the cost of the distribution of the objects been
classified. The ROC curve is also independent of the class

TABLE II
CLASSIFICATION RESULTS

ANN
hidden
layers

TP FP

Area
under

the
ROC
curve

General
Preci-
sion

f-measure Kappa
statistic

0 0.674 0.065 0.938 67.40 0.653 0.6089
1 0.665 0.067 0.945 66.48 0.646 0.5978
2 0.967 0.060 0.979 84.81 0.844 0.8178
3 0.848 0.03 0.977 87.04 0.866 0.8444
4 0.944 0.011 0.990 94.44 0.943 0.9330
5 0.983 0.003 0.999 98.33 0.983 0.9800

Fig. 4. Observed error by the ANNs models.

distribution. Figure 5 shows the ROC curve that correctly
classified neutrons hitting the left wall using a ANN model
with 5 hidden layers.

VI. CONCLUSIONS AND FUTURE WORK

Despite the high potential that the thermal neutrons pro-
duced with the TRIGA MARK III reactor have for brain
tumor treatment, it is necessary to carry out a study that
shows their behavior when going into the Hohlraum, i.e., the
space destined for the irradiation. In this sense, the profile
identification of the thermal neutrons flux is the starting
point to validate its use at the ININ facilities. This paper
has proposed the use of an ANN to identify this profile. In
addition, a 2D model of the Hohlraum has been designed to
validate the results. With the Hohlraum model, the necessary
representation and data set for training were presented to
the ANN. Once the abstract classification of the thermal
neutron flux has been made, an acceptable recognition rate
was achieved, and it was observed that a larger the number
of hidden neurons causes a more accurate class prediction.

It will be interesting to compare these results with other
classification techniques, as well as designing a 3D model
of the Hohlraum to simulate the displacement of the thermal
neutrons flux.
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