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Abstract—This study focuses on the lowest unique sealed-bid
auctions in which the winning bidder is the one who places
the unique bid that has the lowest value where exactly m bids
per bidder are allowed. The problem can be seen as injecting a
minimum into a random subset of a larger subset. By assuming
that bids are identical and independently placed according
to a given probability distribution, we obtain various exact
probabilities for the auctions, both as a bidder and an observer,
for m = 1, 2. The results are obtained via the inclusion-
exclusion principle. The computational results and algorithms
to calculate the probabilities are also given.

Index Terms—Unique minimum, inclusion-exclusion princi-
ple, combinations, partitions, identical and independence, game
theory, Internet auctions, reverse auctions, sealed unique-bid
auctions

I. INTRODUCTION

AUCTION is a process of buying or selling goods or
services. For a classical auction, the winning bidder

is determined by the bidder who makes the highest value
bid. Nowadays, there are many types of auctions ([7], [8]),
such as open ascending price auctions (English auctions),
open descending price auctions (Dutch auctions), first-price
sealed-bid auctions, second-price sealed-bid auctions (Vick-
rey auctions) and unique bid auctions. In this article, we
consider the lowest unique bid auctions(LUBAs), type of
auctions which are recently introduced in the last few years.
Moreover, we introduce the lowest unique bid auctions
where multiple bids from each bidder are compulsory. We
summarised the basic rules of m-bid LUBAs as follow:

1) Each bidder makes exactly m different sealed bids,
assumed to be discrete and positive value.

2) The winning bidder is the bidder who makes the bid
that is unique, and has the lowest value amongst the
unique bids.

We call the auction classical LUBA when m = 1, which
means that each bidder makes exactly one bid. We demon-
strate LUBAs by using an example here: In the LUBA with
ten participated bidders where each bidder places two bids
according to Table 1.

• For the classical case where Bids 1 from each bidder
are considered, we can see that the unique bids are 1.75,
2.25 and 4.00. Hence 1.75 is the lowest unique bid, and
Bidder 4 is the winner of the classical LUBA.

• For m = 2 case where both bids from each bidder are
considered, we can see that unique bids are 2.75, 3.00,
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TABLE I
EXAMPLE OF LUBA WITH 10 BIDDERS

Bidder Bid 1 Bid 2
1 1.00 1.50
2 1.50 2.50
3 2.00 2.25
4 1.75 3.00
5 4.00 5.00
6 1.00 1.75
7 1.50 2.50
8 2.25 3.25
9 2.00 2.75
10 1.00 1.75

3.25, 4.00 and 5.00. Hence 2.75 is the lowest unique
bid and Bidder 9 is the winner of the 2-bid LUBA.

It is clear, for m ≥ 2, that each bidder must place non-
identical bids for his own, otherwise he will reduce his
chance of winning the auction.

We can see that, to win LUBAs depends on several factors
such as a number of bidders involved and strategies of
participated bidders. The auction winners do not necessarily
have to place low bids. This somehow creates increased
attention from general participants, especially in the auctions
over the internet. In general, bidders in LUBAs need to pay
participation fees since the winner is justified in the opposite
way as most of the other auctions where the winning bidders
normally need to pay high fees to obtain the auctioned items.
Additional rules may be added to attract further interests, for
instant the winning bidder has to pay the exact amount of
money he bids. Such rules may effect strategies of bidders.

The LUBA problems can be modelled and studied in
many aspects including Mathematics, Statistics, Engineering,
Economics and Computer Sciences. However, all previous
results are for the classical LUBA problems. Bruss et al.[3]
considered the classical LUBA models where the bidder’s
strategies and the number of participated bidders, which
could be a random variable, were assumed to be known.
The main aim of their article was to study the chance
of winning the auctions, and their approximated solutions
were obtained via Poisson approximation theory. Pigolotti
et al. [11] and Ostling et al. [9], in different approaches,
studied equilibrium strategies of the auctions and compare
their developed results with the selected data set from the
internet auctions. Note that, urn models can also be used for
the problems where balls represent bids from participated
bidders and urns represent values of bids( [2], [5]) and the
lowest unique bid is represented by the left-most urn that
contains exactly one ball. However, we do not use such
models here.

In this article, when we participate in a LUBA, we refer
winning probability at bid k as the probability that we are
the winning bidder given that we place bid k. We refer bid
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distribution or bid strategy of Bidder i as the probability
distribution of the value(s) of bid(s) placed by Bidder i.
When we do not participate in a LUBA, we refer winner
probability at bid k as the probability that the lowest unique
bid occurs at the bid k, and we refer winner distribution or
equilibrium distribution as the probability distribution of the
value of lowest unique bid.
The main aim of this article is to derive exact winning
probabilities for classical LUBAs and 2-bid LUBAs under
the assumptions that the number of participated bidders is
fixed and the bid distribution of each bidder is independent
and identically distributed. Our results are obtained via the
inclusion-exclusion principle. The result and the proof of
the classical LUBA had been shown in Phetpradap [10].
However, we repeat those arguments again to ease readers
to understand other results in this article. For each result,
we propose the algorithm that generate winning probabilities
along with the comments. The discussion on the algorithms,
as well as the validity of our LUBA models, will be discussed
in the conclusion. Furthermore, we extend our approaches to
obtain winner distributions when we do not participate in
such auctions. An example of the use of the results of this
article is in dynamic task allocation in robot teams [13].

The rest of this article are presented as follow: In Section
2, we propose main notations and assumptions that are used
throughout the article. The results and proofs of the winning
probabilities in classical LUBAs and 2-bid LUBAs are dis-
played in Section 3 and 4 respectively. For both sections, we
give examples and calculation of winning probabilities along
with comments on algorithm. In Section 5, we act as an
observer in the LUBAs and obtain the winner distributions.
Finally, we discuss pros and cons of our methods in Section
6. The validity of the models and future study are also
interpreted.

II. LUBA MODELS AND MAIN NOTATIONS

In this section, we propose Mathematical models and
assumptions for classical LUBAs and 2-bid LUBAs. For both
models, we assume the following

Assumption 1. (1) The number of participated bidders,
excluding us, is fixed and equals to n.

(2) Bids from each bidder are independent and identically
distributed according to a given distribution.

Also, without loss of generality, we may assume that bids
are integers.

For a classical LUBA, and for an integer k, let P1(k)
be the probability that our bid k is the lowest unique bid
when we participate in the auction. Also, let P̂1(k)be the
probability that the bid k is the lowest unique bid when we
do not participate in the auction.

Similarly for a 2-bid LUBA, and for integers k1, k2, let
P2(k1, k2) be the probability of winning the auction when
the bids k1 and k2 are placed when we participate in the
auction. Also, let P̂2(k) be the probability that the bid k
is the lowest unique bid when we do not participate in the
auction.

Last but not least, in order to be able to calculate the
probabilities by using computers, we need to restrict an upper
price limit of the auction. This can be seen as support of the
set of bids.

III. CLASSICAL LUBAS

In this section, we display exact winning probabilities
in classical LUBAs, which was proved in [10]. Then, we
give an example and use the result to compute the winning
probabilities. We also give comments on the algorithm that
generates the probabilities.

Recall from Assumption 1 that the number of bidders
excluding us is n and P1(k) is the probability that our bid k
is the lowest unique bid. Let Xi be the bid placed by Bidder
i and define pk := P (Xi = k) to be the probability that
Bidder i places the bid k

Theorem 2. (Winning probabilities in a classical LUBA)
With Assumption 1. For k ∈ N,

P1(k) = (1− pk)
n
(
1−

k−1∑
i=1

[
(−1)i−1

∑
I⊂{1,...,k−1}

|I|=i

A(I)
])

,

(1)
where,

A(I) = P(n, i)
(∏

j∈I

pj
1− pk

)(
1−

∑
j∈I

pj
1− pk

)n−i

,

and P(k1, k2) =
k1!

(k1−k2)!
with P(k1, k2) = 0 for k2 > k1.

Proof: We re-write winning probability in terms of
events of bids. For i = 1, 2, . . ., let

• Ei be the event that no bidder places the bid i,
• Ui be the event that exactly one bidder places the bid

i,
with EC

i and UC
i are their complement events. Now, it can

be seen that

P1(k) = P (Ek ∩ UC
1 ∩ UC

2 ∩ · · · ∩ UC
k−1)

= P (Ek)P (
k−1∩
i=1

UC
i |Ek). (2)

Obviously P (Ek) = (1− pk)
n, while

P (

k−1∩
i=1

UC
i |Ek) = 1− P (

k−1∪
i=1

Ui|Ek). (3)

By the inclusion-exclusion principle, we get

P (
k−1∪
i=1

Ui|Ek) =
k−1∑
i=1

(−1)i−1
∑

I⊂{1,...,k−1}

|I|=i

P (UI |Ek), (4)

where UI =
∩

j∈I Uj . Note that P (UI |Ek) is the probability
that unique bids occur at bids j ∈ I given that no one bids
on the bid k. Hence, we get, for I ⊂ {1, 2, . . . , k − 1},

P (UI |Ek) = P (
∩
j∈I

Ui|Ek)

= P(n, |I|)
(∏

j∈I

pj
1− pk

)(
1−

∑
j∈I

pj
1− pk

)n−|I|

.

(5)

Combining (2) - (5), Theorem 2 follows.
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Example 3. Define the probability mass functions of
geometric(p) and Poisson(λ) random variables, Y and Z
respectively, as

P (Y = i) = (1− p)i−1p, ∀i ∈ Z+,

P (Z = k) =
e−λλk−1

(k − 1)!
, ∀k ∈ Z+.

The plots of the winning probabilities of LUBA with 50
bidders, where bid distributions are geometric(1/2), geomet-
ric(1/3), Poisson(2) and the price limits are 200, are given in
Figure 1. The optimum places to make the bid should be at 5,
7 and 7 respectively. For large k, the winning probabilities
seems to converge to a constant. This is because, by the
choice of bid distributions we choose, high bids are rarely
occur.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

 

 

geometric(1/2)

geometric(1/3)

Poisson(2)

Fig. 1. The winning probabilities of the classical LUBAs with n = 50.
The price limits are 200.

Algorithm and comments To generate winning probabilities
from Theorem 2, the input required are the number of
participated bidders, the bid distribution and the price limit.
The algorithm to generate (1) is straightforward.

IV. TWO-BID LUBAS

In this section, we derive exact winning probabilities
in 2-bid LUBAs where each bidder makes two (different)
bids. Recall from Assumption 1 that the number of bidders
excluding us is n, which means that the total number of
bids is 2n. Then, we give an example and use the result to
compute the winning probabilities, We also give comments
on the algorithm that generates the probabilities.
We start the section by defining the following notations:

1) Let Xi = (i1, i2) ∈ N2 be the bids made by Bidder i.
Without loss of generality, we assume that i1 < i2.

2) For i1 < i2, we define

pi1,i2 := P (Xi = (i1, i2))

to be the probability that Bidder i places bid i1 and i2.
We set pi1,i2 = 0 for i1 ≥ i2.

3) For j ∈ N, define p̃j to be the probability that exactly
one bid of Xi is j. In other words,

p̃j =
∑
k∈N

(pjk + pkj).

4) For an index set I ⊂ N, we define p̃j\I as the
probability that exactly one bid is j and the other bid
must not be from the index set I . That is

p̃j\I =
∑
k∈N
k/∈I

(pjk + pkj).

We can see that price limits have the role to make the prob-
abilities computable. To give an example of these notations,
suppose the bids distribution of each bidder is, for i1, i2 ∈ N,

pi1,i2 =

{
(2− q)q2(1− q)i1+i2−3, i1 < i2;
0, i1 ≥ i2. (6)

We call the random variables with mass functions defined
in (6) as geometric(q, q). Note that (6) refers to the situation
where each bidder places the joint geometric distribution with
the same parameter q and with the restriction that both bids
cannot be the same. We can work out from the equation that

p̃j = (2− q)q(1− q)j−2[1− q(1− q)j−1]. (7)

5) For an index set I ⊂ N, let J(I) be a collection of
disjoint subsets where each subset contains exactly two
elements from I . For k = 0, 1, . . . , ⌊ |I|

2 ⌋, define Jk :=
Jk(I) to be the set of the disjoint subsets of J(I) that
have exactly k subsets. Clearly,

J(I) = J0 ∪ J1 ∪ . . . ∪ J⌊|I|/2⌋.

Moreover, we define nk as the number of distinct
elements in Jk. It can be proved that

nk =
|I|!

(|I| − 2k)!k!2k
.

We may write the collection Jk as

Jk = {Jk
1 , J

k
2 , . . . , J

k
nk
}.

That is, for j = 1, . . . , nk, we have Jk
j as sets of k

disjoint subsets where each subset contains exactly two
elements from I . In other words,

Jk
j = {Jk

j,1, J
k
j,2, . . . , J

k
j,k}.

Now, for l = 1, . . . , k, note that Jk
j,l is the set which

has two elements and Jk
j,l ⊂ I . We set

J̃k
j =

k∪
l=1

Jk
j,l.

For example, if I = {1, 2, 4, 5}, then

J0 =
{
∅
}
,

J1 =
{{

{1, 2}
}
,
{
{1, 4}

}
,
{
{1, 5}

}
,
{
{2, 4}

}
,
{
{2, 5}

}
,{

{4, 5
}}

,

J2 =
{{

{1, 2}, {4, 5}
}
,
{
{1, 4}, {2, 5}

}
,
{
{1, 5}, {2, 4}

}}
.

Now, we are ready for the main results of this section. For
k1 < k2, recall that P2(k1, k2) is the probability of winning
a 2-bid LUBA when bids k1 and k2 are placed. To derive
the winning probability, we express it in terms of events of
bids. With the similar set up as in the proof of Theorem 2,
we remind that Ei is the event that no bidder places the bid

Engineering Letters, 23:3, EL_23_3_02

(Advance online publication: 10 July 2015)

 
______________________________________________________________________________________ 



i and Ui is the event that exactly one bidder places the bid
i.

Lemma 4. (Inclusion-exclusion principle of winning proba-
bilities)
With Assumption 1, for k1, k2 ∈ N with k1 < k2,

P2(k1, k2) = P(k1, ∗) + P(∗, k2)− P(k1, k2), (8)

where,
• P(k1, ∗) is the probability that our bid k1 is the winning

bid,
• P(∗, k2) is the probability that our bid k2 is the winning

bid ignoring what happens at k1,
• P(k1, k2) is the probability that both of our bids k1 and

k2 can be the winning bid.

Proof: Note that to win a 2-bid LUBA, we either win
at the bid k1 or at the bid k2. Hence,

P2(k1, k2) =

P
(
Ek1 ∩

k1−1∩
i=1

UC
i

)
+ P

(
EC

k1
∩Ek2 ∩

k2−1∩
i=1,i ̸=k1

UC
i

)
. (9)

Note that the second term in (9) can be written as

P
(
EC

k1
∩ Ek2 ∩

k2−1∩
i=1,i ̸=k1

UC
i

)
=

P
(
Ek2 ∩

k2−1∩
i=1,i̸=k1

UC
i

)
− P

(
Ek1 ∩Ek2 ∩

k2−1∩
i=1,i̸=k1

UC
i

)
,

as required in the lemma.

Theorem 5. (Winning probabilities in a 2-bid LUBA)
With Assumption 1. For k1, k2 ∈ N with k1 < k2, define

qk1 = 1− p̃k1 , qk1,k2 = 1− p̃k1 − p̃k2 + pk1,k2 ,

and

I1 = {1, 2, . . . k1 − 1}, I2 = {k1 + 1, k1 + 2, . . . k2 − 1}.

Then,

P2(k1, k2) = qnk1
P

(1)
I1

(k1) + qnk2
P

(1)
I1∪I2

(k2)

− qnk1,k2
P

(2)
I1∪I2

(k1, k2), (10)

where, for J ⊂ N and (cd(1), . . . , cd(d)) := cd ∈ Nd, for
d = 1, 2,

P
(d)
J (cd) = 1−

|J|∑
i=1

(−1)i−1
∑
I⊂J

|I|=i

A∗(UI), (11)

and

A∗(UI) =

⌊ |I|
2 ⌋∑

k=0

nk∑
j=1

[
P(n, |I| − 2k)

( ∏
{r1,r2}∈Jk

j ,r1<r2

pr1,r2
qcd

)
( ∏

s∈I\J̃k
j

p̃s\I∪
∪d

l=1 cd(l)

qcd

)((
1−

∑
r∈I

p̃r
qcd

+
∑

r1,r2∈I,r1<r2

pr1,r2
qcd

)n−|I|+k
)]

.

(12)

Proof: To apply a similar technique as in Theorem 2,
we write all the terms in Lemma 4 in the conditional
probabilities form:

P(k1, ∗) =P (Ek1
)P

( k1−1∩
i=1

UC
i |Ek1

)
(13)

P(∗, k2) =P (Ek2)P
( k2−1∩
i=1,i̸=k1

UC
i |Ek2

)
(14)

P(k1, k2) =P (Ek1
∩Ek2

)P
( k2−1∩
i=1,i̸=k1

UC
i |Ek1

∩Ek2

)
(15)

Note that (13) − (15) can be determined in a similar way
with

P (Ei) = (1− p̃i)
n, for i = k1, k2, (16)

and,

P (Ek1 ∩ Ek2) = (1− p̃k1 − p̃k2 + pk1,k2)
n, (17)

therefore, we only show the calculation of the second term
on the right hand side of (13). By the similar arguments as
in Theorem 2, and (4), we get

P (

k1−1∩
i=1

UC
i |Ek1) =

1−
k1−1∑
i=1

(−1)i−1
∑

I⊂{1,...,k1−1}

|I|=i

P (UI |Ek1). (18)

where UI =
∩

j∈I Uj . Finally, we derive P (UI |Ek1). Note
that we can not apply the result in(5) immediately since the
situations on unique bids are more complicated than on the
classical LUBA. However, a similar approach can still be
applied.
For the index set I , since all bids in the set I must be unique,
we therefore categorise the bidders into three types:

(1) Bidders who make exactly two unique bids amongst
the set I ,

(2) Bidders who make exactly one unique bid amongst the
set I ,

(3) Bidders who make no unique bid amongst the set I .

Now, by using notations defined earlier, we calculate the
conditional probabilities by considering all possible Jk

j for
k = 0, 1, . . . , ⌊ |I|

2 ⌋ and j = 1, . . . , nk. We may think of the
elements in the set J̃k

j as the unique bids made by type 1
bidders, the elements in the set I \ J̃k

j as the bids of type
2 bidders, while type 3 bidders make all of their bid on the
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elements in the set IC . With this idea, we get

P (UI |Ek1)

=

⌊ |I|
2 ⌋∑

k=0

nk∑
j=1

[(
P(n, k)

∏
{r1,r2}∈Jk

j ,r1<r2

pr1,r2
1− p̃k1

)
(
P(n− k, |I| − 2k)

∏
s∈I\J̃k

j

p̃s\I∪{k1}

1− p̃k1

)((
1−

∑
r∈I

p̃r
1− p̃k1

+
∑

r1,r2∈I,r1<r2

pr1,r2
1− p̃k1

)n−|I|+k
)]

=

⌊ |I|
2 ⌋∑

k=0

nk∑
j=1

[
P(n, |I| − 2k)

( ∏
{r1,r2}∈Jk

j ,r1<r2

pr1,r2
1− p̃k1

)
( ∏

s∈I\J̃k
j

p̃s\I∪{k1}

1− p̃k1

)((
1−

∑
r∈I

p̃r
1− p̃k1

+
∑

r1,r2∈I,r1<r2

pr1,r2
1− p̃k1

)n−|I|+k
)]

.

Example 6. The plot of winning probabilities with n = 40,
where each bidder places bids according to geometric(1/2,
1/2) defined in (6) and the price limit is 100, is given in
Figure 2. The highest winning probability occurs at k1 = 7
and k2 = 8 with 0.4982 chance of winning.

2
4

6
8

10
12

14

2468101214
0

0.1

0.2

0.3

0.4

0.5

Second bid
First bid

Fig. 2. The winning probabilities in the 2-bid LUBA with n = 40 and
bids distribution is geometric(1/2, 1/2). The price limit is 100.

Algorithm and comments
1) The algorithm that generates results from Theorem 5

is far more complicated than in Theorem 2. This is
because every possible combinations in (12) is needed
to be considered, which has no easy way to deal with.
We therefore need an algorithm that generates the
combinations of subsets in the way of our set up. The
algorithm to generated required combinations works
as follow Then, the algorithm to generate winning
probabilities in (10) can be done as follow:

a) Declare the number of participated bidders, the
bids joint distribution and the price limit.

Algorithm 1: Creating combinations of index set
Input: Index set I and integer value k (must be less

than ⌊I/2⌋)
Output: Jk, set of disjoint subsets
Create C, set of all possible subsets of I that contain
exactly 2k elements.
Label each subset of C as C1, C2, . . . , Cm where
m = |I|!

(|I|−2k)!2k! .
Set j = 1
while j ≤ nk do

for i from 1 to m do
call function subpartition(Ci, ∅, j)

end
end
For the function subpartition, label S1, . . . , S2k as
elements of (subset) S
function subpartition(S, P, j)
if |S| = 2 then

Jk
j = P ∪ (S1, S2) and j = j + 1

else
for l from 2 to 2k do

subpartition(S \ {S1, Sl}, P ∪ (S1, Sl), j)
end

end

b) Calculate the terms in (12), (11) and (10) re-
spectively. Algorithm 1 is required in order to
calculate (12). Note that the three terms in (10)
can be calculated using similar commands.

2) Since the rule of 2-bid LUBAs forces each bidder
to make two bids, we therefore need to obtain win-
ning probabilities in two dimensional space. However,
we may think of an alternative way to find the bid
that maximise the chance of winning by calculating
winning probabilities where we make one bid, while
the others still make two bids. The probabilities are
actually P

(1)
I1

(k) for all k. We calculate winning prob-
abilities using the same model as in Example 6. The
first two optimum bids are 7 and 8 with the chance of
winning 0.2527 and 0.2525 respectively, agrees with
the calculation in Example 6. The plot of winning
probabilities is given in Figure 3.

V. WINNING PROBABILITIES AS AN OBSERVER

In this section, we derive winner distributions in classical
LUBAs and 2-bid LUBAs when we do not participate in the
auctions. We use similar ideas of the proofs of Theorem 2 and
Theorem 5. Recall that P̂1(k) and P̂2(k) are the probability
that the winner bid occurs at the bid k given that n bidders are
involved in a classical LUBA and a 2-bid LUBA respectively.

Corollary 7. (Winner probabilities as an observer)

(a) For the classical LUBA with Assumption 1, and k ∈ N

P̂1(k) =

k−1∑
i=1

(−1)i
∑

I⊂{1,...,k−1}

|I|=i

B(I), (19)
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Fig. 3. The winning probabilities by placing one bid in 2-bid LUBA
compared with the winning probabilities in the classical LUBAs with n =
40. The price limits are 100.

where,

B(I) =

P(n, i+ 1)
( ∏

j∈I∪{k}

pj

)(
1−

∑
j∈I∪{k}

pj

)n−(i+1)

.

(b) For the 2-bid LUBA with Assumption 1, and k ∈ N

P̂2(k) =

k−1∑
i=0

(−1)i
∑

J=I∪{K}

I⊂{1,...,K−1}

|I|=i

P (UJ), (20)

where

P (UJ) =

⌊ |J|
2 ⌋∑

k=0

nk∑
j=1

[
P(n, |J | − 2k)( ∏

{r1,r2}∈Jk
j ,r1<r2

pr1,r2

)( ∏
s∈J\J̃k

j

p̃s\J

)
((

1−
∑
r∈J

p̃r+∑
r1,r2∈J,r1<r2

pr1,r2
)n−|J|+k

)]
.

Proof:

(a) We display the probability in terms of events as

P̂1(k) = P
(
Uk ∩

k−1∩
i=1

UC
i

)
= P

( k−1∩
i=1

UC
i

)
− P

( k∩
i=1

UC
i

)
= P

( k∪
i=1

Ui

)
− P

( k−1∪
i=1

Ui

)
.

Now, by using the idea of the inclusion-exclusion
principle similar to the proof of Theorem 2, we can

deduce that

P
( k∪
i=1

Ui

)
− P

( k−1∪
i=1

Ui

)
=

k−1∑
i=0

(−1)i
∑

I⊂{1,...,k−1}

|I|=i

P (UI ∩ Uk)

=
k−1∑
i=0

(−1)i
∑

I⊂{1,...,k−1}

|I|=i

[
P(n, i+ 1)

( ∏
j∈I∪{k}

pj

)

(
1−

∑
j∈I∪{k}

pj

)n−(i+1)]
.

(b) With a similar idea as in the proof of Corollary 7(a),
we can see that

P̂2(k) =
k−1∑
i=0

(−1)i
∑

I⊂{1,...,k−1}

|I|=i

P (UI ∩ Uk)

=

k−1∑
i=0

(−1)i
∑

I⊂{1,...,k−1}

|I|=i

P (UJ),

where J = I ∪ {k}. Finally, by a similar approach as
in Theorem 5, we get

P (UJ) =

⌊ |J|
2 ⌋∑

k=0

nk∑
j=1

[
P(n, |J | − 2k)( ∏

{r1,r2}∈Jk
j ,r1<r2

pr1,r2

)( ∏
s∈J\J̃k

j

p̃s\J

)
((

1−
∑
r∈J

p̃r +
∑

r1,r2∈J,r1<r2

pr1,r2
)n−|J|+k

)]
.

Example 8. We derive winner distributions for the classical
LUBA and the 2-bid LUBA where bids distributions are
geometric(1/2) and geometric(1/2, 1/2) respectively with
n = 40 and price limits 100. We can see that the most likely
winner bids are 4 and 6 respectively. The plots of winner
distributions are given in Figure 4.

VI. CONCLUSION AND FUTURE WORK

In this article, we introduce one of the ways to obtain in-
teresting probabilities of LUBAs. We also propose computer
algorithms to obtain these probabilities, at which upper price
limits of the auctions are required.The limits are acted as the
supports of the random set of bids.

From the results in previous sections, it is clear that the
number of participated bidders as well as the bid strategies
effect the winning probabilities. Therefore, we believe that
bid distribution should not be fixed as it can be changed due
to human factors. As long as we gain further information of
bid distributions, we can update the data to get more accurate
results. One choice of the distribution that can be used is
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Fig. 4. Winner distributions with n = 40 and the price limit 100.

an empirical distribution from real world data set over the
internet.

One important assumption from our model is that the
number of bidders and the bid strategy need to be fixed,
which is, in general, unlikely to happen in the real world.
However, it does not affect our models on the condition
that we have information on the number of bidders and bid
strategies. Indeed, suppose that the number of participated
bidders, N , follows a probability distribution with density g
and define gn = P(N = n). In a classical LUBA, let PN

1 (k)
be the probability that we win the auction when we place
the bid k and with N participated bidders, and define P̂N

1 (k)
similarly for the winner probability. Then,

PN
1 (k) =

∑
n

gnP1(k), P̂N
1 (k) =

∑
n

gnP̂1(k).

Similarly for the bid strategies, let s1, s2, . . . , sd be pos-
sible bid strategies with, respectively, h1, h2, . . . , hd proba-
bilities of being chosen. Then, we can again apply the law
of total probability to find a represented bid distribution.

The main advantage of this work is to get exact cal-
culations of winning probabilities, which are obtained via
inclusion-exclusion principle technique. However, the draw-
back of our results is the use of all possible combinations of
unique bids that come out during the calculation of the prob-
abilities, which make the problem uncomputable by hands.
The algorithm to calculate results, especially Algorithm 1,
take a considerable time to process. Nevertheless, we believe
that the idea of the proofs and the use of the inclusion-
exclusion principle will benefit the readers who want to
tackle similar kind of problems.

Last but not least, we would like to introduce the idea
to obtain the winning probabilities for the m-bid LUBAs
when m ≥ 3. By defining similar notations as in the
beginning of Section 3 properly, we expect similar results
and proofs as in Theorem 5. Lemma 9 describe a result in
the similar way as in Lemma 4. The lemma can be proved
via Mathematical induction. Let Pm(k1, k2, . . . , km) be the
probability of winning the bid when bids k1, k2, . . . , km are
placed.

Lemma 9. (Inclusion-exclusion principle for m-bid LUBA)

Pm(k1, k2, . . . , km) =

m∑
i=1

(−1)i+1
∑

I∈(
∏m

j=1{∗,kj})
|I|=i

P(I),

where
• I = (x1, x2, . . . , xm) is an m-dimensional vector, and

xi must be either ∗ or ki for i = 1, . . . ,m,
• |I| is the number of xi’s which are not ∗.
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