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Abstract—Along with the arrival of the era of large amount
of data, many machine learning methods have been applied
to the ontology similarity calculation and ontology mapping.
In this paper, we raise an infinite push model for ontology
similarity measuring and ontology mapping in multi-dividing
setting. The iterative algorithm and generalization bound are
given by virtue of the dual solution for optimization and the
trick of covering number approach. Furthermore, the fast
ontology algorithm for standard ontology SVM by virtue of
infinite push multi-dividing ontology algorithm is obtained.
Finally, four experiments presented on various fields verify the
efficiency of the new computation model for ontology similarity
measuring and ontology mapping applications in multi-dividing
setting.

Index Terms—ontology, infinite push, similarity measure,
ontology mapping, multi-dividing setting.

I. I NTRODUCTION

T HE term “ontology” is originally from the field of
philosophy and it is used to describe the natural con-

nection of things and the inherent hidden connections of their
components. In information and computer science, ontology
is a model for knowledge storing and representation, and
has been widely applied in knowledge management, machine
learning, information systems, image retrieval, information
retrieval search extension, collaboration and intelligent infor-
mation integration. In the past decade, as an effective concept
semantic model and a powerful analysis tool, ontology
has been widely applied in pharmacology science, biology
science, medical science, geographic information system and
social sciences (for instance, see Przydzial et al., [1], Koehler
et al., [2], Ivanovic and Budimac [3], Hristoskova et al., [4],
and Kabir [5]).

The structure of ontology can be expressed as a simple
graph. Each concept, object or element in ontology corre-
sponds to a vertex and each (directed or undirected) edge
on an ontology graph represents a relationship (or potential
link) between two concepts (objects or elements). LetO be
an ontology andG be a simple graph correspond toG. The
nature of ontology engineer application can be attributed
to getting the similarity calculating function which is to
compute the similarities between ontology vertices. These
similarities represent the intrinsic link between vertices in
ontology graph. The goal of ontology mapping is to get
the ontology similarity measuring function by measuring the
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similarity between vertices from different ontologies. Such
mapping is a bridge between different ontologies, and get a
potential association between the objects or elements from
different ontologies. Specifically, the ontology similarity
function Sim : V × V → R+ ∪ {0} is a semi-positive score
function which maps each pair of vertices to a non-negative
real number.

Very recently, ontology technologies have been employed
in a variety of applications. Ma et al., [6] presented a
graph derivation representation based technology for stable
semantic measurement. Li et al., [7] raised an ontology
representation method for online shopping customers knowl-
edge in enterprise information. Santodomingo et al., [8]
proposed an innovative ontology matching system that finds
complex correspondences by processing expert knowledge
from external domain ontologies and in terms of using novel
matching tricks. Pizzuti et al., [9] described the main features
of the food ontology and some examples of application
for traceability purposes. Lasierra et al., [10] argued that
ontologies can be used in designing an architecture for
monitoring patients at home. More ontology applications on
various engineering can refer to [11], [12] and [13].

The advanced idea to deal with the ontology similarity
computation is using ontology learning algorithm which gets
a ontology functionf : V → R. By virtue of the ontology
function, the ontology graph is mapped into a line which con-
sists of real numbers. The similarity between two concepts
then can be measured by comparing the difference between
their corresponding real numbers. The essence of this idea is
dimensionality reduction. In order to associate the ontology
function with ontology application, for vertexv, we use a
vector to express all its information. In order to facilitate the
representation, we slightly confuse the notations and usev to
denote both the ontology vertex and its corresponding vector.
The vector is mapped to a real number by ontology function
f : V → R, and the ontology function is a dimensionality
reduction operator which maps multi-dimensional vectors
into one dimensional vectors.

There are several effective methods of getting efficient
ontology similarity measure or ontology mapping algorithm
in terms of ontology function. Wang et al., [14] considered
the ontology similarity calculation in terms of ranking learn-
ing technology. Huang et al., [15] raised the fast ontology
algorithm in order to cut the time complexity for ontology
application. Gao and Liang [16] presented a ontology opti-
mizing model such that the ontology function is determined
by virtue of NDCG measure, and it is successfully applied in
physics education. Since the large parts of ontology structure
is the tree, researchers explored the learning theory approach
for ontology similarity calculating and ontology mapping in
specific setting when the structure of ontology graph has
no cycle. In the multi-dividing ontology setting, all vertices
in ontology graph or multi-ontology graph are divided into
k parts corresponding to thek classes of rates. The rate
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valuesof all classes are determined by experts. In this way,
a vertex in a ratea has larger score than any vertex in
rate b (if 1 ≤ a < b ≤ k) under the multi-dividing
ontology functionf : V → R. Finally, the similarity between
two ontology vertices corresponding to two concepts (or
elements) is judged by the difference of two real numbers
which they correspond to. Hence, the multi-dividing ontology
setting is suitable to get a score ontology function for an
ontology application if the ontology is drawn into a non-
cycle structure.

In this article, we raise a new multi-dividing ontology
learning algorithm for ontology similarity measuring and
ontology mapping by means of infinite push. The rest of
the paper is arranged as follows: in Section 2, the de-
tailed description of infinite push multi-dividing ontology
algorithms is showed, and the generalization bound is also
yielded via covering number trick; in Section 3, we obtain the
fast algorithm for ontology SVM training based on infinite
push multi-dividing algorithm; in Section 4, four respective
simulation experiments on plant science, humanoid robotics,
biology and physics education are designed to test the
efficiency of our infinite push based ontology algorithm, and
the data results reveal that our algorithm has high precision
ratio for these applications.

II. T HE MULTI -DIVIDING INFINITE PUSH ONTOLOGY

ALGORITHM

Let V ⊂ Rd (d ≥ 1) be a vertex space (or the instance
space) for ontology graph, and the vertices (or, instances)
in V are drawn randomly and independently according to
some (unknown) distributionD. Given a training setS =
{v1, · · · , vn} of size n in V , the goal of ontology learning
algorithms is to obtain a score functionf : V → R, which
assigns a score to each vertex, and ranks all the instances
according to their scores. The multi-dividing ontology prob-
lem is a special kind of ontology learning problem in which
vertices come fromk categories and the learner is given
examples of vertices labeled as therek rates.

Formally, the settings of multi-dividing ontology problems
can be described as follows. There is an instance spaceV
from which vertices are drawn, and the learner is given a
training sample(S1, S2, · · · , Sk) ∈ V n1 × V n2 × · · · ×
V nk consisting of a sequence of training sampleSa =
(va

1 , · · · , va
na

) (1 ≤ a ≤ k). The goal is to learn from these
samples a real-valued ontology score functionf : V → R
that orders the futureSa vertices rank higher thanSb where
a < b. Hence, the empirical model for measuring the quality
of ontology functionf can be expressed as

R(f ;S) =
k−1∑
a=1

k∑

b=a+1

max
1≤j≤nb

(
1
na

na∑

i=1

I(f(va
i ) < f(vb

j))),

(1)
where I(·) = 1 if the argument is held and 0 otherwise.
The basic idea of (1) is to search an ontology function that
guarantees the accuracy of top vertices for each ratea (1 ≤
a ≤ k). Such technology (concern the top vertices for each
rate of the goal list) is called infinite push.

Since the function I(·) is non-differentiable, we should
minimize (1) by using a continuous convex function instead
of I. Specially, we consider the hinge ontology loss, which

for f, va, vb is denoted as

lH(f, va, vb) = (1− f(va − f b))+, (2)

whereu+ = max(u, 0). Hence, we shall minimize a regu-
larized version of

RH(f ;S) =
k−1∑
a=1

k∑

b=a+1

max
1≤j≤nb

(
1
na

na∑

i=1

lH(f(va
i ) < f(vb

j))),

(3)
Let F be a real-valued ontology function space onV
associated with a certain reproducing kernel. Let‖f‖F be
the RKHS norm off in F and the positive numberλ be a
regularization parameter. Then the optimization problem can
be stated as:

min
f∈F

[RH(f ;S) +
λ

2
‖f‖2F ]. (4)

In particular, we considerV = Rd andF as the class of
ontology functionsf : Rd → R with f(v) = w · v for some
w ∈ Rd. By using‖w‖ as the Euclideanl2 norm of w and
employing w instead off in RH(w;S), we infer that (3)
becomes

min
w∈Rd

[RH(w;S) +
λ

2
‖w‖2F ]. (5)

Conjunction withthe definition ofRH(w;S), we deduce

min
w∈Rd

[
λ

2
‖f‖2F+

k−1∑
a=1

k∑

b=a+1

max
1≤j≤nb

(
1
na

na∑

i=1

(1−w·(va
i −vb

j)))].

(6)
For each pair of(a, b) (1 ≤ a < b ≤ k), let ξa,b

ij (1 ≤
i ≤ na, 1 ≤ j ≤ nb) be the slack variables corresponding
to the max in the hinge loss terms(1 − w · (va

i − vb
j))+ =

max((1− w · (va
i − vb

j), 0). DenoteC = 1
λ , then(6) can be

re-written as

min
w,ξa,b

ij

[
λ

2
‖f‖2F + C

k−1∑
a=1

k∑

b=a+1

max
1≤j≤nb

(
1
na

na∑

i=1

ξa,b
ij )]

subject to ξa,b
ij ≥ 1− w · (va

i − vb
j) ∀i, j, (a, b)

ξa,b
ij ≥ 0 ∀i, j, (a, b).

Moreover, by introducing further slack variablesξa,b cor-
responding to this max for each pair of (a, b), the above
optimization model is transformed as

min
w,ξa,b,ξa,b

ij

[
λ

2
‖f‖2F +

k−1∑
a=1

k∑

b=a+1

C

na
ξa,b]

subject to ξa,b ≥
na∑

i=1

ξa,b
ij , for j = 1, · · · , nb

ξa,b
ij ≥ 1− w · (va

i − vb
j) ∀i, j, (a, b)

ξa,b
ij ≥ 0 ∀i, j, (a, b). (7)

In terms of Lagrange multipliers and the trick of dual, the
optimization problem can be further re-written by variables
{αa,b

ij : 1 ≤ na, 1 ≤ j ≤ nb} for each pair of(a, b):

min
αa,b

ij

[
1
2

k−1∑
a=1

k∑

b=a+1

∑

i,j

∑

k,l

αa,b
ij αa,b

kl (va
i − vb

j)
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−
k−1∑
a=1

k∑

b=a+1

∑

i,j

αij ]

subject to
nb∑

j=1

( max
1≤i≤na

αij) ≤ C

na

αa,b
ij ≥ 0 ∀i, j, (a, b). (8)

Let Qa,b(α) be the (quadratic) objective function in (8),
and letΩa,b ⊆ Rmn be the feasible set for each pair of (a, b),
i.e., the set ofαa,b ∈ Rnanb satisfying the constraints in (8).
Then the projection algorithm starts with some initial value
(αa,b)(1) for αa,b, and on each iterationt for special pair
(a, b), updates(αa,b)(t) using a gradient and projection step:

(αa,b)(t+1) ← PΩa,b((αa,b)(t) − ηa,b
t ∇Qa,b((αa,b)(t))),

whereηa,b
t > 0 denotes a learning rate,∇Qa,b denotes the

gradient of Qa,b, and PΩa,b denotes Euclidean projection
onto Ωa,b. In the linear case, this gradient computation can
be completed inO(d

∑k−1
a=1

∑k
b=a+1 nanb) time. Moreover,

it takesO(
∑k−1

a=1

∑k
b=a+1 nanb log(nanb)) time in the pro-

jection step. On solvingαa,b, the solution of (5) can be stated
as

w =
k−1∑
a=1

k∑

b=a+1

∑

i,j

αa,b
ij (va

i − vb
j).

Returning to the general circumstances,V is any vertex
space andF is an RKHS corresponding to a kernel function
K : V ×V → R. DenoteφK(x, y, z, u) = K(x, z)−Kx,u−
K(y, z) + K(y, u). By view of similar derivation, we derive
the following kernel version of optimization problem:

min
αa,b

ij

[
1
2

k−1∑
a=1

k∑

b=a+1

∑

i,j

∑

k,l

αijαklφK(va
i , vb

j , v
a
k , vb

l )

−
k−1∑
a=1

k∑

b=a+1

∑

i,j

αij ]

subject to
k−1∑
a=1

k∑

b=a+1

nb∑

j=1

( max
1≤i≤na

αij) ≤
k−1∑
a=1

k∑

b=a+1

C

na

αa,b
ij ≥ 0 ∀i, j, (a, b). (9)

On solvingαa,b for each pair of (a, b) (1≤ a < b ≤ k),
the solution to the original multi-dividing ontology problem
is then obtained by

f(v) =
k−1∑
a=1

k∑

b=a+1

∑

i,j

αa,b
ij (K(va

i , v)−K(vb
j , v)). (10)

Algorithm 1. Multi-dividing infinite push ontology algo-
rithm:
Input: training sampleS = (S1, S2, · · · , Sk) ∈ V n1×V n2×
· · · × V nk and a kernel functionK : V × V → R
For a = 1 to k − 1:
For b = a + 1 to k:
ParametersCa,b, ta,b

max, ηa,b
0

Initialize: α
(1)
ij ← Ca,b

nanb
∀1 ≤ i ≤ na, 1 ≤ j ≤ nb

For t = 1 to ta,b
max do: (αa,b)

t+1
2 ← (αa,b)(t) −

ηa,b
0√

t
∇Qa,b((αa,b)(t)), (αa,b)(t+1) ← PΩa,b((αa,b)(

t+1
2 ))

End For.

End For.
End For.
Output: f(v) =

∑
i,j α

(ta,b)∗

ij (K(va
i , v) − K(vb

j , v)), where
(ta,b)∗ = argmin1≤t≤(ta,b

max+1) Q((αa,b)(t)).
We emphasize here that thep-norm multi-dividing push

ontology algorithm minimizes a convex upper bound on the
lp-norm similar as the quantity in (1) for finitep:

Rp(f, S) = (
1
nb

nb∑

j=1

(
1
na

na∑

i=1

Π(f(va
i ) < f(vb

j)))
p)

1
p . (11)

In thefollowing part of the section, we give some theoreti-
cal analysis for Algorithm 1. Assume vertices in ratea (here,
1 ≤ a ≤ k) are drawn randomly and independently according
to a distributionDa on V . Let D = (D1,D2, · · · ,Dk), and
define

R(f ;D) =
k−1∑
a=1

k∑

b=a+1

sup
v∈supp(Db)

(Eva∼Da [I(f(va
i )−f(vb

j))]),

(12)
and

Ra,b(f ;D) = sup
v∈supp(Db)

(Eva∼Da [I(f(va
i )− f(vb

j))]), (13)

where supp(Db) denotes the support ofDb.
For anyγ > 0, define the margin ontology loss as

lγ(f, va
i , vb

j) = I(f(va
i )− f(vb

j) ≤ γ),

and some notations are defined as follows:

Rγ(f ;S) =
k−1∑
a=1

k∑

b=a+1

max
1≤j≤nb

(
1
na

na∑

i=1

lγ(f, va
i , vb

j)), (14)

Rγ(f ;D) =
k−1∑
a=1

k∑

b=a+1

sup
v∈supp(Db)

(Eva∼Da
[lγ(f(va

i )

−f(vb
j))]), (15)

Rγ,a,b(f ;S) = max
1≤j≤nb

(
1
na

na∑

i=1

lγ(f, va
i , vb

j)), (16)

Rγ,a,b(f ;D) = sup
v∈supp(Db)

(Eva∼Da [lγ(f(va
i )

−f(vb
j))]), (17)

lγ(f,Da, vb) = Eva∼Da
[lγ(f(va

i )− f(vb
j))]. (18)

LetN (F , ε) be thel∞ covering number ofF for radiusε,
i.e., the minimum number ofl∞ balls with radiusε coverF .
The generalization bound for the multi-dividing infinite push
ontology algorithm is stated in the following conclusion.
Theorem.LetF be a class of real-valued ontology functions
on V . Let ε, γ > 0, and

δa,b
D (f, γ, ε) = Pvb∼Db

[lγ(f,Da, vb) < Rγ(f ;D)− ε].

Then, we have

PS∼Dn1
1 ×Dn2

2 ×···×Dnk
k

[∃f ∈ F : Rγ(f ;D)

> Rγ(f ;S) + ε]

≤ N (F ,
εγ

8
)

k−1∑
a=1

k∑

b=a+1

(2nbe
−naε2

8

+(sup
f∈F

δa,b
D (f, γ, ε/4))nb).
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Proof. The most important step in the proof is to bound the
following probability

PS∼Dn1
1 ×Dn2

2 ×···×Dnk
k

[Rγ(f ;D) > Rγ(f ;S) +
ε

2
]

for given f ∈ F . On this purpose, we define

Rγ,a,b(f ;Da, Sb) = max
1≤j≤nb

lγ(f,Da, vb
j).

Then, we infer

PS∼Dn1
1 ×Dn2

2 ×···×Dnk
k

[Rγ(f ;D)−Rγ(f ;S)

>
ε

2
]

= PS [Rγ(f ;D)−
k−1∑
a=1

k∑

b=a+1

Rγ,a,b(f ;Da, Sb)

+
k−1∑
a=1

k∑

b=a+1

Rγ,a,b(f ;Da, Sb)−Rγ(f ;S) >
ε

2
]

≤
k−1∑
a=1

k∑

b=a+1

PSb [Rγ,a,b(f ;D)−Rγ,a,b(f ;Da, Sb)

>
ε

4
] +

k−1∑
a=1

k∑

b=a+1

PS [Rγ,a,b(f ;Da, Sb)

−Rγ,a,b(f ;S) >
ε

4
]

= I + II.

We need to boundI andII. To boundII, we define

lγ(f, Sa, vb) =
1
na

na∑

i=1

lγ(f, va
i , vb

j).

By Hoeffding’s inequality, we deduce

II =
k−1∑
a=1

k∑

b=a+1

PSa∪Sb
[ max
1≤j≤nb

lγ(f,Da, vb
j

− max
1≤j≤nb

lγ(f, Sa, vb
j) >

ε

4
]

≤
k−1∑
a=1

k∑

b=a+1

PSa∪Sb
[ max
1≤j≤nb

|lγ(f,Da, vb
j)

−lγ(f, Sa, vb
j)| >

ε

4
]

≤
k−1∑
a=1

k∑

b=a+1

nb∑

j=1

PSa∪Sb
[|lγ(f,Da, vb

j)

−lγ(f, Sa, vb
j)| >

ε

4
]

≤
k−1∑
a=1

k∑

b=a+1

nb sup
vb

PSa [|lγ(f,Da, vb
j)

−lγ(f, Sa, vb
j)| >

ε

4
]

≤
k−1∑
a=1

k∑

b=a+1

2nbe
−naε2

8 .

For I, we yield

I =
k−1∑
a=1

k∑

b=a+1

PSb
[sup

vb

lγ(f,Da, vb)

− max
1≤j≤nb

lγ(f,Da, vb
j) >

ε

4
]

=
k−1∑
a=1

k∑

b=a+1

PSb
[ max
1≤j≤nb

lγ(f,Da, vb
j)

< sup
vb

lγ(f,Da, vb)− ε

4
]

=
k−1∑
a=1

k∑

b=a+1

Πnb
j=1Pvb

j
[lγ(f,Da, vb

j)

< sup
vb

lγ(f,Da, vb)− ε

4
]

=
k−1∑
a=1

k∑

b=a+1

(δa,b
D (f, γ,

ε

4
))nb .

For any fixedf ∈ F , by combiningI andII, we get

PS∼Dn1
1 ×Dn2

2 ×···×Dnk
k

[Rγ(f ;D)−Rγ(f ;S) >
ε

2
]

≤
k−1∑
a=1

k∑

b=a+1

(2nbe
−naε2

8 + (sup
f∈F

δa,b
D (f, γ, ε/4))nb).

The remaining proof from an application of standard tricks
converts the above bound to a uniform convergence result
that established uniformly over allf ∈ F using covering
number approach. 2

III. FAST MULTI -DIVIDING ONTOLOGY ALGORITHM FOR

ONTOLOGY SVM

The aim of this section is to present a fast training
algorithm for standard multi-dividing ontology SVM by
means of the same infinite push framework showed in the
above section. The multi-dividing ontology SVM algorithm
minimizes a regularized bound in (11) withp = 1 over an
RKHS F can be expressed as:

min
f∈F

[RH
1 (f ;S) +

λ

2
‖f‖2F ], (19)

whereRH
1 (f ;S) is definedin (11) with p = 1 and we use

hinge losslH(f, va
i , vb

j) to replace theI(f(va
i ) < f(vb

j))
terms. By expanding (19) in terms of the definition of
RH

1 (f ;S), we get

min
f∈F

[
λ

2
‖f‖2F +

k−1∑
a=1

k∑

b=a+1

1∑k−1
a=1

∑k
b=a+1 nanb

na∑

i=1

nb∑

j=1

(1

−(f(va
i )− f(vb

j)))+]. (20)

By introducing slack variablesξa,b
ij for each pair of(a, b)

corresponding to the max in the hinge loss terms(1 −
(f(va

i )−f(vb
j)))+ = max(1−(f(va

i )−f(vb
j)), 0) and setting

C = 1
λ , we obtain

min
f,ξa,b

ij

[
λ

2
‖f‖2F +

1∑k−1
a=1

∑k
b=a+1 nanb

na∑

i=1

nb∑

j=1

ξa,b
ij ]

subject to ξa,b
ij ≥ 1− (f(va

i )− f(vb
j)) ∀i, j, (a, b)
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ξa,b
ij ≥ 0 ∀i, j, (a, b).

By means of Lagrange multipliers and the dual technology,
we get the following optimization problem in thenanb

variables{αa,b
ij : 1 ≤ i ≤ na, 1 ≤ j ≤ nb} for each pair

of (a, b):

min
αa,b

ij

[
1
2

k−1∑
a=1

k∑

b=a+1

∑

i,j

∑

k,l

αijαklφK(va
i , vb

j , v
a
k , vb

l )

−
k−1∑
a=1

k∑

b=a+1

∑

i,j

αij ]

subject to 0 ≤
k−1∑
a=1

k∑

b=a+1

αij ≤
k−1∑
a=1

k∑

b=a+1

C

nanb
,

∀i, j, (a, b).

Algorithm 2. Fast multi-dividing training ontology algo-
rithm via projection method
Inputs: training sampleS = (S1, S2, · · · , Sk) ∈ V n1×V n2×
· · · × V nk and a kernel functionK : V × V → R
For a = 1 to k − 1:
For b = a + 1 to k:
ParametersCa,b, ta,b

max, ηa,b
0

Initialize: (αa,b
ij )(1) ← Ca,b

nanb
∀1 ≤ i ≤ na, 1 ≤ j ≤

nb

For t = 1 to ta,b
max do: (αa,b)

t+1
2 ← (αa,b)(t) −

ηa,b
0√

t
∇Qa,b((αa,b)(t))

For 1 ≤ i ≤ na, 1 ≤ j ≤ nb:
If ((αa,b

ij )(
t+1
2 ) < 0) Then (αa,b

ij )(t+1) ← 0
Else if ((αa,b

ij )(
t+1
2 ) > Ca,b

nanb
) Then (αa,b

ij )(t+1) ← Ca,b

nanb

Else Ca,b

nanb
← (αa,b

ij )(
t+1
2 )

End For.
End For.
End For.
End For.
Output: f(v) =

∑
i,j(α

a,b
ij )t∗(K(va

i , v) − K(vb
j , v)), where

(ta,b)∗ = argmin1≤t≤(ta,b
max+1) Qa,b((αa,b)(t)).

IV. EXPERIMENTS

The above ontology learning algorithms can be used in on-
tology concepts similarity measurement and ontology map-
ping. The basic idea is: via the ontology gradient computation
model, the ontology graph is mapped into a real line con-
sisting of real numbers. The similarity between two concepts
then can be measured by comparing the difference between
their corresponding real numbers. To show the effectiveness
of our new ontology algorithms, four experiments concerning
ontology measure and ontology mapping are designed below.

A. Ontology similarity measure experiment on plant data

In the first experiment, we use plant “PO”
ontology O1 which was constructed in the website
www.plantontology.org. The structure ofO1 is presented in
Fig. 1. P@N (Precision Ratio see Craswell and Hawking
[17] is used to measure the quality of the experiment data.

We first give the closestN concepts for every vertex on
the ontology graph by experts in plant field, and then we
obtain the firstN concepts for every vertex on ontology

graph by the algorithm 1 and 2, and compute the precision
ratio. Specifically, for vertexv and given integerN > 0. Let
SimN,expert

v be the set of vertices determined by experts and
it containsN vertices having the most similarity ofv. Let

v1
v = argmin

v′∈V (G)−v

{|f(v)− f(v′)|},

v2
v = argmin

v′∈V (G)−{v,v1
v}
{|f(v)− f(v′)|},

· · ·

vN
v = argmin

v′∈V (G)−{v,v1
v,··· ,vN−1

v }
{|f(v)− f(v′)|},

and

SimN,algorithm
v = {v1

v , v2
v , · · · , vN

v }.

Then the precision ratio for vertexv is denoted by

PreN
v =

|SimN,algorithm
v ∩ SimN,expert

v |
N

.

The P@N average precision ratio for ontology graphG is
then stated as

PreN
G =

∑
v∈V (G) PreN

v

|V (G)| .

At the same time, we apply ontology methods in [14], [15]
and [16] to the “PO” ontology. Then we calculate the average
precision ratio by these three algorithms and compare the
results with algorithm 1 and algorithm 2 in the paper. Part
of the data refer to Table 1.

When N= 3, 5 or 10, the precision ratio by means of
our algorithms are higher than the precision ratio determined
by algorithms proposed in [14], [15] and [16]. In particular,
whenN increases, such precision ratios are increasing appar-
ent. Hence, the algorithms described in our paper are superior
to the method proposed by [14], [15] and [16].

B. Ontology mapping experiment on humanoid robotics data

For the second experiment, we use “humanoid robotics”
ontologiesO2 and O3. The structure ofO2 and O3 are
showed in Fig. 2 and Fig. 3, respectively. The ontology
O2 presents the leg joint structure of bionic walking device
for six-legged robot, while the ontologyO3 presents the
exoskeleton frame of a robot with wearable and power-
assisted lower extremities.

The goal of this experiment is to give ontology mapping
betweenO2 andO3. We also useP@N Precision Ratio to
measure the quality of experiment. Again, we apply ontology
algorithms in [18], [15] and [16] on “humanoid robotics”
ontology, and compare the precision ratio which are gotten
from three methods. Some results refer to Tab. 2.

Taking N= 1, 3 or 5, the precision ratio in terms of our
infinite push based ontology algorithms are higher than the
precision ratio determined by algorithms proposed in [18],
[15] and [16]. Specially, asN increases, the precision ratios
in view of our algorithms are increasing apparently. In this
point of view, the algorithms described in our paper are
superior to the method proposed by [18], [15] and [16].
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Fig. 1. The Structure of “PO” Ontology.

TABLE I
TAB . 1.THE EXPERIMENT RESULTS OFONTOLOGY SIMILARITY MEASURE

P@3 average P@5 average P@10 average

precision ratio precision ratio precision ratio

Algorithm 1 in our paper 0.5103 0.6176 0.7904

Algorithm 2 in our paper 0.5232 0.6273 0.8018

Algorithm in [14] 0.4549 0.5117 0.5859

Algorithm in [15] 0.4282 0.4849 0.5632

Algorithm in [16] 0.4831 0.5635 0.6871

TABLE II
TAB . 2. THE EXPERIMENT RESULTS OFONTOLOGY MAPPING

P@1 average P@3 average P@5 average

precision ratio precision ratio precision ratio

Algorithm 1 in our paper 0.4444 0.5557 0.7111

Algorithm 2 in our paper 0.2778 0.5000 0.6889

Algorithm in [18] 0.2778 0.4815 0.5444

Algorithm in [15] 0.2222 0.4074 0.4889

Algorithm in [16] 0.2778 0.4630 0.5333

Fig. 2. ‘Humanoid Robotics” OntologyO2.
Fig. 3. “Humanoid Robotics” OntologyO3.
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Fig. 4. The Structure of “GO” Ontology.

C. Ontology similarity measure experiment on biology data

In the third experiment, we use gene “GO”
ontology O4 which was constructed in the website
http: //www. geneontology. Thestructure ofO4 is presented
in Fig. 4. Again,P@N is used to measure the quality of
the experiment data. At the same time, we apply ontology
method in [15], [16] and [19] to the “GO” ontology.
Calculating the average precision ratio by these three
algorithms and comparing the results to algorithm 1 and
algorithm 2 rose in our paper, part of the data refer to Table
3.

When N= 3, 5 or 10, the precision ratio by virtue of
our ontology algorithms are higher than the precision ratio
determined by algorithms proposed in [15], [16] and [19].
In particular, whenN increases, such precision ratios are
increasing apparent. Therefore, the algorithms described in
our paper are superior to the methods proposed by [15], [16]
and [19].

D. Ontology mapping experiment on physics education data

For the last experiment, we use “physics education” on-
tologiesO5 andO6. The structure ofO5 andO6 are showed
in Fig. 5 and Fig. 6, respectively.

The goal of this experiment is to give ontology mapping
betweenO5 and O6. We also useP@N precision ratio to
measure the quality of experiment. Again, we apply ontology
algorithms in [15], [16] and [20] on “physics education”
ontology, and compare the precision ratio which is gotten
from three methods. Some results refer to Tab. 4.

Taking N= 1, 3 or 5, the precision ratio in terms of our
infinite push based ontology mapping algorithms are higher
than the precision ratio determined by algorithms proposed in
[15], [16] and [20]. Specially, asN increases, the precision
ratios in view of our algorithms are increasing apparently.
Therefore, the algorithms described in our paper are superior
to the methods proposed by [15], [16] and [20].

V. CONCLUSIONS

As a data structural representation and storage model,
ontology has been widely used in various fields and proved to

Fig. 5. “Physics Education” OntologyO5.

Fig. 6. “Physics Education” OntologyO6.

have high efficiency. One ontology learning trick is mapping
each vertex to a real number, and the similarity is judged by
the difference between the real number which the vertices
correspond to. In this paper, we raise a infinite push learning
model for ontology application in multi-dividing setting.
The generalization bound is given by means of covering
number approach. The experiments show the effectiveness
of the new multi-dividing ontology algorithms. The new
technology contributes to the state of art for applications
and the result got in our paper illustrates the promising
application prospects for multi-dividing ontology algorithm.
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