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Multi-dividing Infinite Push Ontology Algorithm

Wei Gao, Linli Zhu, and Yun Guo

Abstract—Along with the arrival of the era of large amount  similarity between vertices from different ontologies. Such
of data, many machine learning methods have been applied mapping is a bridge between different ontologies, and get a
to the ontology similarity calculation and ontology mapping.  hhtential association between the objects or elements from
In this paper, we raise an infinite push model for ontology . . oo L
similarity measuring and ontology mapping in multi-dividing d'ﬁer.ent qntologles. SpeCIflcaIIy,. the om.OIOQY_ similarity
setting. The iterative algorithm and generalization bound are function Sim : V' x V' — R* U {0} is a semi-positive score
given by virtue of the dual solution for optimization and the function which maps each pair of vertices to a non-negative
trick of covering number approach. Furthermore, the fast real number.
ontology algorithm for standard ontology SVM by virtue of Very recently, ontology technologies have been employed
infinite push multi-dividing ontology algorithm is obtained. . . . o7
Finally, four experiments presented on various fields verify the in a var|gty _Of appllcatlons.. Ma et al., [6] presented a
efficiency of the new computation model for ontology similarity 9graph derivation representation based technology for stable
measuring and ontology mapping applications in multi-dividing semantic measurement. Li et al., [7] raised an ontology

setting. representation method for online shopping customers knowl-
Index Terms—ontology, infinite push, similarity measure, €dge in enterprise information. Santodomingo et al., [8]
ontology mapping, multi-dividing setting. proposed an innovative ontology matching system that finds

complex correspondences by processing expert knowledge
from external domain ontologies and in terms of using novel
matching tricks. Pizzuti et al., [9] described the main features
HE term “ontology” is originally from the field of of the food ontology and some examples of application
philosophy and it is used to describe the natural cofer traceability purposes. Lasierra et al., [10] argued that
nection of things and the inherent hidden connections of theintologies can be used in designing an architecture for
components. In information and computer science, ontologyonitoring patients at home. More ontology applications on
is a model for knowledge storing and representation, anerious engineering can refer to [11], [12] and [13].
has been widely applied in knowledge management, machinélrhe advanced idea to deal with the ontology similarity
learning, information systems, image retrieval, informatiocomputation is using ontology learning algorithm which gets
retrieval search extension, collaboration and intelligent infoa ontology functionf : V' — R. By virtue of the ontology
mation integration. In the past decade, as an effective concépiction, the ontology graph is mapped into a line which con-
semantic model and a powerful analysis tool, ontologyists of real numbers. The similarity between two concepts
has been widely applied in pharmacology science, biologlyen can be measured by comparing the difference between
science, medical science, geographic information system ahdir corresponding real numbers. The essence of this idea is
social sciences (for instance, see Przydzial et al., [1], Koehl#imensionality reduction. In order to associate the ontology
et al., [2], Ivanovic and Budimac [3], Hristoskova et al., [4]function with ontology application, for vertex, we use a
and Kabir [5]). vector to express all its information. In order to facilitate the
The structure of ontology can be expressed as a simpépresentation, we slightly confuse the notations andsuee
graph. Each concept, object or element in ontology corréenote both the ontology vertex and its corresponding vector.
sponds to a vertex and each (directed or undirected) edb®e vector is mapped to a real number by ontology function
on an ontology graph represents a relationship (or potentfal V' — R, and the ontology function is a dimensionality
link) between two concepts (objects or elements). Qebe reduction operator which maps multi-dimensional vectors
an ontology and~ be a simple graph correspond@ The into one dimensional vectors.
nature of ontology engineer application can be attributed There are several effective methods of getting efficient
to getting the similarity calculating function which is toontology similarity measure or ontology mapping algorithm
compute the similarities between ontology vertices. Thegeterms of ontology function. Wang et al., [14] considered
similarities represent the intrinsic link between vertices ithe ontology similarity calculation in terms of ranking learn-
ontology graph. The goal of ontology mapping is to gdhg technology. Huang et al., [15] raised the fast ontology
the ontology similarity measuring function by measuring thalgorithm in order to cut the time complexity for ontology
application. Gao and Liang [16] presented a ontology opti-
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valuesof all classes are determined by experts. In this wafgr f,v%,v® is denoted as

a vertex in a ratez has larger score than any vertex in o b o b

rateb (f 1 < a < b < k) under the multi-dividing L (f0%07) = (L= (0" = )+, @
ontology functionf : V' — R. Finally, the similarity between wherew, = max(u,0). Hence, we shall minimize a regu-
two ontology vertices corresponding to two concepts (®4rized version of

elements) is judged by the difference of two real humbers el k

which they correspond to. Hence, the multi-dividing ontologng(f S) = Z max ZZH flv b)))7
setting is suitable to get a score ontology function for an o1 b a+11SJ<"b Ng

ontology application if the ontology is drawn into a non- 3)
cycle structure. Let 7 be a real-valued ontology function space &h

In this article, we raise a new multi-dividing ontologyassociated with a certain reproducing kernel. ||~ be
learning algorithm for ontology similarity measuring andhe RKHS norm off in F and the positive numbex be a
ontology mapping by means of infinite push. The rest d¢egularization parameter. Then the optimization problem can
the paper is arranged as follows: in Section 2, the dbe stated as:
tailed description of infinite push multi-dividing ontology oH
algorithms is showed, and the generalization bound is also ?g}l[R (f:8) + 51 fl] )
yielded via covering number trick; in Section 3, we obtain the
fast algorithm for ontology SVM training based on infinite
push multi-dividing algorithm; in Section 4, four respectivé®9'%9 ( .
simulation experiments on plant science, humanoid robotiés, R”: By usingjw|| as the I%uclldealib norm of w and
biology and physics education are designed to test tgEPloying w instead of f in R¥ (w; ), we infer that (3)
efficiency of our infinite push based ontology algorithm, anB€cOmMes
the data results reveal that our algorithm has high precision 1%%}1 [RY (w; 5) + §||w||3f]- (5)
ratio for these applications.

In particular we conside” = R¢ and F as the class of
tology functionsf : RY — R with f(v) = w - v for some

Conjunction withthe definition of R (w; S), we deduce

Il. THE MULTI-DIVIDING INFINITE PUSH ONTOLOGY 1 Qe
ALGORITHM mm *\|f||f+z Z  nax. H*Z(l—w'(vf—vf)))}

a=1b=a+1 =1
Let V c R? (d > 1) be a vertex space (or the instance (6)

space) for ontology graph, and the vertices (or, instances)For each pair of(a,b) (1 < a < b < k), let 5;;1’ 1<

in V are drawn randomly and independently according to< n,,1 < j < ny) be the slack variables corresponding
some (unknown) distributiorD. Given a training set5 = to the max in the hinge loss ternf$ — w (v — U?))+ =
{v1,--+ ,vn} of sizen in V, the goal of ontology learning max((1 —w - (v{ — v? ) 0). DenoteC = %, then(6) can be
algorithms is to obtain a score functigh: V' — R, which re—written as

assigns a score to each vertex, and ranks all the instances

according to their scores. The multi-dividing ontology prob- mm 7”fo + CZ Z max Zg

lem is a special kind of ontology learning problem in which ~ w.{; a1 beat1 1<J<"b Na

vertices come fromk categories and the learner is given

examples of vertices labeled as théreates. . a,b a b -
i R subject to >1—w- (v —v; Vi, 7, (a, b

Formally, the settings of multi-dividing ontology problems ) if ( 7) > (a,)
can be described as follows. There is an instance space 519].’1’ >0 Vi, j(a,b).
from which vertices are drawn, and the learner is given a ) . ]
training sample(Sy, Sa, -+, Si) € V™ x V2 x - x Moreover, by introducing further slack variablgs® cor-
Ve conS|st|ng of a sequence of training samgle = responding to this max for each pair of (a,b), the above
(v%,--,v8 ) (1 < a < k). The goal is to learn from theseOptimization model is transformed as
samples a real-valued ontology score functipn V' — R
that orders the futuré, vertices rank higher thaf, where mina 13 ||f\|f + Z Z ga ]
a < b. Hence, the empirical model for measuring the quality w,E" 0,85 a=1b—at1 O
of ontology functionf can be expressed as

el k | e subject to £%° > qu , for j=1,---,my
. _ i a b i=1
R(fi8) =3 > jmax (=3 Lf(F) < f), y . B
a=lb=a+1 =1 (1) gu >1l-w- (Ui - vj) VZ,j, (aa b)

where I(-) = 1if the argument is held and 0 otherwise. 5%;17 >0 Vi, j, (a,b). (7)
The basic idea of (1) is to search an ontology function that o )
guarantees the accuracy of top vertices for eachadte< In terms of Lagrange multipliers and the trick of dual, the
a < k). Such technology (concern the top vertices for ea&pgmlzatlon problem can be further re-written by variables
rate of the goal list) is called infinite push. :1<nq, 1 <j <ny} for each pair of(a, b):

Since the function I(-) is non-differentiable, we should 1 k=1 &
minimize (1) by using a continuous convex function instead mm Z Z Z Za“ bazlb (v8 — U?)
of I. Specially, we consider the hinge ontology loss, which v2 = b=atl ij kil ‘
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i G End For.
Z Z Zo‘ij] End For.

a=1b=at1l ij output: f(v) = 37, a(ta’b)*(K(va v) — K(v?,v)), where
o C (tab)* = = argmin, _, e Q((a®?)®).
1 —_ z+1
subject  to Z(lg?ﬁ oj) < N We emphasize he(re that) thenorm multi-dividing push
=1 ontology algorithm minimizes a convex upper bound on the
ajjzb >0 Vi, j, (a,b). (8) I,-norm similar as the quantity in (1) for finitg:
Let Q**(a) be the (quadratic) objective function in (8), _ T(f IeE]
and letQ®? C R™" pe the feasible set for each pair of (a, b), By(f.5) = Z Ng Z ))) ) (11)

1=1
i.e., the set oh®® ¢ R™™ satisfying the constraints in (8). hefollowi fth . . h .
Then the projection algorithm starts with some initial value In thefollowing part of the section, we give some theoreti-
(@?)D) for o, and on each iteration for special pair cal analysis for Algorithm 1. Assume vertices in ratéhere,
(a,b), updatega®)(®) using a gradient and projection stepl < a < k) are drawn randomly and independently according
to a distributionD, on V. Let D = (D1, Do, --- ,Dy), and
(a®") D Py (@)D — T Q@Y ((a®) D)), define

Wherenf"b > 0 denotes a learning rat&/Q*" denotes the — . o b
gradient of Q*°, and Pq..» denotes Euclidean projection ;D Z ves:;l&pb)(]E”“ND“ [1Cf @F)=F o)D),
onto Q%°. In the linear case this gradient computation can a=th=atl (12)
be completed ir0(d Za: Eb:a+1“a“b) time. Moreover, gnd

it takesO(3F ) S5, .1 namy log(nany)) time in the pro-

a,b/ p. _ . ay b
jection step. On solving®?, the solution of (5) can be stated R*2(f:D) = UESigﬁpb)(E““NDa (S (i) = Flu)]), (13)
as

k-1 k

where supp(®) denotes the support @b,
Z Z Za vy — v For any~ > 0, define the margin ontology loss as

e Ly (f 08, 0%) = 1(f (o) = F@)) <),
Returning to the general circumstancés,is any vertex
space andr is an RKHS corresponding to a kernel functiot"d Some notations are defined as follows:
K :VxV — R. Denotegg (z,y,z,u) = K(x,2) — Ky —
: ) SN U Q) — )
K (y, 2) + K (y, u). By view of similar derivation, we derive 7 (f;5) —Z Z 1?}%(% - Zl (f,vf,v5)), (14)
the following kernel version of optimization problem: a=lb=a+1

min( Z Z > D asjandx (vf vy, v o)) RV(f;D) = i Z Sup By, [l (f(07)

o a=1b=a+1 i,j k,l 1b= a+1U€§UPP(Db)

k-1 k —f(vﬁ))})v (15)
DI
a=1b=a+1 i,j o . Rvab(f 5) 12%{% Ng Zl f’v“ J (16)
subject to ;bza;rl; 12257(1 aij) a:w;la RV (f;D) = Uesisﬁpb)(ﬁvawm[H(f(”?)
ol >0 Vi, j, (a, b). 9) —F@N))), (17)
On solvinga®?® for each pair of (a,b) (1< a < b < k), 1y (f, Da, ") = Eyarnp, 15 (f(v§) — f(v?))]. (18)

the solution to the original multi-dividing ontology problem

is then obtained by Let V(F,¢) be thel, covering number ofF for radiuse,

i.e., the minimum number df, balls with radius: coverF.
The generalization bound for the multi-dividing infinite push
a,b a b

v) = Z Z Z%j (K(vf',v) = K(vj,0)).  (10) ontology algorithm is stated in the following conclusion.

a=1b=a+1 i,j Theorem. Let F be a class of real-valued ontology functions
Algorithm 1. Multi-dividing infinite push ontology algo- on V. Lete,v > 0, and
rithm: ab _ b (£ DY
Input: training sample&S = (51,52, -+ ,Sk) € V™M x V"2 x 0 (f,7:€) = Purup, [l (£, Da, v") < RBY(f; D) — €.
x V™ and a kernel functiod : V x V — R Then, we have

Fora=1tok—1:
Forb=a+1tok: Psprixprzx..xppr [3f € F: R7(f; D)

Parameter&'@?, (&b ot > RY(f;9) + ¢l

Initialize: a( ) € Yl <i<ng,1<j<m ey nac?
NaNp — - . ) —_ —_ < < —nas

For t = T 1o tob do: (a®b)E  (a@b)®) _ < NiF5 );bgl(znbe ’

710 an b(( a,b)(t)), ( ab)(t-i-l) <_fl;bmb((aa,b)(#)) =

a,b ny
End For. +(]§1€11;5D (f,r:e/4))™).
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Proof. The most important step in the proof is to bound the For I, we yield
following probability

]P n n ny
S~DItXxDy2x--xD,k [

R(fiD) > R(f:5) + 5]

for given f € F. On this purpose, we define

RY®O(f Da, Sp) = max Ly(f, Da,v oh).

<j<ny

Then, we infer

IN

Pgpmiwppz.xppr (R (f; D) — RY(£;.5)
[

> 5]
sIRY(f;D) Z Z RY**(f; Dy, Sp)

a=1b=a+1
k

k—1
+3° 3 RN(£iD,, Sy) — RY(£:S) >
a=1b=a+1
k
SN Bao[RTE(f;D) — RY™(f;Da, Sb)

a=1b=a+1

3]

k

k—1 c
>0+ > PSR (5 Du, 55)

a=1b=a+1
—R(f:8) > 7]
I+11.

We need to bound andI. To bound/I, we define

Na

Zl (f,0f,2)

(f7Sa7v

By Hoeffding’s inequality, we deduce

17

k—1 k
= Z Z ]P)S USb ma<X l (fv as j
a=1b=a+1
g
_1g;a<)7(lbl (f7 Sm’l)]) > Z]
k—1 k
S z Z IP)SQUSb[ max |l (faDavv])
a=1b=a+1
(faSaan)‘> ]
k— k
S Z Z ZPS UsSy |l f7 as J)
a=1b=a+1
b 8
_Z’Y(fa vay)‘ > 1]
k—1 k
< > anU-p]PS“[ll (f+ Dasv})
a=1b=a+1

IN
M»
[N}
g
(9]
ok

k—1 k
= > > Ps,fsupL, (£, Da v")
a=1b=a+1
— max L,(f,Da,08) > 7]
12}% el 7y
= Z Z P, |  max | +(f, Da,v})
a=1b=a+1

< Supl’Y(f7 Daavb) - Z]
b

k—1 k
= > > O Pl (fDuv))
a=1b=a+1

IS
< sup l’Y(f7 Daa vb) - Z]
Ub

e
|

1

k
= > ¥ @ En ™

a=1b=a+1

For any fixed f € F, by combining/ and /1, we get

Pyt wppe cenxops [R1(F3 D) = RI(f38) > 2]
k=1 k )

< Z (2npe™ "5 + (sup 05 (f,v,¢/4))™).
a=1b=a+1 fer

The remaining proof from an application of standard tricks
converts the above bound to a uniform convergence result
that established uniformly over aff € F using covering
number approach. O

IIl. FAST MULTI-DIVIDING ONTOLOGY ALGORITHM FOR
ONTOLOGY SVM

The aim of this section is to present a fast training
algorithm for standard multi-dividing ontology SVM by
means of the same infinite push framework showed in the
above section. The multi-dividing ontology SVM algorithm
minimizes a regularized bound in (11) with= 1 over an
RKHS F can be expressed as:

cTRH(f. Aen2
min[ Ry (f35) + 5 1117, (19)
where R (f;S) is definedin (11) with p = 1 and we use
hinge lossiy (f,v{,v}) to replace thel(f(vf) < f(v}))
terms. By expanding (19) in terms of the definition of
RE(f;9), we get

?11;1 §||f||f+z Z

a=1b= a+1

—(f (i) = f(v?)))+]-

By introducing slack variablesgfj’b for each pair of(a,b)
corresponding to the max in the hinge loss terfis—
(f(v?)—f(vb)))+ = max(1—(f(v§)~ f(v2)), 0) and setting
C = +, we obtain

Nag  MNp

2.2

Zb at+1 Mall ;=1 j=1

(20)

Nag  MNp

A
min [ £]3 + Sy e

k—1 —k
f.&35 2 am1 2ob—at1 Tl 21 521

€ > 1 (f(of) — f()  Vi,j,(a,b)

subject to
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gfj’b >0 Vi, 4, (a,b). graph by the algorithm 1 and 2, and compute the precision
ratio. Specifically, for vertex and given integeV > 0. Let

gy’im{)’ “xpert ha the set of vertices determined by experts and
it contains NV vertices having the most similarity ef Let

By means of Lagrange multipliers and the dual technolo
we get the following optimization problem in the,n,
variables{a;?jfb 01 <i < ng,1 <5 < ny} for each pair

of (a, b): vy = argmin {|f(v) — f()]},
. el & v eV (G)—v
min|— Qijo i (V7 v}, Vg ’Ulb) ;
2 2 22 ’ vi=  argmin  {If(v) = F)I},

v eV(G)—{v,v}l}

L L ol = argmin  {|f(v) — f(')]},
b 0< Y < - c V' eV(@)—{v.v), o) 1}
t ¢ i
SUSRUNED S SETED b ol
a=1b=a+1 a=1b=a+1 an
Vi, J, (Ch b)~ SimvNyalgomthm = {U11;>U12;7 e ’Uf)\/

Algorithm 2. Fast multi-dividing training ontology algo- Then the precision ratio for vertexis denoted by
rithm via projection method

Inputs: training samplé€ = (51, Ss, -+ ,S%) € V't x V™2 x Prel — | Sim]Y-algorithm A Szm{}“ex?eﬂ.

.. x V™ and a kernel functiors : V x V — R N

Fora=1tok—1: The PQN awerage precision ratio for ontology gragh is
Forb=a+1tok: then stated as

Parameter&'@?, ¢%:b ot N

Initialize: (a?jb)(l) — ncTnb,, V1<i<ngl<j< Prel) — M

o a,b a,by L a,b\(t) |V(G)|

';95 ¢ > 1 :Ott"’“”‘ do: ()= (") = At the same time, we apply ontology methods in [14], [15]
DoVQU ((a®h) M) and [16] to the “PO” ontology. Then we calculate the average
For 1 Sbi SNhal=J=mg , precision ratio by these three algorithms and compare the
If ((a; ) < 0) Then (a;; YD — 0 results with algorithm 1 and algorithm 2 in the paper. Part
Else if ((af;")("F") > €22 Then (af;")(t+1) « €20 of the data refer to Table 1.

Else 40 (a®h) (%) When N= 3, 5 or 10, the precision ratio by means of
End For Y our algorithms are higher than the precision ratio determined
End For. by algorithms proposed in [14], [15] and [16]. In particular,
End For. whenN increases, such precision ratios are increasing appar-
End For. ent. Hence, the algorithms described in our paper are superior

Output: f(v) = Zi’j(aa’b)t*(K(Ug,’U) - K(vf,v)), where to the method proposed by [14], [15] and [16].

iJ
(tab)* = argminlgtg(mgﬁl) Qa’b((aa’b)(t)).

B. Ontology mapping experiment on humanoid robotics data
IV. EXPERIMENTS

The above ontology learning algorithms can be used in on-FOr the second experiment, we use *humanoid robotics™
9y 9alg ontologies O, and Os. The structure ofO, and O3 are

tology concepts similarity measurement and ontology magy ved in Fig. 2 and Fig. 3, respectively. The ontology

ing. The basic idea is: via the ontolo radient computati L S X .
Fnogel the ontology graph is mappg():i/ ?nto 2 real IiEe CO%?Q presents the leg joint structure of bionic walking device

. Lo for six-legged robot, while the ontolog®s; presents the
sisting of real numbers. The similarity between two concepts :
. . exoskeleton frame of a robot with wearable and power-
then can be measured by comparing the difference between. .
assisted lower extremities.

their corresponding real numbers. To show the ef'fectiveness]_he goal of this experiment is to give ontology mapping
of our new ontology algorithms, four experiments concernir@etween() and O-. We also usePQN Precision Ratio o
ontology measure and ontology mapping are designed below. 2 3 . .
measure the quality of experiment. Again, we apply ontology
algorithms in [18], [15] and [16] on “humanoid robotics”
A. Ontology similarity measure experiment on plant data ontology, and compare the precision ratio which are gotten
In the first experiment, we use plant “PO"from three methods. Some results refer to Tab. 2.
ontology O; which was constructed in the website Taking N= 1, 3 or 5, the precision ratio in terms of our
www.plantontology.org The structure ofO;, is presented in infinite push based ontology algorithms are higher than the
Fig. 1. PQN (Precision Ratio see Craswell and Hawkingrecision ratio determined by algorithms proposed in [18],
[17] is used to measure the quality of the experiment dat§l5] and [16]. Specially, agv increases, the precision ratios
We first give the closesV concepts for every vertex onin view of our algorithms are increasing apparently. In this
the ontology graph by experts in plant field, and then waoint of view, the algorithms described in our paper are
obtain the firstV concepts for every vertex on ontologysuperior to the method proposed by [18], [15] and [16].
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PO

T

plant anatomical entity plant structure development stage

gl

plant anatomical plant structure portion of plant  fruit develo- plant tissue  seed develo- Trichome

space substance pment stage de\elopment pment stage development
anther o i1 tricho- whole plant : fruit forma- fruit rlpen- ¢ developing dry endosperm :
pore ¢ ¢ metip tion stage  ing stage : seed stage seed dewlopment . ;

A l m = |

bract  branch leaf pulticellular © thallus Yascular chalazal and functional primary

axil axil axil  trichome tip : system micropylar domain  specialization of the epdosperm
' establishment stage ~endosperm stage cell stage
Fig. 1. The Structure of “PO” Ontology.
TABLE |
TAB. 1. THE EXPERIMENT RESULTS OFONTOLOGY SIMILARITY MEASURE
P@3 aerage || P@5 aerage | P@10 aerage
precision ratio || precision ratio| precision ratio
Algorithm 1 in our paper 0.5103 0.6176 0.7904
Algorithm 2 in our paper 0.5232 0.6273 0.8018
Algorithm in [14] 0.4549 0.5117 0.5859
Algorithm in [15] 0.4282 0.4849 0.5632
Algorithm in [16] 0.4831 0.5635 0.6871
TABLE I

TAB. 2. THE EXPERIMENT RESULTS OFONTOLOGY MAPPING

P@1 average || P@3 average | P@5 average

precision ratio|| precision ratio| precision ratio
Algorithm 1 in our paper 0.4444 0.5557 0.7111
Algorithm 2 in our paper 0.2778 0.5000 0.6889
Algorithm in [18] 0.2778 0.4815 0.5444
Algorithm in [15] 0.2222 0.4074 0.4889
Algorithm in [16] 0.2778 0.4630 0.5333
Waistband

Hip raise

joint i
/ \ Electrlc motor

Upperleg segment

Actuator attach
directly to body

Force sensor

any

Hip actuator

Bandage Electrical machinery
, Knee joint L
Knee actuator Shank link

|

Force transducer

Lowerleg segment i
l Antiseptic dressing
Ball foot / \
Foot force sensor Frame feet

Fig. 2. ‘Humanoid Robotics” OntologyDs.
Fig. 3. “Humanoid Robotics” OntologyDs.
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GO Physics in Nature and Daily Life
/ i \A Sustainable Dvelopment
Molecular function Biological process Cellular component l
Various forms of Move& energ\ <— Energy <— Conservation of Energy

Signal transducer Chaperone Development Call growth and/o
process malntenance

X . . Thermal Ph- Sound  Light \Iechamcal Mecha Electro Internal
tigand Receptor associated : enomenon E1 Movement Energy Energ\ Energy
Receptor Signaling protein : .

protein | /' :
receptor M*Ii“g Molecular
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Fig. 5. “Physics Education” Ontologys.
C. Ontology similarity measure experiment on biology data

In the third experiment, we use gene “GO” Nature Sound
ontology O, which was constructed in the website ¢
http: //www. geneontologyThe structure ofO, is presented The sonnd Geaeration & Transmission
in Fig. 4. Again, PQN is used to measure the quality of
the experiment data. At the same time, we apply ontology ¢
method in [15], [16] and [19] to the “GO” ontology. Sound Characteristics
Calculating the average precision ratio by these three ¢
algorithms and comparing the results to algorithm 1 and Kinds of Sound
algorithm 2 rose in our paper, part of the data refer to Table
3. ‘/\

We Can Hear We Can Not Hear

When N= 3, 5 or 10, the precision ratio by virtue of
our ontology algorithms are higher than the precision ratio A a T
determined by a|gorithms proposed in [15], [16] and [19] Music Noise  Ultrasonic Wave  Infrasonic Wave
In particular, whenN increases, such precision ratios are
increasing apparent. Therefore, the algorithms describedFig 6- “Physics Education” Ontologys.
our paper are superior to the methods proposed by [15], [16]
and [19].
have high efficiency. One ontology learning trick is mapping
D. Ontology mapping experiment on physics education daach vertex to a real number, and the similarity is judged by
For the last experiment, we use “physics education” othe difference between the real number which the vertices
tologiesOs andOg. The structure o5 andOg are showed correspond to. In this paper, we raise a infinite push learning
in Fig. 5 and Fig. 6, respectively. model for ontology application in multi-dividing setting.
The goal of this experiment is to give ontology mappindhe generalization bound is given by means of covering
betweenOs and Og. We also usePQN precision ratio to number approach. The experiments show the effectiveness
measure the quality of experiment. Again, we apply ontologyf the new multi-dividing ontology algorithms. The new
algorithms in [15], [16] and [20] on “physics education’technology contributes to the state of art for applications
ontology, and compare the precision ratio which is gotteand the result got in our paper illustrates the promising

from three methods. Some results refer to Tab. 4. application prospects for multi-dividing ontology algorithm.
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