
 

 

Abstract— The purposes of this research are to formulate 

the equations of motion of a flexible two-link system, to develop 

computational codes by a finite-element method in order to 

perform dynamics simulations with vibration control, to 

propose an effective control scheme and to confirm the 

calculated results by experiments of a flexible two-link 

manipulator. The system used in this paper consists of two 

aluminum beams as flexible links, two clamp-parts, two servo 

motors to rotate the links and a piezoelectric actuator to control 

vibration. Computational codes on time history responses, FFT 

(Fast Fourier Transform) processing and eigenvalues - 

eigenvectors analysis were developed to calculate the dynamic 

behavior of the links. Furthermore, a control scheme using a 

piezoelectric actuator was designed to suppress the vibration. A 

proportional-derivative (PD) control was designed and 

demonstrated its performances. The system and the proposed 

control scheme were confirmed through experiments. The 

calculated and experimental results revealed that the vibration 

of the flexible two-link manipulator can be controlled 

effectively. 

 

Index Terms—Finite-element method, flexible manipulator, 

piezoelectric actuator, vibration control. 

I. INTRODUCTION 

MPLOYMENT of flexible link manipulator is 

recommended in the space and industrial applications in 

order to accomplish high performance requirements such as 

high-speed besides safe operation, increasing of positioning 

accuracy and lower energy consumption, namely less weight. 

However, it is not usually easy to control a flexible 

manipulator because of its inheriting flexibility. Deformation 

of the flexible manipulator when it is operated must be 

considered by any control. Its controller system should be 

dealt with not only its motion but also vibration due to the 

flexibility of the link. 

 In the past few decades, a number of modeling methods 

and control strategies using piezoelectric actuators to deal 

with the vibration problem have been investigated by 

researchers [1 – 10]. Nishidome and Kajiwara [1] 

investigated a way to enhance performances of motion and 

vibration of a flexible-link mechanism. They used a modeling  
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method based on modal analysis using the finite-element 

method. The model was described as a state space form. 

Their control system was constructed with a designed 

dynamic compensator based on the mixed of H2/H∞. They 

recommended separating the motion and vibration controls of 

the system. Yavus Yaman et al [2] and Kircali et al [3] 

studied an active vibration control technique on aluminum 

beam modeled in cantilevered configuration. The studies 

used the ANSYS package program for modeling. They 

investigated the effect of element selection in finite-element 

modeling. The model was reduced to state space form 

suitable for application of H∞ [2] and spatial H∞ [3] 

controllers to suppress vibration of the beam. They showed 

the effectiveness of their techniques through simulation. 

Zhang et al [4] has studied a flexible piezoelectric cantilever 

beam. The model of the beam using finite-elements was built 

by ANSYS application. Based on the Linear Quadratic Gauss 

(LQG) control method, they introduced a procedure to 

suppress the vibration of the beam with the piezoelectric 

sensors and actuators were symmetrically collocated on both 

sides of the beam. Their simulation results showed the 

effectiveness of the method. Gurses et al [5] investigated 

vibration control of a flexible single-link manipulator using 

three piezoelectric actuators. The dynamic modeling of the 

link had been presented using Euler-Bernoulli beam theory. 

Composite linear and angular velocity feedback controls 

were introduced to suppress the vibration. Their simulation 

and experimental results showed the effectiveness of the 

controllers. Xu and Koko [6] studied finite-element analysis 

and designed controller for flexible structures using 

piezoelectric material as actuators and sensors. They used a 

commercial finite-element code for modeling and completed 

with an optimal active vibration control in state space form. 

The effectiveness of the control method was confirmed 

through simulations. Kusculuoglu et al [7] had used a 

piezoelectric actuator for excitation and control vibrations of 

a beam. The beam and actuator were modeled using 

Timoshenko beam theory. An optimized vibration absorber 

using an electrical resistive-inductive shun circuit on the 

actuator was used as a passive controller. The effectiveness 

of results was shown by simulations and experiment.     

Furthermore, Hewit et al [8] used the Active-force (AF) 

control for deformation and disturbance attenuation of a 

flexible manipulator. Then, a PD control was used for 

trajectory tracking of the flexible manipulator. They used a 

motor as an actuator. Modeling of the manipulator was done 

using virtual link coordinate system (VLCS). Their 

simulation results had shown that the proposed control could 

cancel the disturbance satisfactorily. Tavakolvour et al [9] 

investigated the AF control application for a flexible thin 

plate. Modeling of their system was done using 
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finite-difference method. Their calculated results showed the 

effectiveness of the proposed controller to reduce vibration of 

the plate. Tavakolvour and Mailah [10] studied the AF 

control application for a flexible beam with an 

electromagnetic actuator. Modeling of the beam was done 

using finite-difference method. The effectiveness of the 

proposed controller was confirmed through simulation and 

experiment. 

In the recent two years, Muhammad et al [11 – 15] have 

actively studied vibration control on a flexible single-link 

manipulator with a piezoelectric actuator using finite-element 

method. Model of the single-link and the piezolecetric 

actuator was built using one-dimensional and two-node 

elements. They introduced a simple and effective control 

scheme with the actuator using proportional (P), PD and AF 

controls strategies. The effectivenesses of the proposed 

control scheme and strategies were shown through 

simulations and experiments. 

The purposes of this research are to derive the equations of 

motion of a flexible two-link system by a finite-element 

method, to develop computational codes in order to perform 

dynamics simulations with vibration control and to propose 

an effective control scheme of a flexible two-link 

manipulator. 

The flexible two-link manipulator used in this paper 

consists of two aluminum beams as flexible links, two 

aluminum clamp-parts, two servo motors to rotate the links 

and a piezoelectric actuator to control vibration. 

Computational codes on time history responses, FFT (Fast 

Fourier Transform) processing and eigenvalues - 

eigenvectors analysis were developed to calculate the 

dynamic behavior of the links. Finally, a PD controller was 

designed to suppress the vibration. It was done by adding 

bending moments generated by the piezoelectric actuators to 

the two-link system. 

II. FORMULATION BY FINITE-ELEMENT METHOD 

The links have been discretized by finite-elements. Every 

finite-element (Element i-th) has two nodes namely Node i 

and Node (i+1). Every node (Node i) has two degrees of 

freedom [11 – 15], namely the lateral deformation vi(x,t), and 

the rotational angle ψi(x,t) . The length, the cross-sectional 

area and the area moment of inertia around z-axis of every 

element are denoted by li, Si and Izi respectively. Mechanical 

properties of every element are denoted as Young’s modulus 

Ei and mass density ρi. 

A. Kinematic 

    Figure 1 shows the position vectors rp1 and rp2 of arbitrary 

points P1 and P2 on Link 1 and Link 2 in the global and 

rotating coordinate frames. Let the links as flexible beams 

have a motion that is confined in the horizontal plane as 

shown in Fig. 1. The O – XY frame is the global coordinate 

frame with Z-axis is fixed. Furthermore, o1 – x1y1 and o2 – 

x2y2 are the rotating coordinate frames fixed to the root of 

Link 1 and Link 2, respectively (z1-axis and z2-axis are fixed). 

The unit vectors in X, Y, x1, y1, x2 and y2 axes are denoted by I, 

J, i1, j1, i2 and j2, respectively. The first motor is installed on 

the root of the Link 1. The second motor that treated as a 

concentrated mass is installed in the root of the Link 2. The 

rotational angles of the first and second motor when the links 

rotate are denoted by θ1(t) and θ2(t). Length of Link 1 is 

donated by L1. Lateral deformation of the arbitrary points P1 

and P2 in the first and the second links are donated by vp1 and  

 
 
O-XY   : Global coordinate frame 
o1-x1y1  : Rotating coordinate frame fixed to Link 1 

o2-x2y2 : Rotating coordinate frame fixed to Link 2 

rp1,  rp2  : Position vectors of the arbitrary points p1 and p2 in the O-XY 
θ1    : Rotational angle of the first motor 

θ2      : Rotational angle of the second motor 

Xp1,  Xp2  : Coordinates of the arbitrary points p1 and p2 in the X-axis of the    
  O-XY 

Yp1, Yp2 : Coordinates of the arbitrary points p1 and p2 in the Y-axis of the  

  O-XY 
νp1   : Lateral deformation of the arbitrary point p1 on Link 1 in the  

  o1-x1y1 

νp2   : Lateral deformation of the arbitrary point p2 on Link 2 in the  
  o2-x2y2 

ψe   : Rotational angle of the end-point of Link 1 

ve   : Lateral deformation of the end-point of Link 1 
L1   : Length of Link 1 

 
Fig. 1.  Position vectors of arbitrary points P1 and P2 in the global and 
rotating coordinate frames 

 

vp2, respectively. Lateral deformation and rotational angel of 

the end-point of the first link are donated by ve and ψe, 

respectively. The position vectors rp1 and rp2 of the arbitrary 

points P1 and P2 at time t = t, measured in the O – XY frame 

shown in Fig. 1 are expressed by 

 

JIr ),,,(),,,( 111111111 tvxYtvxX ppppp                 (1) 

 Ir ),,,,,,( 221222 tvvxX peepp                      

          J),,,,,,( 22122 tvvxY peep                                    (2) 

 

Where 

 

)(sin),()(cos 111111 ttxvtxX pp                                (3)                          (2)  Error! Reference source not found.          

)(cos),()(sin 111111 ttxvtxY pp             (4) 

 )(sin),()(cos 11112 ttxvtLX ep   

            )(),()(cos 2112 ttxtx e                                    

           )(),()(sin),( 21122 ttxttxv ep           (5) 

 )(cos),()(sin 11112 ttxvtLY ep   

            )(),()(sin 2112 ttxtx e                                    

           )(),()(cos),( 21122 ttxttxv ep          (6) 

 

The velocity vectors of the arbitrary points P1 and P2 at time t 

= t, shown in Fig.1 are expressed by  

 

JIr ),,,,,(),,,,,( 1111111111111 tvvxYtvvxX ppppppp
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B. Finite-element Method 

Figure 2 shows the element coordinate frame of Element i, 

and an arbitrary point P on Element i. Here, there are four 

boundary conditions together at nodes i and (i+1) when the 

one-dimensional and two-node element is used. The four 

boundary conditions are expressed as nodal vector as follow  

 

 T
iiiii vv 11  δ

 
                          (9) 

 

Then, the hypothesized deformation has four constants as 

follows [16]   
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where xi is position coordinate of the arbitrary point P in the 

xi-axis of the element coordinate frame.  

 

Then, the relation between the lateral deformation vi and the 

rotational angle ψi of the Node i is given by 
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Moreover, from mechanics of materials, the strain of Node i 

can be defined by 
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where yi is position coordinate of the arbitrary point P in the 

yi-axis of the element coordinate frame. 

 

 
 

oi – xi yi: Element coordinate frame of the Element i  

 

Fig. 2. Element coordinate frame of the Element i  

 

C. Equations of motion 

Equations of motion of Element i-th on Link 1 and Link 2 

are respectively given by    

  iiiiiiii fδMKδCδM 1
2

1   
                   (13) 
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where Mi, Ci, and Ki, are the mass matrix, damping matrix, 

stiffness matrix of Element i on Link 1 and Link 2. Vectors of 

fi and gi are the excitation vectors on Link 1 and Link 2. The 

representation of the matrices and the vector of fi can be 

found in [11] and [13]. The vector of gi can be defined by 
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Finally, the equations of motion of Link 1 and Link 2 with 

n elements considering the boundary conditions is 

respectively given by 

  nnnnnnnn fδMKδCδM 1
2

1   
             (16)   
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III. VALIDATION OF FORMULATION AND COMPUTATIONAL 

CODES 

A. Experimental Model 

Figure 3 shows the experimental model of the flexible 

two-link manipulator. The flexible manipulator consists of 

two flexible aluminum beams, two clamp-parts, two servo 

motors and the base. Link 1 and Link 2 are attached to the 

first and second motors through the clamp-parts. Link 1 and 

Link 2 are connected through the second motor. Two strain 

gages are bonded to the position of 0.11 [m] and 0.38 [m] 

from the origin of the two-link system. The first motor is 

mounted to the base. In the experiments, the motors were 

operated by an independent motion controller. 

 

 
 

Fig. 3. Experimental model of the flexible two-link manipulator  

 

B. Computational Models 

In this research, we defined and used three types of 

computational models of the flexible two-link manipulator. 

 

Model A 

A model of only a two-link manipulator was used as Model 

A. Figure 4.a shows Model A. The links and the clamp-parts 

were discretized by 35 elements. Two strain gages are 
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bonded to the position of Node 6 and Node 22 of the two-link 

(0.11 [m] and 0.38 [m] from the link’s origin), respectively. 

  

Model B 

A model of the flexible two-link manipulator including a 

piezoelectric actuator was defined as Model B. Figure 4.b 

shows Model B. The piezoelectric actuator was bonded to the 

one surface of Elements 4. The links including the 

clamp-parts and the piezoelectric actuator were discretized 

by 36 elements. Schematic representations on modeling of 

the piezoelectric actuators are shown in Fig. 5. Physical 

parameters of the flexible two-link manipulator models and 

the piezoelectric actuator are shown in table 1. 

The piezoelectric actuator suppresses the vibration of the 

two-link flexible manipulator by adding bending moments at 

Nodes 3 and 6 of the two-link manipulator, M3 and M6. The 

bending moments are generated by applying voltages E to the 

piezoelectric actuator. The bending moments proportional to 

the voltage which are expressed by 

    

EdMM 163 

               

(18) 

 

Here d1 is a constant quantity and M3 opposites to M6. 

Furthermore, the voltage to generate the bending moments 

is proportional to the strain measured by the first strain gage, 

ε1 of the two-link due to the vibration. The relation can be 

expressed as follows 

 

1
2

1


d
E 

   
                                       (19) 

 

 

 
 

(a) Model A: Only two-link   

 

 
 

(b) Model B: Two-link with a piezoelectric actuator 

 

 
 

(b) Model C: Two-link with a piezoelectric actuator and an end-effector 

 
Fig. 4. Computational models of the flexible two-link manipulator  

 

Fig. 5. Modeling of the piezoelectric actuator 

 

TABLE I 

PHYSICAL PARAMETERS OF THE FLEXIBLE LINK AND THE 

PIEZOELECTRIC ACTUATOR [17] 

 

l Total length m 4.05 × 10-1 

l1 Length of Link 1 m 1.90 × 10-1 

l2 Length of Link 2 m 2.15 × 10-1 

lc1, lc2 Length of clamp-parts 1 and 2  m 1.50 × 10-2 

la1, la2 Length of Actuators 1 and 2 m 2.00 × 10-2 

Sl1, Sl2 Cross section area of links 1 and 2 m2 1.95 × 10-5 

Sc1, Sc2 

 

Cross section area of clamp-parts 1   

and 2 
m2 8.09 × 10-4 

Sa1, Sa2 
Cross section area of actuators 1 and 
2 

m2 1.58 × 10-5 

Izl1, Izl2 
Cross section area moment of 

inertia around z-axis of links 1 and 2 
m4 2.75 × 10-12 

Izc1, Izc2 
Cross section area moment of 
inertia around z-axis of clamp-parts 

1 and 2 

m4 3.06 × 10-8 

Iza1, Iza2 
Cross section area moment of 
inertia around z-axis of actuators 1 

and 2  

m4 1.61 × 10-11 

El1, El2 Young’s Modulus of links 1 and 2 GPa 7.03 × 101 

Ec1, Ec2 
Young’s Modulus of clamp-parts 1 

and 2 
GPa 7.03 × 101 

Ea1, Ea2 
Young’s Modulus of actuators 1 and 
2 

GPa 4.40 × 101 

ρl1, ρl2 Density of links 1 and 2 kg/m3 2.68 × 103 

ρc1, ρc2 Density of clamp-parts 1 and 2 kg/m3 2.68 × 103 

ρa1, ρa2 Density of actuators 1 and 2 kg/m3 3.33 × 103 

α1, α2 Damping factor of links 1 and 2 s 2.50 × 10-4 

E1, E2 
Maximum input voltages of 

actuators 1 and 2 
V 150.00 

F1, F2 
Maximum output forces of 

actuators 1 and 2 
N 200.00 

m2 
Mass of the second motor and it’s 

clamping system 
g 113.53 

 

Here d2 is a constant quantity. Then, d1 and d2 will be 

determined by comparing the calculated results and 

experimental ones. 

 

Model C 

Figure 4.c shows model C that an end-effector is 

considered for a two-link manipulator with a piezoelectric 

actuator. Model C is used to show that the proposed control 

scheme is also suitable for such system. The end-effector is 

presented by adding a concentrated mass to Model B. In this 

case, the equation of motion of the tip element containing the 

concentrated mass is given by 
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where the vectors of ficm and gicm are respectively given by 

 T
iicicm llm 000 1  f

        
(21)

 
 T

cicm m 0100 g           (22) 

 

and the concentrated mass matrix Micm can be expressed as 
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where mc is the mass of the concentrated mass. 

C. Time History Responses of Free Vibration 

Experiment on free vibration was conducted using an 

impulse force as an external one. Figure 6 shows the 

experimental time history response of strains, εe on the free 

vibration at the same position in the calculation (0.11 [m] 

from the origin of the two-link system). Furthermore, the 

computational codes on time history response of Model A 

were developed. Figure 7 shows the calculated strains at 

Node 6 of Model A under the impulse force. 
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Fig. 6. Experimental time history response of strains on free vibration of the 

flexible two-link at 0.11 [m] from the origin of the two-link 
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Fig. 7. Calculated time history response of strains on free vibration at 

Node 6 of Model A 

D. Fast Fourier Transform (FFT) Processing 

    Both the experimental and calculated time history 

responses on free vibration were transferred by FFT 

processing to find their frequencies.  
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Fig. 8. Experimental natural frequency of the flexible two-link 
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Fig. 9. Calculated  natural frequencies of Model A   

 

Figures 8 and 9 show the experimental and calculated 

natural frequencies of the flexible two-link manipulator, 

respectively. The first experimental natural frequency, 1.79 

[Hz] agreed with the calculated one, 1.80 [Hz]. The second 

experimental natural frequency could not be measured. 

However, it could be obtained as 8.95 [Hz] in the calculation.  

E. Eigen-values and Eigen-vectors Analysis 

The computational codes on Eigen-values and 

Eigen-vectors analysis were developed for natural 

frequencies and vibration modes.  

 

 

Fig. 10. First vibration mode and natural frequency (f1 = 1.79 [Hz]) of  

Model A 

  

 

 

 

Fig. 11. Second vibration mode and natural frequency (f2 = 8.92 [Hz]) of 

Model A 
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The calculated results for the first and second natural 

frequencies were 1.79 [Hz] and 8.92 [Hz], respectively. The 

vibration modes of natural frequencies are shown in Figures 

10 and 11. 

F. Time History Responses due to Base Excitation  

Another experiment was conducted to investigate the 

vibration of the flexible two-link due to the base excitation 

generated by rotation of the motor. In the experiment, the first 

motor were rotated by the angle of π/2 radians (90 degrees) 

within 0.50 [s]. Figures 12 and 14 show the experimental 

time history responses of strains of the flexible two-link due 

to the motor’ rotation at 0.11 [m] and 0.38 [m] from the origin 

of the link, respectively. Furthermore, based on Figures 12 

and 14, the time history responses of strains at Node 6 and 

Node 22 of Model A were calculated as shown in Figures 13 

and 15, respectively. 
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Fig. 12. Experimental time history responses of strains at 0.11 [m] from the 

origin of the two-link due to the base excitation 
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Fig. 13. Calculated time history responses of strains at Node 6 of  
Model A due to the base excitation 
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Fig. 14. Experimental time history responses of strains at 0.38 [m] from the 

origin of the two-link due to the base excitation 

 

The above results show the validities of the formulation, 

computational codes and modeling the flexible two-link 

manipulator.   
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Fig. 15. Calculated time history responses of strains at Node 22 of  

Model A due to the base excitation 

IV. CONTROL SCHEME 

A control scheme to suppress the vibration of the single-link 

was designed using the piezoelectric actuator. It was done by 

adding bending moments generated by the piezoelectric 

actuator to the single-link. To drive the actuator, a PD- 

controller has been designed and examined through 

calculations and experiments.  

The piezoelectric actuator suppresses the vibration of the 

two-link flexible manipulator by adding bending moments at 

nodes 3 and 6 of the two-link manipulator, M3 and M6. 

Therefore, the equation of motion of Link 1 become  

  nnnnnnnnn ufδMKδCδM  1
2

1          
(24) 

 

where the vector of un containing M3 and M6 is the control 

force generated by the actuator to the two-link system. 

Furthermore, substituting Eq. (19) to Eq. (18) gives 
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MM     (25) 

Based on Eq. (25), the bending moments can be defined in 

s-domain as follows 

 

 )()()()( 6 ssss dCn  GU
 

(26) 

 

where εd and ε6 denote the desired and measured strains at 

Node 6, respectively.  

A block diagram of the PD-controller for the two-link 

system is shown in Fig. 16. 

 

 
                                               
 

 
 

 

 
 

 
 

 

εd : Desired strain                   εi : Measured strains at Node i 
      F :  Base excitations          Un : Applied bending moments 

 

 
Fig. 16. Block diagram of proportional-derivative control of the flexible 

two-link manipulator 
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Moreover, the gain of PD-controller can be written by a 

vector in s-domain as follows 

 

  T
dpdpC sKKsKKs 000000)( G  

                     (27) 

V. EXPERIMENT 

A. Experimental Set-up 

In order to investigate the validity of the proposed control 

scheme, an experimental set-up was designed. The set-up is 

shown in Fig.17. The flexible two-link manipulator consists 

of two flexible aluminum beams, two clamp-parts, two servo 

motors and the base.  Link 1 and Link 2 are attached to the 

first and second motors through the clamp-parts. Link 1 and 

Link 2 are connected through the second motor. In the 

experiments, the motors were operated by an independent 

motion controller. Two strain gages were bonded to the 

positions of 0.11 [m] and 0.38 [m] from the origin of the 

two-link system. An end-effector was introduced to the 

system  in order to demonstrate a complete flexible two-link 

manipulator.  

The piezoelectric actuator was attached on one side of Link 

1 to provide the blocking force against vibrations. A 

Wheatstone bridge circuit was developed to measure the 

changes in resistance of the first strain gage in the form of 

voltages as feedback signals. An amplifier circuit was 

designed to amplify the small output signal of the Wheatstone 

bridge. Another Wheatstone bridge - amplifier circuits were 

used for the second strain gage. 

Furthermore, a data acquisition board and a computer that 

have functionality of A/D (analog to digital) conversion, 

signal processing, control process and D/A (digital to analog) 

conversion were used. The data acquisition board connected 

to the computer through USB port. Finally, the controlled 

signals sent to a piezo driver to drive the piezoelectric 

actuator in its voltage range.    

 

 

 

                               : Measurement of strains 

                               : Vibration control 
                                       : Motion control  

 

 

Fig. 17.  Schematics of measurement and control system  

B. Experimental Method 

The rotations of the first and second motors were set from 0 

to π/4 radians (45 degrees) and to π/2 radians (90 degrees) 

within 0.50 [s], respectively. Outputs of the first strain gage 

were converted to voltages by the Wheatstone bridge and 

magnified by the amplifier. The noises that occur in the 

experiment were reduced by a 100 [µF] capacitor attached to 

the amplifier. The output voltages of the amplifier sent to the 

data acquisition board and the computer for control process. 

The PD-controller was implemented in the computer using 

the visual C++ program. The analog output voltages of the 

data acquisition board sent to the input channel of the piezo 

driver to generate the actuated signals for the piezoelectric 

actuator. 

VI. CALCULATED AND EXPERIMENTAL RESULTS  

A. Calculated Results 

Time history responses of strains on the uncontrolled and 

controlled systems were calculated when the first and second 

motors rotated by the angle of π/4 radian (45 degrees) and π/2 

radians (90 degrees) within 0.50 [s], respectively.  Time 

history responses of strains on the controlled system were 

calculated for Models B and C  under the control scheme 

shown in Fig. 16. The concentrated mass mc used for Model 

C is 14.49 [g]. 

Examining several gains of the PD-controller leaded to Kp 

= 2 [Nm] and Kd = 0.6 [Nms] as the better ones. Figures 18 

and 20 show time history responses of strains at Node 2 and 

Node 22 for uncontrolled Model B while figures 19 and 21 

show the controlled ones. The maximum and minimum 

strains of uncontrolled Model B at Node 6 in positive and 

negative sides were 984.30×10-6 and -878.40×10-6, as shown 

in Fig. 18. By using PD-controller they became 430.00×10-6 

and -453.50×10-6, as shown in Fig. 19. Furthermore, the 

maximum and minimum strains of uncontrolled Model B at 

Node 22 in positive and negative sides were 58.55×10-6 and 

-53.37×10-6, as shown in Fig. 20. By using PD-controller they 

became 36.27×10-6 and -39.13×10-6, as shown in Fig. 21. 

Moreover, figures 22 and 24 show time history responses 

of strains at Node 2 and Node 22 for uncontrolled Model C 

while figures 23 and 25 show the controlled ones. 
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Fig. 18. Calculated time history response of strains at Node 6 for 

uncontrolled Model B due to the base excitations 
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Fig. 19. Calculated time history response of strains at Node 6 for controlled 

Model B due to the base excitations ( Kp = 2 [Nm] and Kd = 0.6 [Nms] )  

S
tr

ai
n

, 
ε 6

 (
×

 1
0

-6
) 

 

Time, t [s] 

S
tr

ai
n

, 
ε 6

 (
×

 1
0

-6
) 

 

Time, t [s] 

Engineering Letters, 23:3, EL_23_3_11

(Advance online publication: 10 July 2015)

 
______________________________________________________________________________________ 



 

The maximum and minimum strains of uncontrolled 

Model C at Node 6 in positive and negative sides were 

1388.00×10-6 and -1017.00×10-6, as shown in Fig. 22. By 

using PD-controller they became 641.00×10-6 and 

-625.70×10-6, as shown in Fig. 23. Furthermore, the 

maximum and minimum strains of uncontrolled Model C at 

Node 22 in positive and negative sides were 321.60×10-6 and 

-244.20×10-6, as shown in Fig. 24. By using PD-controller 

they became 190.90×10-6 and -189.70×10-6, as shown in Fig. 

25. 
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Fig. 20. Calculated time history response of strains at Node 22 for 
uncontrolled Model B due to the base excitations 
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Fig. 21. Calculated time history response of strains at Node 22 for controlled 
Model B due to the base excitations (Kp = 2 [Nm] and Kd = 0.6 [Nms])  
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Fig. 22. Calculated time history response of strains at Node 6 for 
uncontrolled Model C due to the base excitations (mc = 14.49 [g]) 
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Fig. 23. Calculated time history response of strains at Node 6 for controlled 
Model C due to the base excitations (Kp = 2 [Nm], Kd = 0.6 [Nms] and  

mc = 14.49 [g])  
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Fig. 24. Calculated time history response of strains at Node 22 for 

uncontrolled Model C due to the base excitations (mc = 14.49 [g]) 
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Fig. 25. Calculated time history response of strains at Node 22 for controlled 
Model C due to the base excitations (Kp = 2 [Nm], Kd = 0.6 [Nms] and  

mc = 14.49 [g]) 

 

B. Experimental Results 

Experiemental time history responses of strains on the 

uncontrolled and controlled systems were measured when the 

first and second motors rotated by the angle of π/4 radian (45 

degrees) and π/2 radians (90 degrees) within 0.50 [s], 

respectively. Mass of the end-effector used in the 

experiments is 14.49 [g]. Time history responses of strains on 

the controlled system with and without the end-effector were 

measured under the control scheme shown in Fig. 16.  

Several experimental gains of the PD-controller, Kp’ 

(non-dimensional gain) and Kd’ were examined. The 

examinations of gains leaded to Kp’ = 300 [-] and Kd’ = 0.3 [s] 

as the better ones. Figures 26 and 28 show time history 

responses of strains at positions of 0.11 [m] and 0.38 [m] 

from the link’s origin for uncontrolled system without an 

end-effector while figures 27 and 29 show the controlled ones. 

The maximum and minimum strains of uncontrolled system 

without an end-effector at positions of 0.11 [m] from the 

link’s origin in positive and negative sides were 954.10×10-6 

and -836.60×10-6, as shown in Fig. 26. By using 

PD-controller they became 613.10×10-6 and -644.10×10-6, as 

shown in Fig. 27. Furthermore, the maximum and minimum 

strains of uncontrolled system without an end-effector at 

position of 0.38 [m] from the link’s origin in positive and 

negative sides were 55.51×10-6 and -54.55×10-6, as shown in 

Fig. 28. By using PD-controller they became 39.34×10-6 and 

-54.56×10-6, as shown in Fig. 29. 

Figures 30 and 32 show time history responses of strains at 

positions of 0.11 [m] and 0.38 [m] from the link’s origin for 

uncontrolled system with the end-effector while figures 31 

and 33 show the controlled ones. The maximum and 

minimum strains of uncontrolled system with the 

end-effector at positions of 0.11 [m] from the link’s origin in 

positive and negative sides were 1298.00×10-6 and 

-1156.00×10-6, as shown in Fig. 30. By using PD-controller 
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they became 1029.00×10-6 and -904.70×10-6, as shown in Fig. 

31. Furthermore, the maximum and minimum strains of 

uncontrolled system with the end-effector at positions of 0.38 

[m] from the link’s origin in positive and negative sides were 

350.50×10-6 and -198.10×10-6, as shown in Fig. 32. By using 

PD-controller they became 348.40×10-6 and -197.10×10-6, as 

shown in Fig. 33. 
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Fig. 26. Experimental time history responses of strains at 0.11 [m] from the 

link’s origin for uncontrolled system without an end-effector due to the base 
excitations 
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Fig. 27. Experimental time history responses of strains at 0.11 [m] from the 

link’s origin for controlled system without an end-effector due to the base 
excitations (Kp’ = 300 [-] and Kd’ = 0.3 [s]) 
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Fig. 28. Experimental time history responses of strains at 0.38 [m] from the 

link’s origin for uncontrolled system without an end-effector due to the base 
excitations 
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Fig. 29. Experimental time history responses of strains at 0.38 [m] from the 

link’s origin for controlled system without an end-effector due to the base 

excitations (Kp’ = 300 [-] and Kd’ = 0.3 [s]) 
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Fig. 30. Experimental time history responses of strains at 0.11 [m] from the 

link’s origin for uncontrolled system with the end-effector due to the base 
excitations (mc = 14.49 [g]) 
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Fig. 31. Experimental time history responses of strains at 0.11 [m] from the 

link’s origin for controlled system with the end-effector due to the base 
excitations (Kp’ = 300 [-] and Kd’ = 0.3 [s] and mc = 14.49 [g]) 

 

 

  0 1 2 3 4 5
-500

-250

0

250

500
 350.50

 - 198.10

 

 

Fig. 32. Experimental time history responses of strains at 0.38 [m] from the 

link’s origin for uncontrolled system with the end-effector due to the base 
excitations (mc = 14.49 [g]) 
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Fig. 33. Experimental time history responses of strains at 0.38 [m] from the 

link’s origin for controlled system with the end-effector due to the base 

excitations (Kp’ = 300 [-] and Kd’ = 0.3 [s] and mc = 14.49 [g]) 

 

It was verified from these results that the proposed control 

scheme can effectively suppress the vibration of the flexible 

two-link manipulator. 
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VII. CONCLUSION 

The equations of motion for the flexible two-link 

manipulator had been derived using the finite-element 

method. Computational codes had been developed in order to 

perform dynamic simulations of the system. Experimental 

and calculated results on time history responses, natural 

frequencies and vibration modes show the validities of the 

formulation, computational codes and modeling of the 

system. The control scheme using a proportional-derivative 

(PD) controller was designed to suppress the vibration of the 

system. The proposed control scheme was examined through 

the calculations and experiments. The calculated and 

experimental results have revealed that the vibration of the 

flexible two-link manipulator can be suppressed effectively.  
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