
 

  
Abstract—Rapid development of the wireless communication 

industry has led to a dramatic increase of energy consumption. 
Energy Efficiency (EE) for the wireless networks has received 
considerable attention. Unfortunately, the increasing EE 
performance often leads to decreasing Spectral Efficiency (SE) 
performance and vice verse. Hence, it is often urgent to build a 
tradeoff between EE and SE. In this paper, the tradeoff between 
EE and SE is considered under the smart grid and cognitive 
heterogeneous environment. The economic EE and SE are 
proposed based on the price factor of economics. Based on these 
definitions, the economic EE-SE relation is deduced, where the 
price factors can adjust the minimum economic EE. Then a new 
EE-SE tradeoff metric called the Economic Resource Efficiency 
(ERE) is built, which can be maximized by adjusting the weight 
factor and utilizing the fluctuation of the electricity price and 
the spectrum price. Furthermore, the optimization problem of 
ERE is presented, and the solution of ERE is proposed for the 
Orthogonal Frequency Division Multiplexing (OFDM) system. 
The simulation results validate that the proposed ERE metric is 
efficient to the tradeoff between EE and SE, and to utilize the 
energy and bandwidth resources. 
 

Index Terms—Energy efficiency, spectral efficiency, resource 
efficiency, price 
 

I. INTRODUCTION 
he traditional studies on the Spectral Efficiency (SE) 
have met the bandwidth requirement of emerging high 

data rate wireless applications, which also lead to a dramatic 
increase of energy consumption. Green communications, 
which aim at enhancing Energy Efficiency (EE) for the 
wireless networks, have received considerable attention. 
Unfortunately, the increasing EE performance often leads to 
decreasing SE performance and vice verse, i.e., the 
performance of EE and SE often could not reach 
maximization simultaneously [1]. Hence, it is often urgent to 
build a tradeoff between EE and SE. 

Recently, green communications for the wireless 
communication have received considerable attention [2-5]. 
[2] formulates the resource allocation problem as a 
maximization of effective capacity based bits-per-joule 
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capacity under statistical Quality of Service (QoS) 
provisioning. [3] investigates the distributed power 
allocation for the multicell Orthogonal Frequency Division 
Multiple Access (OFDMA) networks by taking both the 
energy efficiency and the intercell interference mitigation 
into account. [4] develops an analytical framework for 
downlink performance evaluation of small cell networks, 
based on random spatial network model, where base stations 
and users are modeled as two independent spatial Poisson 
point processes. Flit transmission in the vertical direction of 
3D Network-on-Chip -Bus mesh architecture just needs one 
hop and consumes less energy. To take advantage of that and 
to solve the defect of poor heat dissipation, [5] proposes a 
new traffic equilibrium and energy minimization mapping 
method for the architecture. 

Especially, the relationship of EE and SE has become an 
important research topic. Firstly, the relationship of EE and 
SE can be characterized in various scenarios, such as the 
point-to-point link [1], and the heterogeneous networks [6]. 
[7] studies the energy efficient and spectral efficient designs 
for type-I ARQ (Automatic Repeat reQuest) systems 
operating in quasistatic Rayleigh fading channels, in which 
the optimum transmission energy and frame length for 
various design criteria have been identified. [8] develops a 
cooperative multicast technique to support the strong demand 
of mobile video multimedia services in future mobile 
communications systems, with high spectral and energy 
efficiency, which has been demonstrated that it outperforms 
traditional multicast with path loss gain, spatial diversity, and 
time diversity. [9] proposes a relay cooperation scheme for 
the downlink of multicell multiple-input-multiple-output 
cellular networks, and considers different relay station 
decoding strategies during the broadcast phase and joint relay 
transmission with different degrees of Channel State 
Information (CSI) sharing during the relay phase.  

Then one metric is also maximized with the constraint of 
another metric [10, 11]. [10] sets up a general EE-SE 
Tradeoff (EST) framework, where the overall EE, SE and 
per-user quality-of-service are all considered, and prove that 
under this framework, EE is strictly quasiconcave in SE. 
Given the SE requirement and maximum power limit, [11] 
formulates a constrained optimization problem to maximize 
EE, which is first transformed into a simpler single objective 
optimization problem as the multicriteria optimization 
problem with high complexity. 

Furthermore, the tradeoff frameworks of EE and SE are 
established based on the multi-objective optimization method 
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[12, 13]. To overcome the limitations of the previous design 
criteria, [12] proposes a unified EST metric that can be used 
to optimize both EE and SE simultaneously, for which the 
Pareto optimal set is characterized and the weighted product 
scalarization method is used. These recent works have 
provided good insight into the joint EE–SE tradeoff with the 
assumption that the bandwidth was fully occupied regardless 
of the transmission requirements. [13] proposes a new 
paradigm of EE–SE tradeoff for OFDMA cellular network, 
with taking into consideration different transmission 
bandwidth requirements. 

Under the smart grid environment, the wireless networks 
are powered by the conventional energy and renewable 
energy with the Real-Time Price (RTP), which is utilized to 
guarantee the balance of energy supply and demand. Under 
the cognitive heterogeneous environment, the small cell 
utilizes the spectrum licensed by the macrocell also with a 
spectrum price based on the idle spectrum quantity. 
Therefore, balancing the EE-SE relation through the resource 
quantity or cost under the smart grid and cognitive 
heterogeneous environment is important and meaningful, 
which is the focus of this paper.  

The main contributions of this paper are as follows: (a) the 
economic EE and SE are proposed based on the resource 
prices; (b) a new EE-SE tradeoff metric is built to maximize 
the resource utilization efficiency; (c) the adjustment effect 
by the fluctuation of the electricity price and the spectrum 
price is analyzed; (d) the practical consideration and the 
problem solution in the OFDM system are presented.  

The rest of this paper is organized as follows. In Section II, 
the system model is described. In Section III, a new EE-SE 
tradeoff metric is introduced. In Section IV, the resource 
solution of the OFDM system is proposed. Numerical results 
are provided in Section V. Finally, we summarize the paper 
with some concluding remarks in Section VI. 

II. SYSTEM MODEL AND PROBLEM PRESENTATION  
Consider a point-to-point communication downlink of one 

small cell in the macrocell, where both the transmitter and 
receiver are equipped with only one antenna. The cognitive 
Small Cell Base Station (SCBS) is powered by the smart grid 
with RTP and utilizes the idle spectrum licensed by the 
macrocell with the spectrum price. Assume that the transmit 
power is P, the channel gain between the transmitter and the 
receiver is G, the channel bandwidth is W. N0 represents the 
power spectral density of the Additive White Gaussian Noise 
(AWGN) . 

The transmission rate can be expressed 
as ( )2 0log 1R W GP WN= + . Define SE as the ratio of the 
transmission rate to the bandwidth, EE as the transmission 
rate per unit of power consumption, which are given 
respectively as 

 

2
0

log 1SE
R GP
W WN

η
⎛ ⎞

= = +⎜ ⎟
⎝ ⎠

                        (1) 

( ) 2
0

log 1EE
R GPW P
P WN

η
⎛ ⎞

= = +⎜ ⎟
⎝ ⎠

                  (2) 

Considering the smart grid and cognitive radio 
environment, the available energy and bandwidth are 
fluctuating, which lead to the change of the energy cost and 
bandwidth cost. We introduce the price factor in the 
economics, denote the electricity price and the spectrum price 
as α and β. Different from the real price, α and β are mainly 
based on the available energy quantity avaP and the idle 
spectrum quantity avaW , i.e. 1/ avaPα ∼ , 1 / avaWβ ∼ , which 
don’t equal to the real value of the resource only for resource 
utilization and comparable each other. The units of α and β 
are bits/s/W and bits/s/Hz respectively. 

Therefore, define the economic EE as the transmission rate 
per unit of energy cost, which is as follows 
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η
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      (3) 

 
Define the economic SE as the transmission rate per unit of 

bandwidth cost, which is shown as  
 

( ) 2
0

1 log 1SP SE
SE

R GP
W WN

η
η β

β β
⎛ ⎞

= = + =⎜ ⎟⋅ ⎝ ⎠
         (4) 

 
 According to (3), under a fixed bandwidth, the lower 

electricity price leads to the higher economic EE. With the 
more bandwidth consumption, the economic EE achieves 
improvement quickly, but the economic SE also reduces 
quickly as shown in Fig.1 (a). While the economic SE with 
the smaller spectrum price decreases slower than that with 
higher spectrum price. Similarly, the electricity price and the 
energy consumption have same effect as shown in Fig.1 (b). 
Therefore, the quantity or prices of two resources have more 
influence on adjusting the economic EE and the economic 
SE.  

Based on EP
EEη  and SP

SEη , the economic EE-SE relation can 
be written as 

 

( ) 02 1
SP
SE

SP
EP SP SE
EE SE

GW
P Nβ η

β ηβη η
α α ⋅

⋅ ⋅⋅⎛ ⎞= =⎜ ⎟⋅⎝ ⎠ ⋅ −
               (5) 

 
Now consider the economic EE-SE relation (5), we have 
 

( )0/ ln 2 0
0

SP
EP SE
EE SP

SE

G Nβ α η
η

η
⎧ →⎪→ ⎨

→ +∞⎪⎩
 

 
The above expression is similar to the conventional EE-SE 

relation in [1], but the price factors appear when 0SP
SEη → . 

The limit and behavior of economic EE performance for a 
cognitive heterogeneous system can be predicted. For 
example, a minimum economic EE is guaranteed for the case 
of low economic SE, which can be adjusted through the 
electricity price α and the spectrum price β. When 
considering the circuit power as the important part of power 
consumption in the SCBS, the monotonic relation of the 
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economic EE-SE tradeoff may be broken, which will be 
considered for future. 
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Fig.1 (a) The economic EE and SE v.s. the bandwidth 
consumption; (b) The economic SE and EE v.s. the energy 
consumption 
 

III. EE-SE TRADEOFF AND A NEW TRADEOFF METRIC  
In order to maximize EE and SE simultaneously, the 

multi-objective optimization is always introduced, which is 
as follows: 

 
{ }max ,EE SEP
η η                                  (6) 

 
The scalarization method is often applied to solve it by 

combining its multiple objectives into a single-objective 
scalar function. It is important to make all object functions 
comparable, but the unit for EE is bits/Joule while that for SE 
is bits/s/Hz. 

Considering the proposed economic EE and SE with the 
price factor of economics, we introduce a new EE-SE 
tradeoff metric called economic resource efficiency (ERE), 
which is defined as 

 
( )1EP SP

ERE EE SEξ γη γ η= + −                          (7) 
 

where γ [0, 1], is a weigh∈ t factor to control the balance of 
economic EE and SE. Now we prove the following property, 

which can reveal the relation between this new economic 
EE-SE tradeoff and the original EE-SE tradeoff. 

Property I: Economic resource efficiency is capable of 
exploiting the tradeoff between EE and SE, with the weight 
factor γ, the electricity price α and the spectrum price β. 

Proof: Firstly, substitute (3) and (4) into (7), we have 
 

( )

( )

1

1

ERE

EP
EE

R R
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P
W

ξ γ γ
α β

αη γ γ
β

= + −
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                     (8) 

 
( )Pα ⋅ and ( )Wβ ⋅ are comparable according to the 

definitions of price factors, so the economic EE and SE can 
be integrated in the metric. Meanwhile γ acts as the weight 
factor to control the balance of economic EE and economic 
SE. Then, (7) can be transformed to EE-SE tradeoff based on 
(3) and (4) as follows 

 

( )1 SEEE
ERE

ηη
ξ γ γ

α β
= + −                         (9) 

 
The price factors α and β act as cost normalizer for EE and 

SE. Different from the conventional metric design, where EE 
or SE has limitation in efficient use of energy and spectrum 
resources, there the new economic resource efficiency can 
optimize both EE and SE through the adjustment of price 
factor α and β.                                                                     □ 

Furthermore, ERE optimize EE when γ = 1 but optimize 
SE when γ =0. On the other hand, from (9), when the idle 
bandwidth quantity increase, which means that the 
decreasing bandwidth cost lead to increasing spectrum 
consumption, ERE will emphasis more on SE to increase 
ERE. For this case, if ERE emphasize more on EE, the SCBS 
will occupy more bandwidth to maximize the EE as 
demonstrated in Fig.1 (a), which lower the bandwidth 
resource utilization. When the available energy quantity 
increases, ERE will emphasize more on EE with similar 
analysis.       

Thus, SCBS can choose the spectrum quantity and the 
energy quantity to maximize its tradeoff between EE and SE 
based on the spectrum price and the electricity price. The 
multi-objective optimization problem (6) can be transformed 
to the following problem 

 

( )
,

max 1 SEEE

P W

ηη
γ γ

α β
+ −                        (10) 

 

IV. THE RESOURCE ALLOCATION SOLUTION OF OFDM 
SYSTEM 

Consider an OFDM based point and point communication 
system, the small cell share the spectrum licensed by the 
macrocell. Assume that the small cell has perfect knowledge 
of channel state information between the small cell’s 
transmitter and the user’s receiver. We mainly focus on the 
resource allocation solution, so the interference between the 
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small cell and the macrocell is not considered. The 
transmission rate of the user can be multiple times higher 
than that of one subcarrier. For simplify, the total bandwidth 
consumption can be denoted as totW , which is equally 
divided into a certain amount of subcarriers, each with a 
bandwidth of oW . Considering the idle spectrum quantity 

avaW , denote the number of available subcarriers as 
/ava oN W W= , which generally is an integer for practice. In 

this case, denote the achievable upper transmission rate as r , 
that is 

 

2
1 0

log 1
N

n n
n o

n o

G P
r W

W N
ρ

=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑                    (11)  

 
where nP is the power allocated to the nth subcarrier. nG is 
the channel power gain on subcarrier . nρ  can be either 1 or 
0 informing whether the subcarrier n is occupied by the user. 

Based on the definition (7) of economic resource 
efficiency, the economic resource efficiency of the OFDM 
system can be expressed as 
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where 
1

N

tot n n
n

P Pρ
=

= ∑  is the total energy consumption for the 

small cell. To obtain the EE and SE adaptive tradeoff 
optimization model by maximizing the economic resource 
efficiency, we have the concerned problem in OFDM system 
as follows 
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{ }5 0,1 , 1, 2, ,nC n Nρ ∈ = "
                            

 

where C1 guarantees the minimal rate requirement of the user, 
C2 is the constraints on the transmission power consumption. 
C4 contains the constraints on the bandwidth consumption.  

For the problem formulation (13), it is a Mixed Integer 
Programming (MIP) problem, where the consumed quantity 
of subcarrier and energy are both uncertain, which are 
difficult to solve. The main difficulty of MIP lies in the 
integer constraint nρ  for subcarrier consumption quantity. 
Generally, if nρ  can be also allowed as fraction, it can be 
regarded as partly use of the subcarrier in time domain [14, 
15]. To obtain an optimal solution, an exhaustive search is 
needed for all the feasible combination of subcarrier and 
energy, which is different from [14, 15]. Firstly, the power is 
allocated under a certain given consumed subcarrier quantity; 
secondly, compare the ERE for each of the possible quantity 
of subcarrier consumption.  

Given any subcarrier assignment set ψ  with the given 
number of subcarriers /tot oM W W= , the concerned problem 
(13) is transformed to 
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min. . 1s t C r R≥                                                    
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C P P P
ψ∈

= ≤∑                            (14) 

3 0,nC P n ψ≥ ∈
                                          

4 tot o avaC W MW W= ≤
                                 

  
After the binary variables are given, the objective function 

(14) is also a nonlinear fractional programming about nP . We 
describe an ingenious optimal power allocation strategy 
based on the Dinkelbach algorithm [16]. For a given 
subcarrier consumption quantity, denote  

( )1 2, , , MP P P= …p  for the set ψ of nP . For later 

convenience of analysis, denote 
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Denote ( , ) ( ) ( )F f gμ μ= − ⋅p p p , where μ is a positive 

parameter factor. Based on the optimization problem (14), a 
new optimization problem is formulated as follows 

 

max ( , )F μ
p

p  

. . 1 ~ 4 in (14).s t C C                       (15) 
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According to the theorem given in [16], it is easy to prove 
that, by realizing ( ) 0F μ = , the optimization problem (15) is 
equivalent to (14). Denote S is the definitional domain of p in 
(14) and (15). The typical Dinkelbach_type algorithm is 
described as follows 

 

Algorithm 1: Dinkelbach_type Algorithm 

Step 1. Take p0∈S, compute 1 0 0max ( ) ( )f gμ = p p  and let 
l:=1; 

Step 2. Determine { }{ }: arg min max ( ) ( )l S lf gμ∈= −pp p p ; 

Step 3. If ( ) 0lF μ =  
              Then pl is an optimal solution of (14) with value lμ  

and Stop; 
           Else GoTo Step 4; 
Step 4. Let 1 : max ( ) ( )l l lf gμ + = p p ; Let l := l+1, and GoTo 

Step 2. 
 
 

The key of the above algorithm is to obtain the power 
allocation pl in step 2, so the problem is converted into how to 
find the optimal solution of subproblem (15) under the 
given μ . The barrier method [17] can be employed to solve it, 
where the objective problem is converted into a sequence of 
unconstrained minimization problems. The barrier function 
of (15) is 
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    (16) 

 The optimal solution of (15) can be approximated by 
solving the following unconstrained minimization problem 
[17] 
 

min ( ) ( , ) ( )v vFφ μ ϕ= − +p p p               (17) 
 

where v>0, which decides the accuracy of the approximation. 
Particularly, each unconstrained minimization problem (17) 
with the given v can be solved by Newton method. The 
approximation becomes more and more accurate as v 
increases. Denote the Hessian matrix and the gradient of 

( )vχ p  respectively as follows 
 

2 ( )vH χ= ∇ p  
( )vg χ= ∇ p  

 
Further to reduce the computational difficulty of the 

Hessian matrix, the BFGS algorithm based on the Armijo 
search can be applied to solve the unconstrained 
minimization problem. BFGS correction for Hessian matrix 
approximation has faster convergence and superlinear 
convergence rate. The update rule of approximate matrix is 

relatively simple, which usually adopts a matrix with rank 1 
or 2. The efficient joint of the barrier method and the BFGS 
algorithm is denoted as B_BFGS algorithm. The B_BFGS 
algorithm is described in Algorithm 2.  
 

 

Algorithm 2: The B_BFGS algorithm 

0. The barrier method part: 
1. Initialization 
2.      Find feasible point p0, v := v(0) > 0, tolerance є > 0, ρ > 1 
3. Outer loop 
4.      Centering step: compute p*(v) derived by problem (17) 
5.      The BFGS algorithm part: 
6.      Initialization  
7.         Starting point p0, (0,1)δ ∈ , (0,0.5)σ ∈ , A0=H(p0),  
8.         termination error value 0 1ε≤ ≤ , : 0j =  
9.      Inner loop 
10.         Compute gj, quit if j

g ε≤ , output pj; 

11.         else compute j jA d g= − , get jd ; 
12.                Denote minimum nonnegative integer mj meet 
13.                ( ) ( ) T

j j j

m m
v j v jd g dχ δ χ σδ+ ≤ +p p , 

14.                Denote jm
ja δ= , 1j j j ja d+ = +p p ; 

15.                Compute Aj+1 by (18), : 1j j= + ; 
16.    Update: p *(v) = pj. 
17.    Stopping criterion: (M+ 3)/v < є. 
18.    Increase: v := ρv 

 

During the iteration, assume offset sj=pj+1-pj, gradient 
difference yj=gj+1-gj, Hessian matrix can be approximated by 
the symmetric positive definite matrix as 
 

1

, 0,

, 0

T
j j j

T T
j j j j j j j T

j j jT T
j j j j j

A y s
A A s s A y y

A y s
s A s y s

+

⎧ ≤
⎪

= ⎨
− + >⎪

⎩

               (18) 

 
 

The optimal solution to (13) can be obtained by applying 
the Dinkelbach_type algorithm and barrier method to every 
feasible subcarrier quantity and then choose the one with the 
maximum ERE. In addition, the complexity depends on the 
number of optimizing variables. 

 

V. NUMERICAL RESULTS 
 In this section, we firstly demonstrate the effectiveness of 

ERE in a simple scenario. Consider a static channel gain G = 
1, the transmit power constraint is assumed to be 2W. The 
AWGN is with zero mean and unit variance. These 
simulation parameters are chosen to demonstrate the 
effectiveness of ERE for simplicity, which can be modified 
easily to other values for different scenarios.  

Fig. 2 shows the impact of γ to the ERE, the economic EE 
and SE with W=1Hz. Under the optimal transmit power and 
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bandwidth, the economic EE increases while the economic 
SE decreases with increasing γ. This is because increasing γ 
leads more weight putting on EE and keeping ERE over a 
certain level, until γ=1, ERE reaches maximization again. 
The ERE is always above 1.28, which is about 85% of the 
upper value.  
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Fig. 2 The ERE, economic EE and SE under the impact of γ 

 
The interaction of the three lines with γ=0.5 under the 

impact of spectrum quantity is shown in Fig. 3. The economic 
EE increases while the economic SE decreases with the 
increasing bandwidth consumption, but the ERE changes less. 
That’s because with increasing idle bandwidth resource, the 
decreasing spectrum price makes more bandwidth be utilized 
and slows down the decreasing SE, meanwhile lead to the 
decreasing energy consumption and the increasing economic 
EE. The influence analysis of energy quantity to the three 
lines is similar to the spectrum quantity. 
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Fig. 3 The ERE, economic EE and SE under the impact of 
spectrum 
 

Then for the OFDM system scenario, assume that the BS’s 
maximum transmission power is 1.25W with one user. There 
is a certain available bandwidth, which is divided into OFDM 
subcarriers. The channel gain is modeled as independent, 
identically distributed Rayleigh random variables with an 
average of 0 dB. Suppose the noise power is 10-13W, Rmin = 
6Mbits/s, γ=0.5.  

Fig.4 depicts the energy consumption versus the idle 
spectrum quantity with the OFDM system. Under a certain 
available energy quantity, the curve of the energy 

consumption decreases with the increasing idle spectrum 
quantity. More the idle spectrum quantity means that more 
the spectrum can be used to increase the transmission 
capacity, which is adjusted by the lower spectrum price. So 
the effect of the price adjustment can be realized, and less 
energy is used which saves the energy. By comparing the two 
curves with different energy quantity, we can see that more 
energy is used for the higher energy quantity under the same 
spectrum quantity. Higher energy quantity means lower 
energy price, which will balance the energy consumption and 
spectrum consumption. 

Similarly, Fig.5 depicts the spectrum consumption versus 
the available energy quantity with the OFDM system. Under 
a certain idle spectrum quantity, the curve of the spectrum 
consumption decreases with the increasing available energy 
quantity. By comparing the two curves with different idle 
spectrum quantity, we can see that more spectrums are used 
for the higher spectrum quantity under the same energy 
quantity. Higher spectrum quantity means lower spectrum 
price, which will balance the energy consumption and 
spectrum consumption. 
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Fig. 4 The energy consumption versus the idle spectrum 
quantity 
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Fig. 5 The spectrum consumption versus the achievable 
energy quantity 
 

We also verify the achievable maximum ERE versus the 
available energy quantity for the different idle spectrum 
quantity. In Fig. 6, when the available energy quantity Pava is 
less at the beginning, the ERE curve increases quickly with 
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the increasing Pava. But when Pava is comparably high, there 
has been sufficient energy with lower energy price, more 
energy will be consumed, so that the ERE curve decreases 
gradually. The turning point of ERE curve is about Pava =3W 
for Wava = 8Mbits/s, and Pava =4W for Wava = 4Mbits/s. But 
the ERE of Wava = 8Mbits/s is higher than that of Wava = 
4Mbits/s, for the Wava = 8Mbits/s solution can reach the 
system optimization easily with the adjustment of available 
energy and idle spectrum among two resources. That is 
because the higher available spectrum quantity needs less the 
energy consumption, and the effect of the price adjustment 
can be realized easily, which results in the higher achievable 
maximum ERE. It is very important for green cellular 
networks, as we can save much energy by supplying the idle 
spectrum properly.  
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Fig. 6 The achievable maximum ERE versus available 
energy quantity 

 

VI. CONCLUSION  
This paper introduces two new definitions of economic EE 

and economic SE, which are based on the resource cost 
related to the available energy quantity and the idle spectrum 
quantity. Different from the classical methods, the ERE is 
built to utilize the energy and bandwidth efficiently under the 
smart grid and cognitive environment. Then in the OFDM 
system, the ERE optimization problem is formed and solved 
effectively. Simulation results show that, through adjusting 
consumed energy and occupied bandwidth, the ERE can 
realize the tradeoff between EE and SE based on economic 
cost according to respective resource prices. 
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