
 

 
Abstract—The nurse scheduling problem (NSP) is multi-

criteria decision problem concerned with allocation of shift 
schedules to available nurses over a planning horizon of one 
week to one month. Developing interactive, multi-objective, 
and fast optimization approaches for solving the NSP is 
imperative. The NSP has posed continued challenges to 
decision makers in healthcare organizations. This paper 
presents a fuzzy simulated metamorphosis algorithm (FSM), 
inspired by biological metamorphosis evolution. The algorithm 
mimics the metamorphosis process by going through three 
phases, namely, initialization, growth, and maturation. 
Initialization randomly generates a single candidate solution 
using a guided constructive heuristic. Subsequently, the 
algorithm goes through growth and maturation loops, till 
termination criteria are satisfied. Computational results based 
on benchmark problems in the literature demonstrate that, 
compared to related metaheuristic algorithms, FSM is more 
efficient and effective, producing better solutions within 
reasonable computation times. 
 

Index Terms— Simulated metamorphosis, evolution, multi-
criteria decision methods, optimization, algorithm, 
metaheuristics 
 

I. INTRODUCTION 

HE most desired practical objective in nurse scheduling 
is to produce high quality work schedules, so that (i) 

individual nurse preferences are satisfied and workload is 
balanced, (ii) patients are satisfied with the quality of 
service, and (iii) management goals are satisfied. Since 
these desires are often conflicting, imprecise, and uncertain 
in a non-stochastic sense, decision making is difficult. This 
situation is commonplace in healthcare organizations [1][2]. 

In a fuzzy environment, addressing conflicting multi-
criteria decision problems requires interactive tools that are 
fast, flexible, and easily adaptable to specific problem 
situations [3]. Decision makers often desire to use judicious 
approaches that can find a cautious tradeoff between the 
many goals, which is a common scenario in real world 
problems [4][5]. Addressing ambiguity, imprecision, and  
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uncertainties of the desired goals is highly desirable in 
practice [5]. For instance, in a hospital setting, where nurses 
are often allowed to express their preferences on shift 
schedules, the decision maker has to incorporate the 
imprecision in preferences and management goals and 
choices. To achieve shift fairness and equity among the 
nursing staff, it is important to balance workload 
assignment. Patient preferences and expectations have to be 
considered as well. Though imprecise and conflicting, these 
factors have to be considered when constructing work 
schedules [1][6]. 

In view of the above highlighted issues for interactive 
fuzzy multi-objective optimization approaches, this paper 
presents a novel fuzzy simulated metamorphosis algorithm, 
inspired by the biological concepts of metamorphosis 
evolution. The algorithm is motivated by the need for 
interactive, fuzzy multi-criteria, and fast optimization 
approaches to solving problems with fuzzy conflicting 
goals, preferences, and constraints.  In this connection, the 
specific objectives are as follows: 

 
(1) To present the basic concepts of the biological 

metamorphosis evolution process; 
(2) To derive from metamorphosis, an interactive multi-

criteria fuzzy evolutionary algorithm; and, 
(3) To apply the algorithm to typical nurse scheduling 

problems, demonstrating its effectiveness. 
 
The rest of the paper is organized as follows. The next 

section presents the nurse scheduling problem and the basic 
metamorphosis algorithm. Section III proposes a fuzzy 
simulated metamorphosis algorithm. Section IV presents a 
fuzzy simulated metamorphosis for the nurse scheduling 
problem. Computational analysis is provided in Section V. 
Section VI concludes the paper. 

II. PRELIMINARIES 

This section provides an overview of the nurse 
scheduling problem, and introduces the concepts of 
biological metamorphosis. 

A. The Nurse Scheduling Problem 

The NSP is a hard optimization problem that involves 
assignment of different types of shifts and off days to nurses 
over a period of up to one month[1][9]. The decision maker 
considers a number of conflicting objectives, choices, and 
preferences associated with the healthcare organization and 
individual nurses [10][11]. In practices, contractual work 
agreements govern the number of assignable shifts and off 
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days per week [12]. Imprecise personal preferences should 
be satisfied as much as possible. Typically nurses are 
entitled to day shift d, night shift e, and late night shift N, 
with holidays or days-off O [12] [13] [14]. Table I lists and 
describes common shift types and their time allocations. 

 
TABLE I 

SHIFTS DESCRIPTIONS 
Shift Shift Description Time allocation 
1 D: Day shift  0800 - 1600 hrs 
2 E: night shift  1600 - 2400 hrs 
3 N: late night shift  0000 - 0800 hrs  
4 O: off days as nurse preferences  

 
The primary aim is to search for a schedule that satisfies a 

given set of hard constraints while minimizing a specific 
cost function [10][12]. However, in practice, individual 
nurse preferences, which are often imprecise, should be 
satisfied to the highest degree possible; the higher the 
degree of satisfaction, the higher the schedule quality. This 
ensures not only healthcare service quality, but also 
satisfactory healthcare work environment (job satisfaction). 

 
TABLE II 

TYPICAL CONSTRAINTS TYPES FOR THE NSP 
Constraints Description of the constraint 

Sequence A1: Shift sequences n-d, e-n, and e-d are not permissible 
A2: Minimum rest time between night shift n  
A3: Maximum and minimum number of working hours 

Schedule  B1: Fair or equal total workload assignment 
B2: Interval between night shifts should ≥ 1 week 
B3: Fair number of requested days-off or holiday assigned 

Roster C6: Shift coverage requirements to fulfil service quality 
C2: Tutorship, where a trainer has to work with a trainee  
C3: Congeniality, where workmates are not compatible 

 
In this study, we classify constraints into sequence, 

schedule, and roster constraints as listed in Table II. A 
sequence constraint pertains to the successive order of shifts 
in an individual nurse schedule or shift pattern. A schedule 
constraint relates to the restrictions on the complete nurse 
schedule covering the planning period, based on criteria 
such as workload and number of night shifts. On the other 
hand, a roster constraint controls the combination of nurse 
schedules based on criteria such as shift coverage and 
congeniality. 

B. Metamorphosis Evolution 

A significant number of heuristic optimization algorithms 
are nature inspired [16]. Metamorphosis is an evolutionary 
process common in insects such as butterflies [16] [17]. As 
illustrated in Fig. 1, the process begins with an egg that 

hatches into an instar larva (instar).  Subsequently, the first 
instar transforms into several instar larvae, then into a pupa, 
and finally into the adult insect [13]. The process is 
uniquely characterized with radical evolution and hormone 
controlled growth and maturation. 

When an insect grows and develops, it must periodically 
shed its rigid exoskeleton in a process called molting. The 
insect grows a new loose exoskeleton that provides the 
insect with room for more growth [17]. The insect 
transforms in body structure as it molts from a juvenile to an 
adult form, a process called metamorphosis. 

The concept of metamorphosis refers to the change of 
physical form, structure, or substance; a marked and more or 
less abrupt developmental change in the form or structure of 
an animal (such as a butterfly or a frog) occurring 
subsequent to hatching or birth [13]. A species changes 
body shape and structure at a particular point in its life 
cycle, such as when a tadpole turns into a frog. Sometimes, 
in locusts for example, the juvenile form is quite similar to 
the adult one. In others, they are radically different, and 
unrecognizable as the same species. The different forms 
may even entail a completely new lifestyle or habitat, such 
as when a ground-bound, leaf-eating caterpillar turns into a 
long distance flying, nectar-eating butterfly. 

Insect molting and development is controlled by several 
hormones [13]. The hormones trigger the insect to shed its 
exoskeleton and, at the same time, grow from smaller 
juvenile forms (e.g., a young caterpillar) to larger adult 
forms (e.g., a winged moth). The hormone that causes an 
insect to molt is called ecdysone. The hormone, in 
combination with another, called juvenile hormone, also 
determines whether the insect will undergo metamorphosis. 

III. FUZZY SIMULATED METAMORPHOSIS 

Fuzzy Simulated Metamorphosis (FSM) is a development 
from the basic simulated metamorphosis (SM) evolutionary 
algorithm originally developed in [18], based on natural 
biological metamorphosis. FSM is motivated by several 
fuzzy multi-criteria decision problems in the operations 
research and operations management community, such as 
vehicle routing problems [7], nurse scheduling [3][2][6], 
and task assignment [8]. Such fuzzy decision problems are 
associated with conflicting imprecise goals, and the need for 
interactive decision support approaches that can incorporate 
the choices, intuitions and expert judgments of the decision 
maker [1]. As a fuzzy multi-criteria heuristic approach, 
FSM seeks to bridge this gap. 

There are three basic phases in the simulated 
metamorphosis algorithm: initialization, growth, and 
maturation. Each of these phases has specific operators. Fig. 
2 shows an outline of the simulated metamorphosis 
algorithm. The components of each phase are categorized as 
follows: 

Initialization:   Step 1 
Growth Phase:   Step 2, 3, 4, 5 
Maturation Phase: Steps 6, 7, 8 

A. Initialization 

In the initialization stage, an initial solution is created as a 
seed for the evolutionary algorithm. In our approach, we use 
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Fig. 1.  Metamorphosis evolution cycle. 
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a problem specific heuristic that is guided by hard 
constraints of the problem. This ensures generation of a 
feasible initial solution. Alternatively, a decision maker can 
enter a user-generated solution as a seed. The initial 
candidate solution st (t = 1,…,T) consists of constituent 
elements ei (i = 1,…,I), where I is the constituent number of 
elements in the candidate solution. 

Following the creation phase, the algorithm goes into a 
loop for a maximum of T iterations or generations. 

B. Growth 

The growth phase comprises the evaluation, 
transformation, and the regeneration operators. 
1) Evaluation 

The choice of the evaluation function is very crucial to 
the success of evaluation operator and the overall algorithm. 
First, the evaluation function should ensure that it measures 
the relevant quality of the candidate solution. Second, the 
function should capture the actual problem characteristics, 
particularly the imprecise, conflicting and multi-objective 
nature of the goals and constraints. Third, the fitness 
function should be easy to evaluate and compute. 

The evaluation function Ft, at iteration t, should be a 
normalized function obtained from its constituent 
normalized functions denoted by µh (h = 1,…,n), where n is 
the number of constituent objective functions.  

In this approach, we use fuzzy multi-factor evaluation 
method, that is,  

 
( ) ( )t t h h t

h

F s w s                 (1) 

 
where, st is the current solution at iteration t; and wh 

denotes the weight of the function µh. The use of the max-
min operator is avoided so as to prevent possible loss of 
vital information. 
2) Transformation 

The growth mechanism is achieved through selection and 
transformation operators. Selection determines whether a 
constituent element ei of the candidate solution st should be 
retained for the next iteration, or selected for transformation 
operation. The goodness or fitness ηi of element ei (i = 
1,…,I) is compared with probability pt∊[0,1], generated at 
each iteration t. That is, if ηi ≤ pt, then ei is transformed, 
otherwise, it will survive into the next iteration. Deriving 
from the biological metamorphosis, the magnitude of pt 
should decrease over time to guarantee convergence. From 
our preliminary empirical computations, pt should follow a 
decay function of the form, 

 

0
at T

tp p e                  (2) 

 
where, p0∊[0,1] is a randomly generated number; T is the 

maximum number of iterations; a is an adjustment factor. 
It follows that the higher the goodness, the higher the 

likelihood of survival in the current solution. Therefore, 
elements with low goodness are subjected to growth. The 
magnitude of pt controls the growth rate, which emulates the 
inhibition or juvenile hormone. 

To avoid loss of performing elements, new elements are 

compared with the rejected ones, keeping the better ones. A 
pre-determined number of rejected elements are kept in the 
reject list Q for future use in the regeneration stage. 

The regeneration operator has a repair mechanism that 
considers the feasibility of the candidate solution. All 
infeasible elements are repaired using problem domain 
specific heuristics, developed from problem constraints. 
Elements in Q are used as food for enhancing the repair 
mechanism. 

After regeneration, the candidate solution is tested for 
readiness for transition to the maturation phase. This is 
controlled by the dissatisfaction level (juvenile hormone) mt 
at iteration t, represented by the expression, 

 

1 21 ...t nm                      (3) 

 
Here, µ1,…,µn, represent the satisfaction level of the 

respective objective functions; “˄” is the min operator. This 
implies that the growth phase repeats until a pre-defined 
acceptable dissatisfaction m0 is reached. However, if there is 
no significant change in mt after a pre-defined number of 
trials, then the algorithm proceeds to the maturation phase. 

C. Maturation 

The maturation phase is a loop consisting of 
intensification and post-processing operators. The aim is to 
bring to maturity the candidate solution, so as to obtain the 
best solution. 
1) Intensification 

The aim of the intensification operator is to ensure 
sufficient search of an improved solution in the 
neighborhood of the current solution. This helps to improve 
the current solution further. Howbeit, at this stage, the 
juvenile hormone has ceased to control or balance the 
growth of the solution according to the constituent fitness 
functions. 
2) Post-processing 

The post-processing operator is user-guided; it allows the 
user to interactively make expert changes to the candidate 
solution, and to re-run the intensification operator. As such, 
the termination of the maturation phase is user determined. 
This also ensures that expert knowledge and intuition are 
incorporated into the solution procedure. This enhances the 
interactive search power of the algorithm. 

IV. FUZZY SIMULATED METAMORPHOSIS FOR NURSE 

SCHEDULING 

In this section, we present an application of simulated 
metamorphosis for nurse scheduling in a fuzzy environment 
with multiple objectives. 

A. FSM Encoding Scheme 

To enhance the FSM performance, a unique coding 
scheme is proposed. As an illustration, Fig. 3 presents a 
typical scheduling problem with 8 nurses to be scheduled 
into 3 types of shifts, namely day (D), evening (E), and 
night (N), including the day-off shift (O). The coding 
scheme covers a planning period of 7 days. In this coding 
scheme, the nurses are allocated one of the four shifts in 
each day, subject to specific shift sequence constraints, 
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schedule constraints and roster constraints, as outlined in the 
previous section. 

B. Initialization 

The initialization algorithm is designed to generate a 
good initial solution, ensuring that all sequence constraints 
are not violated. Fig. 4 presents the enhanced initialization 
algorithm. The algorithm generates an initial shift s1 at 
random. Successively, the algorithm generates shift sk+1, and 
tests whether or not the sequence formed by the adding a 
shift sk+1 is not a subset of the predetermined set of 
forbidden shifts F. An example of a forbidden set is F = {N-
D, N-E, E-D}. In addition, the workload of the current 
sequence [s1s2…sk+1] should not exceed the maximum 

allowable workload wmax. 

C. Growth Phase 

1) Evaluation 
The goodness, fitness, or quality of a solution is a 

function of how much it satisfies soft constraints. As such, 
fitness is a function of the weighted sum of the satisfaction 
of soft constraints. Thus, each soft constraint is represented 
as a normalized fuzzy membership function in [0,1]. In this 
study, two types of membership functions are used: (a) 
triangular functions, and (b) interval-valued functions, as 
shown in Fig. 5.  
 

 
 
Fig. 5.  Linear membership functions 

 
In (a), the satisfaction level is represented by a fuzzy 

number Am,a, where m denotes the center of the fuzzy 
parameter with width a. The corresponding membership 
function is, 

 

| |
1 If 

( )

0 If otherwise

A

m x
m a x m a

ax

     
 



    (4) 

 
In (b), the satisfaction level is represented by a decreasing 

linear function where [0,a] is the most desirable range, and 
b is the maximum acceptable. Therefore, the corresponding 
function is,  

 
1 If 

( ) ( ) ( ) If 

0 If otherwise
B

x a

x b x b a a x b


    



       (5) 

 
Membership Function 1 - Workload Variation: 
For fair workload assignment, workload hi for each nurse 

i should be as close as possible to the mean workload w. 
Therefore, the workload variation xi=hi-w should be 
minimized. Assuming a symmetrical triangular membership 
function, we obtain, 

 

1 ( )A ix                   (6) 

 
where, xi is the workload variation for nurse i from mean 

m of the fuzzy parameter, with width a. 
 
Membership Function 2 - Allocated Days Off: 
This membership function measures the variation of the 

allocated days off from the mean. We assume a symmetrical 
triangular membership function as follows; 
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Fig. 2.  Fuzzy Simulated Metamorphosis Procedure 

 Days    

Nurse Mon Tue Wed Thu Fri Sat Sun d e n 
Nurse 1 D D D D D O O 5 0 0 
Nurse 2 O D D D D D D 6 0 0 
Nurse 3 D O O N N N N 1 4 0 
Nurse 4 O O O O E E E 0 3 0 
Nurse 5 E E E E O O O 0 4 0 
Nurse 6 N N N N N O O 0 0 5 
Nurse 7 O O E E E E E 0 5 0 
Nurse 8 E E O O E E E 0 5 0 
Nurse 9 N N N O O D D 2 0 3 

             D 2 2 2 2 2 2 2    
             E 2 2 2 2 2 2 2    
             N 2 2 2 2 2 2 2    

 
Fig. 3.  The FMS coding scheme 
 
 
  Algorithm 1. FSM Initialization Procedure 
 1.  Initialize, counter i = 1;  
 2.  Repeat  
 3. Initialize k = 1 
 4. Randomly generate an initial shift s1 
 4. Repeat 
 5.  Select shift sk+1 = rand (d, e, n, o) with a probability 
 6.  If sequence s = [sksk+1] ∊ Forbidden set F, Then  
 7.   Add shift sk+1 to shift pattern Pi with probability ps 
 8.      Else  Add shift sk+1 to shift pattern Pi 
 9.  End If  
 10.  If workload wi of sequence [s1s2…sk+1] ≥ wmax Then 
 11.   sk+1 = o 
 12.  End If 
 13.  Increment counter k = k+1 
 14. Until (Shift Pattern Pi is complete) 
 15. Increment counter i = i + 1 
 16.  Until (Required schedules, I, are generated) 
 17.  Return solution 

 
Fig. 4.  Enhanced FSM initialization algorithm 
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2 ( )A ix                   (7) 

where, xi is the actual variation of days off for nurse i 
from the mean m of the fuzzy parameter with width a. 

 
Membership Function 3 - Variation of Night Shifts: 
For shift fairness the variation xi of the number of night 

shifts (shifts e and n) allocated to each nurse i should be as 
close as possible to the mean allocation m. Assuming a 
symmetrical triangular membership, we obtain, 

 

3 ( )A ix                   (8) 

 
where, xi is the variation of number of nights shifts 

allocated to nurse i from mean m of the fuzzy parameter, 
with width a. 

 
Membership Function 4 – Congeniality: 
This membership function measures the compatibility 

(congeniality) of staff allocated similar shifts; the higher the 
congenialities, the higher the schedule quality. In practice, a 
decision maker sets limits to acceptable number of 
uncongenial shifts xi for each nurse i to reflect satisfaction 
level. Assuming interval-valued functions in Fig. 5 (b), the 
corresponding membership function is, 

 

4 ( )B ix                   (9) 

 
where, xi is the actual number of uncongenial allocations; 

a is the upper limit to the preferred uncongenial shifts; b is 
the maximum uncongenial shifts. 

 
Membership Function 5 - Forbidden Shift Sequences: 
The number of shifts in the forbidden set affects the 

quality of the schedule for each nurse. Let the number of 
forbidden sequences for each nurse i be xi.  The desirable 
goal is to reduce the forbidden shifts as much as possible. 
Therefore, this can be represented by a linear interval-
valued membership function as follows: 

 

5 ( )B ix                  (10) 

 
where, xi is the actual number of forbidden shift 

sequence; a and b are the fuzzy parameters of the function. 
 
Membership Function 6: Shift Variation: 
For each nurse i, a schedule with a continuous sequence 

or block of similar shifts is often more desirable than 
schedules with different types of shifts. For instance, shift 
sequence [D D D O O] with shift variation xi = 1 is more 
desirable than shift [D O D O D] with a variation xi = 4. 
Therefore, the situation can be represented by a linear 
interval-valued membership functions,  

 

6 ( )B ix                  (11) 

 
where, xi is the actual number of shift variation;  and a 

and b are the fuzzy parameters of the function. 
 
Membership Function 7 – Understaffing: 

High quality schedule minimize as much as possible the 
understaffing for each shift k. In practice, the level of 
understaffing xj = ∑uk in each day j should be within 
acceptable limits. This can be represented by a linear 
interval-valued membership function; 

 

7 ( )B jx                  (12) 

 
where, xj is the actual level of understaffing in day j, and 

a and b are the fuzzy parameters of the function. 
 
Membership Function 8 – Overstaffing: 
For high quality schedule, overstaffing ok for each shift k 

should be minimized as much as possible. In a practical 
setting, the level of overstaffing xj = ∑ok for all shifts in 
each day j should be within acceptable limits, which can be 
represented by a linear interval-valued membership as 
follows; 

 

8 ( )B jx                  (13) 

 
where, xj is the actual level of overstaffing in day j, and a 

and b are the fuzzy parameters of the function. 
 
The Overall Fitness Function:  
For each nurse i, schedule fitness is obtained from the 

weighted sum of the first four membership functions.  As 
such, the fitness for each shift pattern (or element) i is 
obtained according to the following expression; 

 
5

1

( )i z z i
z

w x i 


             (14) 

 
where, wz is the weight of each function µz, such that 

condition ∑wz = 1.0 is satisfied. 
Similarly, the fitness according to shift requirement and 

congeniality in each day j is given by, 
7

6

( )j z z j
z

w x j 


           (15) 

 
where, wz is the weight of each function µz, with ∑wz = 

1.0. 
 
The overall fitness of the candidate solution is given by 

the expression, 
 

1 2

1 1f
 
 
   

      
   

            (16) 

 
where, = ˄ ˄…˄ ; = ˄ 2 ˄˄ J; ω1 and 

ω2 are the weights associated with η and λ, respectively; and 
“˄” is the min operator. 

The weights wz, ω1 and ω2 offer the decision maker an 
opportunity to incorporate his/her choices reflecting expert 
opinion and preferences of the management and the nurses. 
This feature gives the SM algorithm an added advantage 
over other methods. 
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2) Transformation 
In NSP, elements are two-fold: one that represents 

horizontal shift patterns, denoted by ei, and another 
representing the vertical shift allocations for each day, 
denoted by ej. Fitness ηi and j of each element are 
probabilistically tested for transformation by comparing 
with a random number pt∊[0,1], generated at each iteration t. 
A dynamically decaying transformation probability limit pt 
= p0e

-t/T is used. Two transformation heuristics, column-wise 
heuristic and row-wise heuristic are used for improving the 
shift patterns. 

As outlined in Fig. 6, the column-wise heuristic searches 
for improved shift sequences and schedules in the 
neighborhood of the current schedule for each nurse. Again, 
the dynamic transformation probability pt controls the 
transformation process. 

Fig. 7 presents an outline of the row-wise transformation 
heuristic. The heuristic searches for improved roster 
structure in the neighborhood of the current schedule for 
each nurse. 
3) Regeneration 

Regeneration repairs infeasible elements using a 
mechanism similar to the initialization algorithm which 
incorporates hard constraints. Based on the juvenile 
hormone level mt at iteration t, the candidate solution is then 
tested for readiness for maturation,  

 

   1 2 1 21 ... ...t I Jm                  (17) 

 
The growth phase repeats until a pre-defined acceptable 

dissatisfaction m0 is reached. However, the algorithm 
proceeds to the maturation phase if there is no significant 
change ε in mt, with ε set in the order of 10-6. 

D. Maturation Phase 

Intensification ensures complete search of a near-optimal 
solution in the neighbourhood of the current solution. In the 
post-processing stage the user interactively makes expert 
changes to the candidate solution, and to execute 

intensification. Expert knowledge and intuition are coded in 
form of possible adjustments through weights w1,…,w4 and 
ω1, ω1. Illustrative computations are presented in the next 
section. 

E. Strengths of the FSM Algorithm 

The proposed SM algorithm has a number of advantages 
over related metaheuristics. Contrary to Simulated 
Annealing (SA) which makes purely random choices to 
decide the next move, SM employs intelligent selection 
operation to decide which changes to perform. Furthermore, 
SM takes advantage of multiple transformation operations 
on weak elements of the current solution, allowing for more 
distant changes between successive iterations. 

The SM algorithm, like Genetic Algorithm (GA), uses the 
mechanics of evolution as it progresses from one generation 
to the other. GA necessarily keeps a number of candidate 
solutions in each generation as parents, generating offspring 
by a crossover operator. On the contrary, SM simulates 
metamorphosis, evolving a single solution under hormonal 
control. In addition, domain specific heuristics are employed 
to regenerate and repair the emerging candidate solution, 
developing it into an improved and complete solution. In 
retrospect, SM reduces the computation time needed to 
maintain a large population of candidate solutions in GA. 

The selection process in the SM is quite different from 
GA and other related evolutionary algorithms. While GA 
uses probabilistic selection to retain a set of good solutions 
from a population of candidate solutions, SM selects and 
discards inferior elements of a candidate solution, according 
to the goodness of each element. This enhances the 
computational speed of the SM procedure. 

At the end of the growth phase, the SM algorithm goes 
through maturation phase where intensive search process is 
performed to refine the solution, and possibly obtain an 
improved final solution. The algorithm allows the decision 
maker to input his/her managerial choices to guide the 
search process. This interactive facility gives SM an added 
advantage over other heuristics. 

The proposed algorithm uses hormonal control to 
enhance and guide its global multi-objective optimization 
process. This significantly eliminates unnecessary search 
through regions with inferior solutions, hence, improving 
the search efficiency of the algorithm. In summary, the 
above mentioned advantages provide the SM algorithm 
enhanced convergence characteristics that enable the 
algorithm to perform fewer computations relative to other 
algorithms. 

V. COMPUTATIONAL ANALYSIS 

The proposed FSM algorithm was coded in JAVA and 
implemented on a 3.06 GHz speed processor, with a 4GB 
RAM. Computational experiments are presented. 

A. Computational Experiments 

To illustrate the effectiveness of the proposed FSM 
algorithm, three sets of problem cases were used for the 
experiments: (i) experiment 1, a preliminary experiment 
adapted from [2], (ii) experiment 2, an extension of problem 
case in experiment 1, (iii) experiment 3 comprising a set of 

 
Algorithm 1:  Column-wise transformation heuristic 
1.  Initialize iteration t = 1; 
2. While (t ≤ tmax) do 
3.  While (termination condition) do 
4.   With probability pc = min[1 – λ, pt]; 
5.   Randomly select c1 = cell with conflict; 
6.   Randomly select c2 = cell with conflict, but in same column; 
7.   Swap (c1, c2); 
8.     Select the best from neighbourhood; 
9.  End While 
10.  t = t + 1; 
11. End While 

 
Fig. 6.  Pseudo-code for column-wise transformation heuristic 
 

Algorithm 2:  Row-wise transformation heuristic 
1.  Initialize iteration t = 1; 
2. While (t ≤ tmax) do 
3.  While (termination condition) do 
4.   With probability pr = min[1 – λ, pt]; 

5.   Randomly select r1 = cell with conflict; 
6.   Randomly select r2 = cell with conflict, but in same row; 
7.   Swap (r1, r2); 
8.     Select the best from neighbourhood; 
9.  End While 
10.  t = t + 1; 
11. End While 

 
Fig. 7.  Pseudo-code for row-wise transformation heuristic 
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20 benchmark problem cases in the literature [14], and (iv) 
experiment 4 consisting of extensions from the benchmark 
problems in (iii). 

Three sets of problem cases were used for the 
experiments: (i) experiment 1, a preliminary experiment 
adapted from [2], (ii) experiment 2, an extension of problem 
case in experiment 1, (iii) experiment 3 comprising a set of 
20 benchmark problem cases in the literature [14], and (iv) 
experiment 4 consisting of extensions from the benchmark 
problems in (iii). Problem cases in experiment 3 were 
obtained from real life situations in healthcare 
organizations, as reported in [14]. Each experiment includes 
constraints on shift sequences, length of shift sequences, 
and length of work and days-off. The number of employees 
(or groups) for the problems ranges from 7 to 163, to be 
scheduled over 3 standard shifts; day, evening and night 
shifts. 

The termination criteria are controlled by two conditions: 
(i) the maximum number of iterations, set at Tm = 300, and 
(ii) the maximum number of iterations with no 
improvement, set at TI = 30. This implies that the algorithm 
terminates when either of the conditions is met. Generally, 
each experiment was executed 50 independent times. 

Computational results and discussions are presented in the 
next section. 

B. Results and Discussion 

1) Experiment 1 
The first experimental problem was adapted from [2]. In 

this problem, there are 15 nurses to be scheduled over a 
planning horizon of 30 days. Shift sequences N-D, E-N, and 
E-D are unsatisfactory. The daily requirements for shift D, 
E, and N are 11, 2 and 2, respectively. The day-off o and 
congeniality preferences were not considered. The initial 
schedule with this setup is shown in Fig. 8. The fitness 
values for individual nurses are very low; therefore, the 
schedule quality is unsatisfactory as can be seen from the 
low overall fitness. 

Fig. 9 shows the final optimal schedule obtained in the 
preliminary experiments. The overall fitness for the best 
solution is 1.00. This demonstrates that all the desires and 
preferences are satisfied and the solution is desirable to 
patients, staff and the management, according to their 
expectations.  

 
Table III compares the performance of FSM against basic 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Fitness ηi 

Nurse 1 E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E 0.31 
Nurse 2 D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D 0.33 
Nurse 3 D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D 0.33 
Nurse 4 E E E E D D D D D D D D D D D D D D D D D D D D D D D D D D 0.54 
Nurse 5 D D D D D D D D D D D D D D D D D D D D D E E E E E E E E E 0.66 
Nurse 6 N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N 0.49 
Nurse 7 D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D 0.33 
Nurse 8 D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D 0.50 
Nurse 9 N D D D D D D D D D D D D D D D D D D D D D D D D D D D D D 0.49 
Nurse 10 D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D 0.50 
Nurse 11 N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N 0.49 
Nurse 12 D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D 0.50 
Nurse 13 D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D 0.50 
Nurse 14 D D D D D D D D D D D D D D D D D D D D D D D D D D E E E E 0.57 
Nurse 15 E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E 0.31 
Fitness λj 0.3 0.7 0.7 0.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.7 0.7 0.7 0.7 0.7 0.3 0.3 0.3 0.3 0.33 

 
Fig. 8.  Initial nurse schedule for experiment 1 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Fitness ηi 
Nurse 1 E E D D D D D D D D D D D N N E E D D D D D D D D D D D N N 1.000 
Nurse 2 N E E D D D D D D D D D D D N N E E D D D D D D D D D D D N 1.000 
Nurse 3 N N E E D D D D D D D D D D D N N E E D D D D D D D D D D D 1.000 
Nurse 4 D N N E E D D D D D D D D D D D N N E E D D D D D D D D D D 1.000 
Nurse 5 D D N N E E D D D D D D D D D D D N N E E D D D D D D D D D 1.000 
Nurse 6 D D D N N E E D D D D D D D D D D D N N E E D D D D D D D D 1.000 
Nurse 7 D D D D N N E E D D D D D D D D D D D N N E E D D D D D D D 1.000 
Nurse 8 D D D D D N N E E D D D D D D D D D D D N N E E D D D D D D 1.000 
Nurse 9 D D D D D D N N E E D D D D D D D D D D D N N E E D D D D D 1.000 
Nurse 10 D D D D D D D N N E E D D D D D D D D D D D N N E E D D D D 1.000 
Nurse 11 D D D D D D D D N N E E D D D D D D D D D D D N N E E D D D 1.000 
Nurse 12 D D D D D D D D D N N E E D D D D D D D D D D D N N E E D D 1.000 
Nurse 13 D D D D D D D D D D N N E E D D D D D D D D D D D N N E E D 1.000 
Nurse 14 D D D D D D D D D D D N N E E D D D D D D D D D D D N N E E 1.000 
Nurse 15 E D D D D D D D D D D D N N E E D D D D D D D D D D D N N E 1.000 
Fitness λj 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.000 

 
Fig. 9.  Final nurse schedule for experiment 1 

TABLE III 
A COMPARISON OF FMS WITH OTHER ALGORITHMS 

Approach References Best Fitness Success Rate (%) CPU Time(s) Iterations 
Basic CGA Jan et al. (2000) 1.00 8.33 ** ** 
CGA Jan et al. (2000) 1.00 100 49.00 100 
FSM  1.00 100 32.40 40 
** value not provided     
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Cooperative Genetic Algorithm (basic CGA) and improved 
CGA algorithms reported in Jan et al. (2000). Out of 50 
independent runs, the success rate of FSM was 100%, which 
is comparable to 100% for CGA with 12 independent runs. 
In each successful run, the FSM algorithm was able to 
obtain the optimal solution in less than 40 iterations, 
compared to 100 iterations for CGA. The average 
computational time was 32.40 seconds. This indicates the 
superior computational efficiency of FSM compared to 
CGA.  
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Fig. 10.  A transcription of computational results for problem case 1 

 
To further demonstrate the performance of the FMS 

algorithm, a plot of the intermediate solutions arrived at 
during the algorithm execution is presented in Fig. 10. The 
overall fitness value f is plotted against number of iterations 
t. The fitness value increased from 0.33 at the initialization 
stage to 1.00 at the 40th iteration, which implies that the 
algorithm obtained the optimum solution at the 40th 

iteration, though the user intended the computation to run up 
to 300 iterations. 
2) Experiment 2 

This experimental problem is an extension of experiment 
1. Here, fuzzy multi-criteria evaluation, including day off 
and congeniality preferences, is fully utilized to determine 
the fitness of the candidate solution. The computational 
experiment consists of 15 nurses that are to be scheduled 
over a horizon of 30 days. 

Fig. 11 presents the initial schedule created using the 
enhanced initialization constructor. The daily shift 
requirements for shifts D, E, and N are 10, 2, and 2, 
respectively. Assume that, due to congeniality issues, nurse 
combinations (2,4) and (7,10) in any working shift are to be 
avoided as much as possible. The fitness values for each 
shift pattern are obtained using expression (11). Similarly, 
the fitness values for each day are obtained from (12). The 
maximum number of iterations Tm = 300. The overall fitness 
at the initialization stage is 0.27, which is very low. 

Fig. 12 shows the final nurse schedule obtained by the 
FSM algorithm. The solution shows a marked improvement 
in the fitness values of individual shift patterns. Also, there 
is a 100% satisfaction of the shift requirements in each day, 
which is a marked improvement from the initial solution. 
Consequently, the overall fitness value of the final schedule 
is 0.8197, which is a significant improvement from the 
initial schedule. 
3) Experiment 3 

In this experiment, computational results for 20 
benchmark problems are reported. For comparative analysis, 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Fitness ηi

Nurse 1 D D D D O O N N E E D D D D D D D D D N N E E O D D D D D D 0.45 
Nurse 2 N N N N N N N O O N N N N N N N N N N N N N N N N N N N N N 0.46 
Nurse 3 N E E D D D D O D D D D O O N N E E D D D D D D D D D D D N 0.62 
Nurse 4 N N N N O O N N N N N N N N N N N N N N N N N N N N N N N N 0.43 
Nurse 5 D D D D D D D D D D D D D D D D D O O D D D D D D D D D D D 0.71 
Nurse 6 D D D D D D D E D D D D D D O D D D D D D D D O O D D D D D 0.61 
Nurse 7 D D D D N N E E D D D D D D D D D D D D D D O D O N N E E D 0.50 
Nurse 8 D D D D D D D D D D D D D D D D D D D D D D O D D D D D D D 0.65 
Nurse 9 D D D D D D D D O O D D D D D D D D D D D D D D D D D D D D 0.68 
Nurse 10 D D D D D D D D D D D D D O D D D D D O D D D D D D D D D D 0.54 
Nurse 11 D D D D D D D D O O D D D D D D D D D D D D D D D D D D D D 0.71 
Nurse 12 D D D D D D D D D D D D D D O D D D D D D D D D D D D D D D 0.65 
Nurse 13 D D D D D D D D D D D D D D D D D O O D D D D D D D D D D D 0.71 
Nurse 14 D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D 0.57 
Nurse 15 E D D D D D D D D D D D D D D D D D D D D D D D D D D D E D 0.37 
Fitness λj 0.7 0.7 0.7 0.3 0.6 0.6 0.7 0.6 0.4 0.6 0.3 0.3 0.5 0.6 0.3 0.3 0.7 0.6 0.6 0.5 0.3 0.7 0.6 0.6 0.6 0.3 0.3 0.7 1.0 0.3 0.27 

 
Fig. 11.  Initial nurse schedule for experiment 2 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Fitness ηi 
Nurse 1 D D N N E E O D D D D D D D D O D D D D N N E E D D D D D D 0.77 
Nurse 2 D D D D D D D D D D D D N N E E D D D D D D D D D D D O N N 0.72 
Nurse 3 E D D D D D D D O D D N N E E D D D D D D D D D D O N N E E 0.70 
Nurse 4 D D D D N N E E D D D D D D D D D D D D D D D D O N N E E O 0.70 
Nurse 5 D N N E E D D D D D D O D D D N N E E D D D D D D D D D D D 0.82 
Nurse 6 E E O D D D D D D D D D D N N E E D D D D D D D D D O N N E 0.77 
Nurse 7 D D D D D D D D D N N E E O D D D D D O D D N N E E D D D D 0.75 
Nurse 8 O D D D D N N E E D D D D D D D D D N N E E D D D D D D O D 0.82 
Nurse 9 D D D D D D D N N E E D D D O D O D D D D N N E E D D D D D 0.79 
Nurse 10 N N E E D D D O D D D D D D D D N N E E O D D D D D D D D D 0.77 
Nurse 11 D O D N N E E D D D O D D D D D D N N E E D D D D D D D D D 0.79 
Nurse 12 D D D D O O N N E E D D D D D D D D D N N E E O D D D D D D 0.82 
Nurse 13 D D D D D D D D D O N N E E D D D O O D D D D D N N E E D D 0.78 
Nurse 14 D D D D D D D D N N E E D D D D D D D D D O O N N E E D D D 0.78 
Nurse 15 D D D D D D D D N N E E D D D D D D D D D O O N N E E D D D 0.76 
Fitness λj 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.88 

 
Fig. 12.  Final nurse schedule for experiment 2 
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the success rate and the computational time (CPU time) are 
taken into consideration. For each problem, 10 independent 
runs were executed using the FSM algorithm. The 
maximum number of iterations for each run was set at Tm = 
300.  

Table IV provides a summary of the comparative 
computational results, in terms of search success rate and 
average CPU time. FSM is compared with min-conflicts 
heuristic (MC) and MC with tabu search mechanism (MC-
T), as well as FSEA. It can be seen that FSM was able to 
find satisfactory solutions for all the problems, hence 100% 
mean success rate, even for large scale problems 15, 19 and 
20. The success rate of FSM is comparable to MC-T, but is 
much better than MC and FSEA. In terms of computational 
efficiency, FSM outperformed all the other algorithms, with 
a mean time 8.17 sec, compared to 95.70 sec for MC, 20.15 
for MC-T and 9.92 for FSEA. 

From these comparative analyses, it can be seen that FMS 
is capable of producing good feasible solutions satisfying 
patient expectations, healthcare staff preferences, and 
management choices. 
4) Further Experiments 

Further comparative experiments were done between 
FSM and a workforce scheduling commercial software 
called First Class Scheduler (FCS) [19]. Table V presents 
the comparative results of the experiments.  

It can be seen that the FSM algorithm outperforms FCS 
almost in all problem instances, even over large problems 
such as 7 and 18 which have the same shift requirements 
over all days and shifts. The symbol “1000 (?)” indicates the 
problem instances for which FCS could not obtain a 
solution within 1000 sec [14].  

FCS is known to be able to solve medium to large scale 
problems allowing interaction with the user [14][20]. 
However, the FSM algorithm outperformed FCS on medium 
to large scale problems. Therefore, FSM is more efficient 
and effective. 

VI. CONCLUSIONS 

Motivated by the biological metamorphosis process and 
the need to solve multi-objective optimization problems 
with conflicting and fuzzy goals and constraints, this 
research proposed a simulated metamorphosis algorithm, 

 
TABLE V. 

FURTHER COMPARISON BETWEEN FSM AND FIRST CLASS SCHEDULER (FCS) 
  CPU Time (s) 

Problem Groups FCS FSM 
1 9 0.9 0.09 
2 9 0.4 0.08 
3 17 1.9 0.14 
4 13 1.7 0.1 
5 11 3.5 0.33 
6 7 2 0.07 
7 29 16.1 3.16 
8 16 124 0.73 
9 47 >1000 (?) 2.14 
10 27 9.5 0.66 
11 30 367 7.12 
12 20 >1000 (?) 3.27 
13 24 >1000 (?) 1.2 
14 13 0.54 1.95 
15 64 >1000 (?) 33.12 
16 29 2.44 2.19 
17 33 >1000 5.54 
18 53 2.57 8.13 
19 120 >1000 (?) 62.2 
20 163 >1000 (?) 31.22 

Mean - >40.97 8.17 

TABLE IV 
COMPARISON BETWEEN FSM AND OTHER ALGORITHMS 

Problem Success Rate (%)  CPU Time (sec) 
 MC MC-T FSEA FSM  MC MC-T FSEA FSM 
1 100 100 100 100  4.77 0.07 0.1 0.09 
2 100 100 100 100  1.48 0.07 0.1 0.08 
3 100 100 100 100  69.36 0.42 0.18 0.14 
4 100 100 100 100  0.12 0.11 0.08 0.1 
5 100 100 100 100  15.78 0.43 0.31 0.33 
6 100 100 100 100  2.89 0.08 0.09 0.07 
7 100 100 100 100  62.51 52.79 4.38 3.16 
8 100 100 100 100  32.52 0.74 0.88 0.73 
9 50 100 100 100  84.17 15.96 4.87 2.14 
10 100 100 100 100  11.40 0.60 0.78 0.66 
11 10 100 100 100  254.82 13.15 10.3 7.12 
12 100 100 100 100  74.26 1.17 5.33 3.27 
13 100 100 100 100  68.32 0.87 2.34 1.2 
14 100 100 100 100  8.77 0.76 2.85 1.95 
15 15 100 80 100  331.11 159.04 46.34 33.12 
16 100 100 100 100  14.48 0.54 3.15 2.19 
17 100 100 100 100  54.79 2.16 7.59 5.54 
18 100 100 100 100  60.58 6.83 8.35 8.13 
19 70 100 100 100  577.96 75.83 72.62 62.2 
20 100 100 100 100  183.82 71.38 27.78 31.22 
Mean 87.25 100.00 99.00 100.00   95.70 20.15 9.92 8.17 
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based on the concepts of biological evolution in insects, 
including moths, butterflies, and beetles. The algorithm 
mimics the hormone controlled evolution process going 
through initialization, and then growth and maturation 
loops. 

The suggested methods offers a practical approach to 
optimizing multi-objective problems with fuzzy conflicting 
goals and constraints such as the nurse scheduling, 
homecare nurse scheduling, vehicle routing, job shop 
scheduling, and task assignment. Equipped with the facility 
to incorporate the user’s choices and wishes, the algorithm 
offers an interactive approach that can accommodate the 
decision maker’s expert intuition and experience, which is 
otherwise impossible with other optimization algorithms. 
The algorithm uses novel adaptive parameters that enhance 
guided intelligent transformation of the solution throughout 
the search process.  By using dynamic hormonal guidance 
and unique operators, the algorithm dynamically employs 
two successive iterative loops, working on a single 
candidate solution, with dynamic and adaptive balance 
between exploitation and exploration of the solution space. 
This makes the proposed metaheuristic is efficient and 
effective. 

Fuzzy Simulated Metamorphosis is an invaluable addition 
to the operations research and management community, 
specifically to researchers concerned with multi-objective 
global optimization. Deriving from the computational 
experimental, the application of the algorithm can be 
extended to hard problems such as task assignment, vehicle 
routing, homecare nurse scheduling, and job sequencing. 

Using the FSM algorithm, a weekly nurse schedule can 
be produced easily from a fuzzy multi-criteria view point. 
However, the practicing decision maker faces two 
challenges: (i) the allocation of patient visits to nurses 
during their shifts, in a homecare setting, and (ii) the 
allocation of daily care tasks to nurses during their shifts, in 
hospitals. 
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