
 

 
Abstract—A graphics processing unit (GPU) parallelization 

approach was implemented to improve the efficiency of 
nonlinear dynamic analysis. The GPU parallelization approach 
speeded up the computation of implicit time integration and 
reduced total calculation time. In addition, a parallel equations 
solver is introduced to solve the equation system. Numerical 
examples of reinforced concrete (RC) frames were used to 
investigate the parallel computing speedup of the GPU 
parallelization approach. An implementation of these RC frame 
models for fiber beam-column elements was presented. The 
parallel finite element program is developed to provide parallel 
execution on personal computer (PC) with different 
CUDA-capable GPUs. The different number of degrees of 
freedom from low to high was adopted in the numerical 
examples. Detailed tests on accuracy, runtime, and speedup are 
conducted on different GPUs. The nonlinear dynamic response 
using the GPU parallelization program was in good agreement 
with that obtained by ABAQUS. Numerical studies indicate 
that compared with original sequential approach, the GPU 
parallelization program achieves a 22 times speedups of the 
solving equation system and improves the overall efficiency of 
time integration by up to 94%. 
 

Index Terms—Equations Solver, Finite Element Method, 
GPU Parallelization, Nonlinear Dynamic Analysis 
 

I. INTRODUCTION 

he refined structure model is computationally intensive, 
especially for large-scale three dimensional (3D) models, 

this makes the process of nonlinear finite element dynamic 
structural analysis much time consuming. Many modern 
parallel algorithms and strategies have been proposed to 
reduce the computing time so that engineers could spend a 
reasonable time to conduct the nonlinear dynamic structural 
analysis. Parallel algorithms applied to finite element 
structural analysis focusing rigorously on parallel equations 
solver method and domain decomposition method [1]. 
Parallel equations solver method generally employed the 
direct methods or iterative methods to solve linear system of 
equations, such as Jacobi, Gauss-Seidel, Conjugate Gradients 
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(CG), etc. Using decomposition method, the structure was 
partitioned into several substructures implemented on 
computers or computer clusters utilizing different application 
programming interfaces (APIs), such as Open 
Multi-Processing (OpenMP) and Message Passing Interface 
(MPI) [2]. Although many popular parallel equations solvers 
and domain decomposition methods have been applied to 
dynamic structural analysis, some challenges still remain. 
The more complicated analysis tasks would be carried out, 
the higher resolution meshes and smaller time increments are 
required. Directly, more time are needed in those processes. 
This is still a bottleneck of parallel efficiency. It will cause 
dramatically high computational cost and require large 
memory usage due to the large amount of matrix operations. 
The efficiency gets improved by increasing the number of 
processing units on computers or computer clusters. 
However, high heat generation and power consumption 
hinder the developments of such parallel methods. 

Recently, with the emergence of general-purpose 
computing on graphic processing unit (GPU), shifting the 
computational tasks to the GPU has become an attractive 
option. A typical GPU architecture is organized as an array of 
multiprocessors or cores, capable of handling graphical 
processing operations efficiently in parallel, thus solving 
large-scale computational problems using inexpensive 
off-the shelf hardware becomes possible [3]–[5]. 

In structural dynamic analysis, a structure model is meshed 
using finite elements on regular or irregular grids in discrete 
spatial and time domains. The grid of finite elements forms a 
system of (linear or nonlinear) equations. Solving the 
equilibrium equations for each time step (within an 
incremental, iterative Newton strategy to solve nonlinear 
equations) dominates the computational cost of time 
integration methods. Thus, solving the system of equations is 
the key element for high efficiency. The Preconditioned 
Conjugate Gradient (PCG) solver [6] offers many advantages. 
The advantages come particularly to the fore when the solver 
is used in combination with a GPU as a modified form of 
stream processor that provides a massive floating-point 
computational power. This approach has already been a 
subject of interest of several researchers in recent years 
[7]–[9].  

In this work, a GPU parallelization approach was 
implemented to improve the efficiency of nonlinear dynamic 
analysis. The GPU parallelization approach contains 
parallelization Newmark integration algorithm and a parallel 
equations solver. The computing programs can be executed 
on the GPU by using Compute Unified Device Architecture 
(CUDA). Compared with the implementation complexity of 
domain decomposition method, the GPU parallelization in 
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this work is fine-grain parallelism, because each subroutine 
maps to the calculation of an element of an array or matrix. 
Thus, this approach can be easily applied on a personal 
computer (PC) with CUDA-capable GPU. Numerical 
examples of reinforced concrete (RC) frames were used to 
investigate the parallel computing speedups of the GPU 
parallelization approach. The results showed that the 
proposed GPU parallelization approach could highly 
improve the efficiency of nonlinear dynamic analysis. 

II. PROGRAM FRAMEWORK 

In order to implement a program in a parallel architecture, 
the determination of tasks that can be parallelized is foremost. 
Parallelization is possible only when the individual tasks are 
independent and there is no data dependency among the tasks. 
In general, FEM-based numerical program includes three 
modules: the pre-process, the main analysis process and the 
post-process. In this work, the CPU is used for pre-process 
and post-process tasks, while the GPU is used for the main 
analysis process task. That is, if each time step solution of the 
equilibrium equations could be treated as a subtask, it is 
dependent only in the same time step, then the solution would 
be done in a loop, one after the other. This is one strategy of 
coarse-grained parallelization. However, the most 
appropriate architecture of a GPU program should be based 
on fine-grained parallelization, where it is most efficient to 
have adjacent threads operate on adjacent data, such as 
elements of an array. Hence, in this work, data in 
matrices/vectors could be treated as an independent 
computing unit whose variables are updated independently. 
The GPU executes independently from the CPU but is 
controlled by the CPU. Most of the communication involves 
placing data in memory and transmitting them to the GPU. 

The framework of entire program of parallel structural 
nonlinear dynamic analysis is illustrated in Fig. 1. First, the 
main program was executed in the CPU, calculations include 
elements matrix/vector calculations and global matrix 
assembly, material properties, boundary condition 
enforcement, solution parameters etc. The assembly process 
is performed by the CPU because several uncoalesced global 
memory accesses and consequently poor performance would 
occur at GPU for the same process. Also the ground motion is 
selected for nonlinear dynamic analysis at this stage. Second, 
the CPU allocates storage on the GPU, then nodal and 
element data required are stored in the global memory of 
GPU and first sent to the GPU. The tasks assigned on GPU 
include reading the data from the CPU and performing 
time-step dynamic integrations. When the time-step starts, 
the threads can be assigned on the GPU to perform the 
effective stiffness/load matrix/vector calculations and the 
parallel equations solver is used at each time-step. Then the 
threads are assigned to perform the new response calculations 
and new initial conditions updating for next time-step. 
Finally, results obtained from the GPU are transferred into 
the CPU and output results are performed on the CPU 
naturally. 

In our program, the strain-displacement matrix is 
calculated once during the nonlinear process and its 
nonlinear part is updated using the current displacements by a 
simple matrix product. The nonlinear behaviour of the 

reinforcing bars within the model is discussed in Menegotto 
and Pinto [10]. In order to simulate the concrete the modified 
Kent–Park model [11] is applied, where the monotonic 
envelope of the concrete in compression follows the model in 
[11] as extended by Scott et al. [12]. The hysteretic 
stress-strain relation of the concrete implemented with 
Blakely model [13] and the concrete tensile strength 
proposed by Yassin [14] are also considered. 

 

 
Fig. 1.  Program framework for parallel nonlinear dynamic analysis 

III. IMPLICIT DYNAMIC FINITE ELEMENT METHOD 

A. Implicit Time Integration 

In nonlinear analysis, it is assumed that the physical 
properties remain constant only for short increments of time; 
accordingly, it is convenient to reformulate the response in 
terms of the incremental equation of motion, as follows 

       M U C U K U R  (1) 
where M is the global mass matrix; C is the global damping 
matrix; K is the global tangent stiffness matrix; R  is the 
incremental external load vector; U  is the incremental 

displacement vector;  U  is the incremental velocity vector; 

and U  is the incremental acceleration vectors. 
The Newmark algorithm [15] was one of the most efficient 

implicit time integration techniques, and has been widely 
used for both the linear and nonlinear dynamic structural 
analysis. Application of Newmark method in implicit time 
integration of the dynamic response, the incremental velocity 
and displacement are expressed as follows 

0 2 t 3 t=a a a     U U U U  (2) 

1 4 t 5 t=a a a     U U U U  (3) 

where 2
0 1/a t  , 1 /a t   , 2 1 /a t  , 3 1 / 2a  , 

4 /a   , 5 [ / (2 ) 1]a t    ;   and   are Newmark 

parameters and =1 4 , =1 2 . 

Substitution of (2) and (3) into (1) will result in (4) the 
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equivalent equation of motion 
ˆ ˆ  K U R  (4) 

in which 

0 1
ˆ = a a K K M C  (5) 

and 

2 t 3 t 4 t 5 t
ˆ = ( ) ( )a a a a        R R M U U C U U  (6) 

In nonlinear analysis, the stiffness matrix should be 
updated in each time step and the solution scheme used in (4) 
corresponds to Newton-Raphson iteration. 

B. Element to Structure Matrices and Vectors 

The global structure matrices are assembled by direct 
addition of the element matrices and vectors by considering 
interactions among the elements as well as boundary 
conditions. 
The global stiffness matrix is 

e
n

n

 K K  (7) 

the global mass matrix is 
e
n

n

 M M  (8) 

the global damping matrix is 

c c  C M K  (9) 

where e
nK  is the stiffness matrix of the nth element and e

nM  

is the mass matrix of the nth element. 

C. Element Formulations 

 The stiffness matrix and node force vector at element level 
are presented as follows 

e T s

=1

pN

k k k
k

K B K B  (10) 

e T s

=1

pN

k k
k

F B F  (11) 

where Np is the number of integral points; B is the 

strain-displacement matrix; sK  and sF  are the stiffness 
matrix and node force vector of the section respectively. 

IV. GPU PARALLELIZATION 

A. Matrices/Vectors Calculations via Thread-Level 
Parallelism 

Research in parallel programming has produced a set of 
basic operators for data parallel processing. Parallel 
calculations are constructed from these operations. In this 
work, data in matrices/vectors (stiffness, force, displacement, 
etc.) can be treated as an independent computing unit whose 
variables are updated independently. Intensive arithmetic 
operations make these data particularly suitable for parallel 
implementation on threads. The thread-level parallelism was 
carried out by mapping the data onto a Stream Processor as a 
thread to execute through the kernel function (kernel) 
provided by CUDA [16]. These threads can run 
simultaneously to achieve parallel execution and 
acceleration. 

Take the effective force vector for example, when 
structures are subjected to ground motion, gΔ = Δ R M U , (6) 

can be written as 

2 t 3 t g 4 t 5 t
(2)(1)

ˆ = ( ) ( )a a a a         R M U U U C U U  (12) 

For the right hand side (1), if here a lumped mass matrix is 
used, the corresponding desired thread-data mapping can be 
shown in Fig. 2. The one-dimensional arrangement of a 
collection of blocks and threads that the kernel is executed by 
N parallel blocks are also illustrated. That is, 
one-dimensional grid of N blocks was constructed, where the 
same copy of kernel code was implemented but having 
different values for the variable blockIdx.x. We consider this 
simple arrangement is working on 1-dimensional data, with 
an index variable blockIdx.x, essentially representing the 
thread ID. 

 
Fig. 2.  Thread-data mapping in one-dimensional arrangement 

 
For the (2) part in the right hand side of equation (12), here 

C is a n × n symmetric banded sparse matrix. In order to save 
space and access to these data in matrix efficiently, only the 
upper (or lower) banded portion of the matrix needs to be 
stored in n one-dimensional arrays. These data types are 
organized into one-dimensional arrays, which can be 
efficiently manipulated on a GPU. As the CUDA allows 
blocks to be split into threads, the two-dimensional 
arrangement of a collection of blocks and threads that the 
kernel is executed by N parallel blocks with 128 GPU threads 
are shown in Fig. 3. In this case, the thread ID should be 
blockDim%x*blockIdx%x+threadIdx%x. 

 

 
Fig. 3.  Thread-data mapping in two-dimensional arrangement 

B. Element to Structure Matrices and Vectors 

Another possible parallelization task is in the solution of 
system equations. Iterative methods generally have better 
scalability for parallel execution. Several optimized methods 
for solving the equations have been proposed. For example, a 
conjugate gradient solver is an iterative solver for a 
symmetric positive definite (SPD) sparse matrix and a Jacobi 
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solver is an iterative method for a linear system with a 
diagonally dominant matrix [17]. These solvers make heavy 
use of the sparse linear algebra methods using optimized 
representations and algorithms to exploit the particular sparse 
pattern. In this work, the GPU-based parallel version of 
preconditioned conjugate gradient (PCG) algorithm is 
presented. 

The PCG algorithm has shown its efficiency and 
robustness in a wide range of applications. With a suitable 
preconditioner, the performance can be dramatically 
increased. Jacobi preconditioners are commonly used 
preconditioners for parallel formulations. In this work, a 
diagonal matrix P comprising of the diagonal entries of 

matrix K̂  is defined as preconditioner. Equation (4) leads to 
a linear system and preconditioning is replaced by 

1 1 P Ax P b  (13) 
where P is symmetric positive definite. 

The sequential PCG algorithm is as follows 
0k  : Initialization: 0x , 0 0 r b Ax , 0 0Pz r , 0 0d z  

0k  : while 0k Tolerancer r  

1. k kq Ad , 
T
k k

k T
k k

 
z r

d q
 

2. 1k k k k  x x d , 1k k k k  r r q  

3. 1 1k k Pz r  

4. 1 1
T
k k

k T
k k

  
z r

z r
, 1 1k k k k  d r d  

The PCG algorithm shows that most of the operations 
include vector-vector additions combined with vector-scalar 
multiplication, known as SAXPY operations; which is used 
to compute matrix-vector products of the form Ad and vector 
inner products. The parallelization of SAXPY operations (for 
x, r and d) and sparse matrix–vector operations (for q) are 
straightforward and directly available from CUBLAS library, 
except the preconditioning operation in step 3 ( 1 1k k Pz r ) 

which was implemented by writing kernel. Algorithm 1 
shows the GPU implementation of PCG. 

 
Algorithm 1: Computational steps of PCG implemented on GPU 
 begin 
 //Initialisation 
1 Compute variables and parameters on CPU 
2 Copy data from the CPU buffer to the GPU buffer 
 //Iteration 
3 Assign tasks for GPU 
4 while there is a next loop do 
5 Launch GPU CUBLAS library 
6 if preconditioning is needed then 
7 Launch GPU kernel for the preconditioning operation part 
8 if  the stopping criterion is met, exit the loop 
9 Copy data from the GPU buffer to the CPU buffer 
10 Update variables and parameters on CPU 
 end 

V. NUMERICAL EXAMPLES 

A. Model Cases 

Ten reinforced concrete (RC) frame models (see Fig. 4) 
were used to investigate the parallel computing speedups of 
the GPU parallelization approach. These models were 
simulated using fiber beam-column elements [18], and the 

material nonlinearities were considered. The different 
number of degrees of freedom (DOFs) from low to high was 
adopted in the numerical examples, and the number of DOFs 
ranges from 1,500 to 10,920 as shown in Table I. North-south 
component recorded at Kobe Japanese Meteorological 
Agency (JMA) station during the Hyogo-ken Nanbu (Kobe) 
earthquake of Jan. 17, 1995. The magnitude is 7.2. The peak 
ground acceleration (PGA) was normalized to 220gal, which 
corresponds to earthquakes with 2% probabilities of 
exceedance in 50 years [19]. With this level of PGA, the 
structures will step into the nonlinear states. In each case, the 
structure was subjected to 20.0 s of the ground acceleration at 
a constant time step of 0.005 s and the number of time steps 
was 4000. The dynamic analysis of these frame models is 
performed using a 5% Rayleigh damping. 

 

(a) F1-1 (b) F2-1 (c) F3-1 (d) F4-1 (e) F5-1 

 

(f) F1-2 (g) F2-2 (h) F3-2 (i) F4-2 (j) F5-2 
Fig. 4.  Frame models 
 

TABLE I 
SIZE OF THE TESTED FRAME MODELS 

No Model Elements number Nodes number DOFs number 
1 F1-1 395 262 1500 
2 F2-1 553 362 2100 
3 F3-1 711 462 2700 
4 F4-1 869 562 3300 
5 F5-1 1027 662 3900 
6 F1-2 855 712 4200 
7 F2-2 1197 992 5880 
8 F3-2 1539 1272 7560 
9 F4-2 1881 1552 9240 

10 F5-2 2223 1832 10920 

B. Parameters of Hardware-Overview 

The developed GPU parallelization program was 
conducted on three computers. The computers used in testing 
are described in Table II.  

 
TABLE II 

SPECS OF THE COMPUTERS USED FOR TESTING 
Specs Computer 1 Computer 2 Computer 3 

CPU 
Intel Quad-core 
CPU i5-2300 

Intel Quad-core 
CPU i5-3470 

Intel Quad-core 
CPU i5-3470 

CPU cores 4 4 4 
RAM 4 GB 4 GB 4 GB 

GPU 
NVIDIA Geforce 

GT430 
NVIDIA Geforce 

GT720 
NVIDIA Geforce 

GTX460 
GPU cores 96 192 336 
Graphics 
memory 

1 GB 1 GB 1 GB 

Multiprocessors 2 4 7 
Operating 

system 
Windows 7, 64-bit Windows 7, 64-bit Windows 7, 64-bit
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C. Numerical Validation 

To ensure that the GPUs analysis could produce good 
analysis accuracy compared with the commercial FEM 
software ABAQUS, the analysis results of F1-1 model were 
checked. The displacement, velocity and acceleration 
histories of the top of the building were obtained by GPU 
parallelization program and ABAQUS program. Figures 5 
and 6 show the ground motion, the top displacement, velocity 
and acceleration were analyzed. The differences of the top 
responses histories between the two programs are relatively 
small and indicate that the proposed GPU parallelization 
program is in good agreement with that of ABAQUS. 

 

 
Fig. 5.  Ground acceleration (N-S component recorded at Kobe JMA St.) 
 

 
(a) top displacement of F1-1 

 
(b) top velocity of F1-1 

 
(c) top acceleration of F1-1 

ABAQUS                 GPU program 
Fig. 6.  Accuracy check of F1-1 model: (a) top displacement; (b) top velocity; 
(c) top acceleration 
 

The maximum story displacements along the height of the 
structure were plotted in Fig. 7(a). The deformed shape of the 
structure obtained by GPU parallelization program is very 
close to the ones by ABAQUS. Some minor differences are 
observed in lower stories and the trend is reversed at upper 
stories. The relative story displacements (see Fig. 7(b)) are 
close between stories four and seven, while in lower and 
upper stories, the results obtained using GPU program were 
smaller than those simulated from ABAUQS. Therefore, it 
suggests the feasibility of this parallel algorithm and the 
veracity and reliability in case of nonlinear dynamic analysis 
could be achieved. 

            
(a) Max. story displacements   (b) Max. relative story displacements 

ABAQUS                 GPU program 
Fig. 7.  Maximum response of F1-1 model 

D. Efficiency Evaluation 

In GPU parallel analysis, all models (see Fig. 4) were 
analyzed by NVIDIA Geforce GT430 GPU, NVIDIA 
Geforce GT720 GPU, and NVIDIA Geforce GTX460 GPU. 
The original sequential CPU implementations were 
conducted for comparison purposes. Analyses on only 100 
time steps were carried out because this section focuses on 
parallel efficiency evaluation rather than the nonlinearity of 
the structural behaviors.  

First, the block size of CUDA in the GPU parallelization 
program is implemented for all tested models. Table III 
shows the relationship between number of threads in a block 
and the time cost. As shown in Table III, the time cost is 
relative small when the block size ranges from 32 to 256; 
when the block size is smaller than 32, the time cost will get 
bigger. The primary reason of low performance is that 
threads should be running in groups of at least 32 (32 threads 
is a warp) for optimal computing efficiency while using 
CUDA for parallel computing. Therefore, some of the 
computing capability is wasted when the block size is less 
than 32. However, limitation on the architecture of GPU is 
another factor to be considered. In this work, we take 
NVIDIA Geforce GTX460 GPU for example, the available 
registers for each multiprocessor are 4,681 (total 32,768 
registers and 7 multiprocessors, 32,768/7 = 4,681 registers 
per multiprocessor). The maximum number registers that can 
be used by each thread are 98. If each block uses many 
registers, the number of blocks that can be resident on a 
multiprocessor is reduced, thereby lowering the performance 
of the multiprocessor. Thus, if the block size is greater than 
512, the available registers for a thread will decrease, thereby 
yielding lower performance for the parallel computation. 

 
TABLE III 

RELATIONSHIP BETWEEN BLOCK SIZE AND TIME COST FOR TESTED MODELS 

Model
Total time of tested models using GPU parallelization program (s) 

Thread 
= 8 

Thread 
= 16

Thread 
= 32

Thread 
= 64 

Thread 
= 128 

Thread 
= 256 

Thread 
= 512

Thread 
= 1024 a

F1-1 16.75 16.36 16.11 16.12  16.10  16.13 16.32 16.93 
F2-1 29.93 29.18 28.77 28.78  28.76  28.80 29.18 30.18 
F3-1 51.03 49.27 48.12 47.97  48.03  48.07 49.16 51.77 
F4-1 67.53 65.46 64.05 63.95  63.98  64.24 66.32 68.66 
F5-1 106.23 104.05 100.71 100.85  101.04  101.16 103.86 107.21 
F1-2 159.70 150.79 145.81 146.63  146.12  146.48 150.97 161.42 
F2-2 273.26 267.77 264.59 264.95  265.56  266.01 271.38 275.13 
F3-2 411.30 405.67 398.73 398.02  398.17  400.10 406.83 413.50 
F4-2 610.22 595.16 584.99 583.94 584.27 585.32 599.20 610.24
F5-2 755.69 740.23 729.20 721.26 721.55 722.99 740.69 752.49
aThe GPUs used in this paper supports 1,024 threads per block. 
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Figure 8 illustrates the elapsed time of model F5-2 on 
different GPU kernels. It shows that the PCG based equations 
solution kernel of dynamic iteration takes more than 75% 
(GT430 GPU) to 79% (GTX460 GPU) of the runtime, while 
other procedures take less runtime with 25% (GT430 GPU) 
to 21% (GTX460 GPU). The process of solving the equations 
determines the overall runtime; this means that the PCG 
based parallel equations solver speedup can represent the 
overall speedup to some extent. 

 

 
(a) GT430 GPU 

 
(b) GT720 GPU 

 
(c) GTX460 GPU 

Fig. 8.  Elapsed time of model F5-2 on different GPU kernels. “Elements” 
represents elements and nodal calculations (stiffness matrix, force, 
displacement, etc.); “State update” means the phase of element state 
determination after the element displacements are extracted from the 
structural displacements 

 
In structural dynamic analysis, the proportion of the time 

cost associated with system equations solving to the total 
time significantly increases with the problem size. The 
elapsed time on different GPUs is shown in Table IV (128 
threads per block). The GTX460 GPU is the least 
time-consuming one. The main reason causing such 
differences is the numbers of CUDA cores. In parallel 
computing, speedup refers to the ratio of the sequential 
analysis time to the parallel analysis time [5]. We obtain 
different speedup of PCG solver versus problem size, i.e. 
number of DOFs, which is presented in Fig. 9. It can be 
observed that even for small size problems the parallel 
equations solver is superior in performance. The parallel 
equations solver shows a good parallel performance, the 
maximum speedup reaches with almost 22 times of the 
solving equation system using the GTX460 GPU. 
 

 
TABLE IV 

ELAPSED TIME OF PCG PARALLEL SOLVER ON DIFFERENT GPUS 

DOFs
Elapsed time (s) 

GT430 GPU GT720 GPU GTX460 GPU 
1,500 24.05 11.56 9.25 
2,100 45.78 23.61 18.02 
2,700 74.94 43.61 30.84 
3,300 113.39 64.54 43.61 
3,900 171.67 104.25 69.50 
4,200 234.01 125.39 89.69 
5,880 454.57 284.37 176.19 
7,560 688.90 431.60 280.04 
9,240 1018.72 631.43 405.54 
10,920 1368.60 840.48 524.97 

 

 
Fig. 9.  Speedup of PCG solver versus number of freedoms using different 
GPUs 

 
For evaluating the overall computational performance of 

the implicit time integration algorithms, Fig. 10 shows the 
total elapsed time on the CPU and GTX 460 GPU versus the 
number of DOFs. The total time includes the time consumed 
by pre-process and post-process. Due to paucity of computer 
time, the analysis was carried out for 200 time steps, and each 
time step may contain two or more Newton-Raphson 
iterations. It can be observed from Fig. 10 that the GPU 
parallel method could reduce the overall time consumed, 
especially in large problem size. It saves 83% (model of F1-1, 
DOFs = 1.5k) to 94% (model of F5-2, DOFs = 11k) of total 
elapsed time compared with the sequential method. Fig. 11 
shows the speedup performance of parallel algorithms 
change with the number of DOFs. The speedup is 
approximately 16 with a DOFs of 10,920 by using the 
GTX460 GPU. 

 

 
Fig. 10.  Total elapsed time versus the number of freedoms 
 

 
Fig. 11.  Speedup for parallel implicit time integration algorithms 

Engineering Letters, 23:4, EL_23_4_01

(Advance online publication: 17 November 2015)

 
______________________________________________________________________________________ 



 

A common bottleneck of GPU applications is avoided by 
reducing the number of data transfers between the CPU and 
the GPU. Thus, the communication overheads between CPU 
and GPU were discussed in this paper and the results are 
shown in Fig. 12. The results indicate that, the 
communication overheads increase with the increase of 
DOFs, but the proportion of the overall analysis time 
decreases. Also, the communication overheads of GTX460 
GPU are relatively small compared with the other two GPUs, 
because it has larger memory and wider bandwidth. Feasibly, 
the communication time between GPU and CPU was trivial; 
furthermore, with the increase of DOFs, the communication 
time consumed will be not worth mentioning. 

 

 
Fig. 12.  Communication time between CPU and GPU versus the number of 
freedoms 

VI. CONCLUSION 

An efficient, GPU-based parallelization program for 
structural nonlinear dynamic analysis was developed. The 
most time consuming procedure in implicit nonlinear 
dynamic analysis is the linear equations solver. A PCG 
parallel equations solver has been developed, and 
Matrix-vector computation via the thread-level parallelism 
was carried out by mapping the data to thread and parallel 
executing through the kernel functions. The solution of a 
dynamic FEM has been performed on the GPU by using 
CUDA.  

The performance of the parallel program is evaluated by 
solving ten RC frame models subjected to ground motion 
composed of fiber column-beam elements. Detailed tests on 
accuracy, runtime, and speedup are conducted on different 
GPUs. Numerical tests indicated that the GPU parallelization 
approach in this paper has made the overall program more 
efficient. The GPU-based parallelization program achieves a 
22 times speedups of the solving equation system and 
improves the overall efficiency of implicit time integration 
83 to 94% compared with the CPU-based sequential method.  

In future work, optimizations will be investigated in 
practical problems on GPUs with different configurations. 
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