


Abstract—A graphics processing unit (GPU) parallelization

approach was implemented to improve the efficiency of
nonlinear dynamic analysis. The GPU parallelization approach
speeded up the computation of implicit time integration and
reduced total calculation time. In addition, a parallel equations
solver is introduced to solve the equation system. Numerical
examples of reinforced concrete (RC) frames were used to
investigate the parallel computing speedup of the GPU
parallelization approach. An implementation of these RC frame
models for fiber beam-column elements was presented. The
parallel finite element program is developed to provide parallel
execution on personal computer (PC) with different
CUDA-capable GPUs. The different number of degrees of
freedom from low to high was adopted in the numerical
examples. Detailed tests on accuracy, runtime, and speedup are
conducted on different GPUs. The nonlinear dynamic response
using the GPU parallelization program was in good agreement
with that obtained by ABAQUS. Numerical studies indicate
that compared with original sequential approach, the GPU
parallelization program achieves a 22 times speedups of the
solving equation system and improves the overall efficiency of
time integration by up to 94%.

Index Terms—Equations Solver, Finite Element Method,
GPU Parallelization, Nonlinear Dynamic Analysis

I. INTRODUCTION

he refined structure model is computationally intensive,
especially for large-scale three dimensional (3D) models,

this makes the process of nonlinear finite element dynamic
structural analysis much time consuming. Many modern
parallel algorithms and strategies have been proposed to
reduce the computing time so that engineers could spend a
reasonable time to conduct the nonlinear dynamic structural
analysis. Parallel algorithms applied to finite element
structural analysis focusing rigorously on parallel equations
solver method and domain decomposition method [1].
Parallel equations solver method generally employed the
direct methods or iterative methods to solve linear system of
equations, such as Jacobi, Gauss-Seidel, Conjugate Gradients

Manuscript received April 11, 2015; revised July 20, 2015. This work was

supported in part by the Major International (Sino-US) Joint Research
Project of the National Natural Science Foundation of China (No.
51261120374) and the National Natural Science Foundation of China (Nos.
51278155 and 51378007).

Hong-yu Li, Jun Teng and Zuo-hua Li are with the School of Civil and
Environment Engineering, Shenzhen Graduate School, Harbin Institute of
Technology, Shenzhen, China (phone: 086-755-26033806; fax:
086-755-26033509; email: lhymonicahit@hotmail.com, tengj@hit.edu.cn,
lizuohua@hitsz.edu.cn). Jun Teng is the corresponding author.

Lu Zhang is with the Department of Civil and Materials Engineering,
University of Illinois at Chicago, Chicago, IL 60607, USA (email:
zhang899@uic.edu).

(CG), etc. Using decomposition method, the structure was
partitioned into several substructures implemented on
computers or computer clusters utilizing different application
programming interfaces (APIs), such as Open
Multi-Processing (OpenMP) and Message Passing Interface
(MPI) [2]. Although many popular parallel equations solvers
and domain decomposition methods have been applied to
dynamic structural analysis, some challenges still remain.
The more complicated analysis tasks would be carried out,
the higher resolution meshes and smaller time increments are
required. Directly, more time are needed in those processes.
This is still a bottleneck of parallel efficiency. It will cause
dramatically high computational cost and require large
memory usage due to the large amount of matrix operations.
The efficiency gets improved by increasing the number of
processing units on computers or computer clusters.
However, high heat generation and power consumption
hinder the developments of such parallel methods.

Recently, with the emergence of general-purpose
computing on graphic processing unit (GPU), shifting the
computational tasks to the GPU has become an attractive
option. A typical GPU architecture is organized as an array of
multiprocessors or cores, capable of handling graphical
processing operations efficiently in parallel, thus solving
large-scale computational problems using inexpensive
off-the shelf hardware becomes possible [3]–[5].

In structural dynamic analysis, a structure model is meshed
using finite elements on regular or irregular grids in discrete
spatial and time domains. The grid of finite elements forms a
system of (linear or nonlinear) equations. Solving the
equilibrium equations for each time step (within an
incremental, iterative Newton strategy to solve nonlinear
equations) dominates the computational cost of time
integration methods. Thus, solving the system of equations is
the key element for high efficiency. The Preconditioned
Conjugate Gradient (PCG) solver [6] offers many advantages.
The advantages come particularly to the fore when the solver
is used in combination with a GPU as a modified form of
stream processor that provides a massive floating-point
computational power. This approach has already been a
subject of interest of several researchers in recent years
[7]–[9].

In this work, a GPU parallelization approach was
implemented to improve the efficiency of nonlinear dynamic
analysis. The GPU parallelization approach contains
parallelization Newmark integration algorithm and a parallel
equations solver. The computing programs can be executed
on the GPU by using Compute Unified Device Architecture
(CUDA). Compared with the implementation complexity of
domain decomposition method, the GPU parallelization in

Nonlinear Dynamic Analysis Efficiency by
Using a GPU Parallelization

Hong-yu Li, Jun Teng, Zuo-hua Li, and Lu Zhang

T

Engineering Letters, 23:4, EL_23_4_01

(Advance online publication: 17 November 2015)

__

this work is fine-grain parallelism, because each subroutine
maps to the calculation of an element of an array or matrix.
Thus, this approach can be easily applied on a personal
computer (PC) with CUDA-capable GPU. Numerical
examples of reinforced concrete (RC) frames were used to
investigate the parallel computing speedups of the GPU
parallelization approach. The results showed that the
proposed GPU parallelization approach could highly
improve the efficiency of nonlinear dynamic analysis.

II. PROGRAM FRAMEWORK

In order to implement a program in a parallel architecture,
the determination of tasks that can be parallelized is foremost.
Parallelization is possible only when the individual tasks are
independent and there is no data dependency among the tasks.
In general, FEM-based numerical program includes three
modules: the pre-process, the main analysis process and the
post-process. In this work, the CPU is used for pre-process
and post-process tasks, while the GPU is used for the main
analysis process task. That is, if each time step solution of the
equilibrium equations could be treated as a subtask, it is
dependent only in the same time step, then the solution would
be done in a loop, one after the other. This is one strategy of
coarse-grained parallelization. However, the most
appropriate architecture of a GPU program should be based
on fine-grained parallelization, where it is most efficient to
have adjacent threads operate on adjacent data, such as
elements of an array. Hence, in this work, data in
matrices/vectors could be treated as an independent
computing unit whose variables are updated independently.
The GPU executes independently from the CPU but is
controlled by the CPU. Most of the communication involves
placing data in memory and transmitting them to the GPU.

The framework of entire program of parallel structural
nonlinear dynamic analysis is illustrated in Fig. 1. First, the
main program was executed in the CPU, calculations include
elements matrix/vector calculations and global matrix
assembly, material properties, boundary condition
enforcement, solution parameters etc. The assembly process
is performed by the CPU because several uncoalesced global
memory accesses and consequently poor performance would
occur at GPU for the same process. Also the ground motion is
selected for nonlinear dynamic analysis at this stage. Second,
the CPU allocates storage on the GPU, then nodal and
element data required are stored in the global memory of
GPU and first sent to the GPU. The tasks assigned on GPU
include reading the data from the CPU and performing
time-step dynamic integrations. When the time-step starts,
the threads can be assigned on the GPU to perform the
effective stiffness/load matrix/vector calculations and the
parallel equations solver is used at each time-step. Then the
threads are assigned to perform the new response calculations
and new initial conditions updating for next time-step.
Finally, results obtained from the GPU are transferred into
the CPU and output results are performed on the CPU
naturally.

In our program, the strain-displacement matrix is
calculated once during the nonlinear process and its
nonlinear part is updated using the current displacements by a
simple matrix product. The nonlinear behaviour of the

reinforcing bars within the model is discussed in Menegotto
and Pinto [10]. In order to simulate the concrete the modified
Kent–Park model [11] is applied, where the monotonic
envelope of the concrete in compression follows the model in
[11] as extended by Scott et al. [12]. The hysteretic
stress-strain relation of the concrete implemented with
Blakely model [13] and the concrete tensile strength
proposed by Yassin [14] are also considered.

Fig. 1. Program framework for parallel nonlinear dynamic analysis

III. IMPLICIT DYNAMIC FINITE ELEMENT METHOD

A. Implicit Time Integration

In nonlinear analysis, it is assumed that the physical
properties remain constant only for short increments of time;
accordingly, it is convenient to reformulate the response in
terms of the incremental equation of motion, as follows

       M U C U K U R (1)
where M is the global mass matrix; C is the global damping
matrix; K is the global tangent stiffness matrix; R is the
incremental external load vector; U is the incremental

displacement vector;  U is the incremental velocity vector;

and U is the incremental acceleration vectors.
The Newmark algorithm [15] was one of the most efficient

implicit time integration techniques, and has been widely
used for both the linear and nonlinear dynamic structural
analysis. Application of Newmark method in implicit time
integration of the dynamic response, the incremental velocity
and displacement are expressed as follows

0 2 t 3 t=a a a     U U U U (2)

1 4 t 5 t=a a a     U U U U (3)

where 2
0 1/a t  , 1 /a t   , 2 1 /a t  , 3 1 / 2a  ,

4 /a   , 5 [/ (2) 1]a t    ;  and  are Newmark

parameters and =1 4 , =1 2 .

Substitution of (2) and (3) into (1) will result in (4) the

Engineering Letters, 23:4, EL_23_4_01

(Advance online publication: 17 November 2015)

__

equivalent equation of motion
ˆ ˆ  K U R (4)

in which

0 1
ˆ = a a K K M C (5)

and

2 t 3 t 4 t 5 t
ˆ = () ()a a a a        R R M U U C U U (6)

In nonlinear analysis, the stiffness matrix should be
updated in each time step and the solution scheme used in (4)
corresponds to Newton-Raphson iteration.

B. Element to Structure Matrices and Vectors

The global structure matrices are assembled by direct
addition of the element matrices and vectors by considering
interactions among the elements as well as boundary
conditions.
The global stiffness matrix is

e
n

n

 K K (7)

the global mass matrix is
e
n

n

 M M (8)

the global damping matrix is

c c  C M K (9)

where e
nK is the stiffness matrix of the nth element and e

nM

is the mass matrix of the nth element.

C. Element Formulations

 The stiffness matrix and node force vector at element level
are presented as follows

e T s

=1

pN

k k k
k

K B K B (10)

e T s

=1

pN

k k
k

F B F (11)

where Np is the number of integral points; B is the

strain-displacement matrix; sK and sF are the stiffness
matrix and node force vector of the section respectively.

IV. GPU PARALLELIZATION

A. Matrices/Vectors Calculations via Thread-Level
Parallelism

Research in parallel programming has produced a set of
basic operators for data parallel processing. Parallel
calculations are constructed from these operations. In this
work, data in matrices/vectors (stiffness, force, displacement,
etc.) can be treated as an independent computing unit whose
variables are updated independently. Intensive arithmetic
operations make these data particularly suitable for parallel
implementation on threads. The thread-level parallelism was
carried out by mapping the data onto a Stream Processor as a
thread to execute through the kernel function (kernel)
provided by CUDA [16]. These threads can run
simultaneously to achieve parallel execution and
acceleration.

Take the effective force vector for example, when
structures are subjected to ground motion, gΔ = Δ R M U , (6)

can be written as

2 t 3 t g 4 t 5 t
(2)(1)

ˆ = () ()a a a a         R M U U U C U U (12)

For the right hand side (1), if here a lumped mass matrix is
used, the corresponding desired thread-data mapping can be
shown in Fig. 2. The one-dimensional arrangement of a
collection of blocks and threads that the kernel is executed by
N parallel blocks are also illustrated. That is,
one-dimensional grid of N blocks was constructed, where the
same copy of kernel code was implemented but having
different values for the variable blockIdx.x. We consider this
simple arrangement is working on 1-dimensional data, with
an index variable blockIdx.x, essentially representing the
thread ID.

Fig. 2. Thread-data mapping in one-dimensional arrangement

For the (2) part in the right hand side of equation (12), here

C is a n × n symmetric banded sparse matrix. In order to save
space and access to these data in matrix efficiently, only the
upper (or lower) banded portion of the matrix needs to be
stored in n one-dimensional arrays. These data types are
organized into one-dimensional arrays, which can be
efficiently manipulated on a GPU. As the CUDA allows
blocks to be split into threads, the two-dimensional
arrangement of a collection of blocks and threads that the
kernel is executed by N parallel blocks with 128 GPU threads
are shown in Fig. 3. In this case, the thread ID should be
blockDim%x*blockIdx%x+threadIdx%x.

Fig. 3. Thread-data mapping in two-dimensional arrangement

B. Element to Structure Matrices and Vectors

Another possible parallelization task is in the solution of
system equations. Iterative methods generally have better
scalability for parallel execution. Several optimized methods
for solving the equations have been proposed. For example, a
conjugate gradient solver is an iterative solver for a
symmetric positive definite (SPD) sparse matrix and a Jacobi

Engineering Letters, 23:4, EL_23_4_01

(Advance online publication: 17 November 2015)

__

solver is an iterative method for a linear system with a
diagonally dominant matrix [17]. These solvers make heavy
use of the sparse linear algebra methods using optimized
representations and algorithms to exploit the particular sparse
pattern. In this work, the GPU-based parallel version of
preconditioned conjugate gradient (PCG) algorithm is
presented.

The PCG algorithm has shown its efficiency and
robustness in a wide range of applications. With a suitable
preconditioner, the performance can be dramatically
increased. Jacobi preconditioners are commonly used
preconditioners for parallel formulations. In this work, a
diagonal matrix P comprising of the diagonal entries of

matrix K̂ is defined as preconditioner. Equation (4) leads to
a linear system and preconditioning is replaced by

1 1 P Ax P b (13)
where P is symmetric positive definite.

The sequential PCG algorithm is as follows
0k  : Initialization: 0x , 0 0 r b Ax , 0 0Pz r , 0 0d z

0k  : while 0k Tolerancer r

1. k kq Ad ,
T
k k

k T
k k

 
z r

d q

2. 1k k k k  x x d , 1k k k k  r r q

3. 1 1k k Pz r

4. 1 1
T
k k

k T
k k

  
z r

z r
, 1 1k k k k  d r d

The PCG algorithm shows that most of the operations
include vector-vector additions combined with vector-scalar
multiplication, known as SAXPY operations; which is used
to compute matrix-vector products of the form Ad and vector
inner products. The parallelization of SAXPY operations (for
x, r and d) and sparse matrix–vector operations (for q) are
straightforward and directly available from CUBLAS library,
except the preconditioning operation in step 3 (1 1k k Pz r)

which was implemented by writing kernel. Algorithm 1
shows the GPU implementation of PCG.

Algorithm 1: Computational steps of PCG implemented on GPU
 begin
 //Initialisation
1 Compute variables and parameters on CPU
2 Copy data from the CPU buffer to the GPU buffer
 //Iteration
3 Assign tasks for GPU
4 while there is a next loop do
5 Launch GPU CUBLAS library
6 if preconditioning is needed then
7 Launch GPU kernel for the preconditioning operation part
8 if the stopping criterion is met, exit the loop
9 Copy data from the GPU buffer to the CPU buffer
10 Update variables and parameters on CPU
 end

V. NUMERICAL EXAMPLES

A. Model Cases

Ten reinforced concrete (RC) frame models (see Fig. 4)
were used to investigate the parallel computing speedups of
the GPU parallelization approach. These models were
simulated using fiber beam-column elements [18], and the

material nonlinearities were considered. The different
number of degrees of freedom (DOFs) from low to high was
adopted in the numerical examples, and the number of DOFs
ranges from 1,500 to 10,920 as shown in Table I. North-south
component recorded at Kobe Japanese Meteorological
Agency (JMA) station during the Hyogo-ken Nanbu (Kobe)
earthquake of Jan. 17, 1995. The magnitude is 7.2. The peak
ground acceleration (PGA) was normalized to 220gal, which
corresponds to earthquakes with 2% probabilities of
exceedance in 50 years [19]. With this level of PGA, the
structures will step into the nonlinear states. In each case, the
structure was subjected to 20.0 s of the ground acceleration at
a constant time step of 0.005 s and the number of time steps
was 4000. The dynamic analysis of these frame models is
performed using a 5% Rayleigh damping.

(a) F1-1 (b) F2-1 (c) F3-1 (d) F4-1 (e) F5-1

(f) F1-2 (g) F2-2 (h) F3-2 (i) F4-2 (j) F5-2
Fig. 4. Frame models

TABLE I
SIZE OF THE TESTED FRAME MODELS

No Model Elements number Nodes number DOFs number
1 F1-1 395 262 1500
2 F2-1 553 362 2100
3 F3-1 711 462 2700
4 F4-1 869 562 3300
5 F5-1 1027 662 3900
6 F1-2 855 712 4200
7 F2-2 1197 992 5880
8 F3-2 1539 1272 7560
9 F4-2 1881 1552 9240

10 F5-2 2223 1832 10920

B. Parameters of Hardware-Overview

The developed GPU parallelization program was
conducted on three computers. The computers used in testing
are described in Table II.

TABLE II

SPECS OF THE COMPUTERS USED FOR TESTING
Specs Computer 1 Computer 2 Computer 3

CPU
Intel Quad-core
CPU i5-2300

Intel Quad-core
CPU i5-3470

Intel Quad-core
CPU i5-3470

CPU cores 4 4 4
RAM 4 GB 4 GB 4 GB

GPU
NVIDIA Geforce

GT430
NVIDIA Geforce

GT720
NVIDIA Geforce

GTX460
GPU cores 96 192 336
Graphics
memory

1 GB 1 GB 1 GB

Multiprocessors 2 4 7
Operating

system
Windows 7, 64-bit Windows 7, 64-bit Windows 7, 64-bit

Engineering Letters, 23:4, EL_23_4_01

(Advance online publication: 17 November 2015)

__

C. Numerical Validation

To ensure that the GPUs analysis could produce good
analysis accuracy compared with the commercial FEM
software ABAQUS, the analysis results of F1-1 model were
checked. The displacement, velocity and acceleration
histories of the top of the building were obtained by GPU
parallelization program and ABAQUS program. Figures 5
and 6 show the ground motion, the top displacement, velocity
and acceleration were analyzed. The differences of the top
responses histories between the two programs are relatively
small and indicate that the proposed GPU parallelization
program is in good agreement with that of ABAQUS.

Fig. 5. Ground acceleration (N-S component recorded at Kobe JMA St.)

(a) top displacement of F1-1

(b) top velocity of F1-1

(c) top acceleration of F1-1

ABAQUS GPU program
Fig. 6. Accuracy check of F1-1 model: (a) top displacement; (b) top velocity;
(c) top acceleration

The maximum story displacements along the height of the
structure were plotted in Fig. 7(a). The deformed shape of the
structure obtained by GPU parallelization program is very
close to the ones by ABAQUS. Some minor differences are
observed in lower stories and the trend is reversed at upper
stories. The relative story displacements (see Fig. 7(b)) are
close between stories four and seven, while in lower and
upper stories, the results obtained using GPU program were
smaller than those simulated from ABAUQS. Therefore, it
suggests the feasibility of this parallel algorithm and the
veracity and reliability in case of nonlinear dynamic analysis
could be achieved.

(a) Max. story displacements (b) Max. relative story displacements

ABAQUS GPU program
Fig. 7. Maximum response of F1-1 model

D. Efficiency Evaluation

In GPU parallel analysis, all models (see Fig. 4) were
analyzed by NVIDIA Geforce GT430 GPU, NVIDIA
Geforce GT720 GPU, and NVIDIA Geforce GTX460 GPU.
The original sequential CPU implementations were
conducted for comparison purposes. Analyses on only 100
time steps were carried out because this section focuses on
parallel efficiency evaluation rather than the nonlinearity of
the structural behaviors.

First, the block size of CUDA in the GPU parallelization
program is implemented for all tested models. Table III
shows the relationship between number of threads in a block
and the time cost. As shown in Table III, the time cost is
relative small when the block size ranges from 32 to 256;
when the block size is smaller than 32, the time cost will get
bigger. The primary reason of low performance is that
threads should be running in groups of at least 32 (32 threads
is a warp) for optimal computing efficiency while using
CUDA for parallel computing. Therefore, some of the
computing capability is wasted when the block size is less
than 32. However, limitation on the architecture of GPU is
another factor to be considered. In this work, we take
NVIDIA Geforce GTX460 GPU for example, the available
registers for each multiprocessor are 4,681 (total 32,768
registers and 7 multiprocessors, 32,768/7 = 4,681 registers
per multiprocessor). The maximum number registers that can
be used by each thread are 98. If each block uses many
registers, the number of blocks that can be resident on a
multiprocessor is reduced, thereby lowering the performance
of the multiprocessor. Thus, if the block size is greater than
512, the available registers for a thread will decrease, thereby
yielding lower performance for the parallel computation.

TABLE III

RELATIONSHIP BETWEEN BLOCK SIZE AND TIME COST FOR TESTED MODELS

Model
Total time of tested models using GPU parallelization program (s)

Thread
= 8

Thread
= 16

Thread
= 32

Thread
= 64

Thread
= 128

Thread
= 256

Thread
= 512

Thread
= 1024 a

F1-1 16.75 16.36 16.11 16.12 16.10 16.13 16.32 16.93
F2-1 29.93 29.18 28.77 28.78 28.76 28.80 29.18 30.18
F3-1 51.03 49.27 48.12 47.97 48.03 48.07 49.16 51.77
F4-1 67.53 65.46 64.05 63.95 63.98 64.24 66.32 68.66
F5-1 106.23 104.05 100.71 100.85 101.04 101.16 103.86 107.21
F1-2 159.70 150.79 145.81 146.63 146.12 146.48 150.97 161.42
F2-2 273.26 267.77 264.59 264.95 265.56 266.01 271.38 275.13
F3-2 411.30 405.67 398.73 398.02 398.17 400.10 406.83 413.50
F4-2 610.22 595.16 584.99 583.94 584.27 585.32 599.20 610.24
F5-2 755.69 740.23 729.20 721.26 721.55 722.99 740.69 752.49
aThe GPUs used in this paper supports 1,024 threads per block.

Engineering Letters, 23:4, EL_23_4_01

(Advance online publication: 17 November 2015)

__

Figure 8 illustrates the elapsed time of model F5-2 on
different GPU kernels. It shows that the PCG based equations
solution kernel of dynamic iteration takes more than 75%
(GT430 GPU) to 79% (GTX460 GPU) of the runtime, while
other procedures take less runtime with 25% (GT430 GPU)
to 21% (GTX460 GPU). The process of solving the equations
determines the overall runtime; this means that the PCG
based parallel equations solver speedup can represent the
overall speedup to some extent.

(a) GT430 GPU

(b) GT720 GPU

(c) GTX460 GPU

Fig. 8. Elapsed time of model F5-2 on different GPU kernels. “Elements”
represents elements and nodal calculations (stiffness matrix, force,
displacement, etc.); “State update” means the phase of element state
determination after the element displacements are extracted from the
structural displacements

In structural dynamic analysis, the proportion of the time

cost associated with system equations solving to the total
time significantly increases with the problem size. The
elapsed time on different GPUs is shown in Table IV (128
threads per block). The GTX460 GPU is the least
time-consuming one. The main reason causing such
differences is the numbers of CUDA cores. In parallel
computing, speedup refers to the ratio of the sequential
analysis time to the parallel analysis time [5]. We obtain
different speedup of PCG solver versus problem size, i.e.
number of DOFs, which is presented in Fig. 9. It can be
observed that even for small size problems the parallel
equations solver is superior in performance. The parallel
equations solver shows a good parallel performance, the
maximum speedup reaches with almost 22 times of the
solving equation system using the GTX460 GPU.

TABLE IV

ELAPSED TIME OF PCG PARALLEL SOLVER ON DIFFERENT GPUS

DOFs
Elapsed time (s)

GT430 GPU GT720 GPU GTX460 GPU
1,500 24.05 11.56 9.25
2,100 45.78 23.61 18.02
2,700 74.94 43.61 30.84
3,300 113.39 64.54 43.61
3,900 171.67 104.25 69.50
4,200 234.01 125.39 89.69
5,880 454.57 284.37 176.19
7,560 688.90 431.60 280.04
9,240 1018.72 631.43 405.54
10,920 1368.60 840.48 524.97

Fig. 9. Speedup of PCG solver versus number of freedoms using different
GPUs

For evaluating the overall computational performance of

the implicit time integration algorithms, Fig. 10 shows the
total elapsed time on the CPU and GTX 460 GPU versus the
number of DOFs. The total time includes the time consumed
by pre-process and post-process. Due to paucity of computer
time, the analysis was carried out for 200 time steps, and each
time step may contain two or more Newton-Raphson
iterations. It can be observed from Fig. 10 that the GPU
parallel method could reduce the overall time consumed,
especially in large problem size. It saves 83% (model of F1-1,
DOFs = 1.5k) to 94% (model of F5-2, DOFs = 11k) of total
elapsed time compared with the sequential method. Fig. 11
shows the speedup performance of parallel algorithms
change with the number of DOFs. The speedup is
approximately 16 with a DOFs of 10,920 by using the
GTX460 GPU.

Fig. 10. Total elapsed time versus the number of freedoms

Fig. 11. Speedup for parallel implicit time integration algorithms

Engineering Letters, 23:4, EL_23_4_01

(Advance online publication: 17 November 2015)

__

A common bottleneck of GPU applications is avoided by
reducing the number of data transfers between the CPU and
the GPU. Thus, the communication overheads between CPU
and GPU were discussed in this paper and the results are
shown in Fig. 12. The results indicate that, the
communication overheads increase with the increase of
DOFs, but the proportion of the overall analysis time
decreases. Also, the communication overheads of GTX460
GPU are relatively small compared with the other two GPUs,
because it has larger memory and wider bandwidth. Feasibly,
the communication time between GPU and CPU was trivial;
furthermore, with the increase of DOFs, the communication
time consumed will be not worth mentioning.

Fig. 12. Communication time between CPU and GPU versus the number of
freedoms

VI. CONCLUSION

An efficient, GPU-based parallelization program for
structural nonlinear dynamic analysis was developed. The
most time consuming procedure in implicit nonlinear
dynamic analysis is the linear equations solver. A PCG
parallel equations solver has been developed, and
Matrix-vector computation via the thread-level parallelism
was carried out by mapping the data to thread and parallel
executing through the kernel functions. The solution of a
dynamic FEM has been performed on the GPU by using
CUDA.

The performance of the parallel program is evaluated by
solving ten RC frame models subjected to ground motion
composed of fiber column-beam elements. Detailed tests on
accuracy, runtime, and speedup are conducted on different
GPUs. Numerical tests indicated that the GPU parallelization
approach in this paper has made the overall program more
efficient. The GPU-based parallelization program achieves a
22 times speedups of the solving equation system and
improves the overall efficiency of implicit time integration
83 to 94% compared with the CPU-based sequential method.

In future work, optimizations will be investigated in
practical problems on GPUs with different configurations.

ACKNOWLEDGMENT

The authors are grateful to the reviewers for their
thoughtful in-depth comments which have been very helpful
in the revision of this paper.

REFERENCES
[1] Y.-S. Yang, S. H. Hsieh, and T. J. Hsieh, “Improving parallel

substructuring efficiency by using a multilevel approach,” Journal of
Computing in Civil Engineering, vol. 26, no. 4, pp. 457-464, 2012.

[2] A. S. Gullerud and R. H. Dodds Jr., “MPI-based implementation of a
PCG solver using an EBE architecture and preconditioner for implicit,

3-D finite element analysis,” Computers & Structures, vol. 79, no. 5, pp.
553-575, 2001.

[3] B. N. Chetverushkin, E. V. Shilnikov, and A. A. Davydov, “Numerical
simulation of the continuous media problems on hybrid computer
systems,” Advances in Engineering Software, vol. 60-61, pp. 42-47,
2013.

[4] N. Zhang, C.-U. Lei, and K. L. Man, “Binomial American Option
Pricing on CPU-GPU Heterogeneous System,” Engineering Letters,
vol. 20, no. 3, pp. 279-285, 2012.

[5] H.-Y. Li, J. Teng, and Z.-H. Li, “Analysis method for seismic response
of high-rise structure based on CPU-GPU heterogeneous platform,”
Journal of Vibration and Shock, vol. 33, no. 13, pp. 86-91, 2014.

[6] O. Kardani, A. V. Lyamin, and K. Krabbenhoft, “A Comparative Study
of Preconditioning Techniques for Large Sparse Systems Arising in
Finite Element Limit Analysis,” IAENG International Journal of
Applied Mathematics, vol. 43, no. 4, pp. 195-203, 2013.

[7] J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder, “Sparse matrix
solvers on the GPU: conjugate gradients and multigrid,” in ACM
Transactions on Graphics (TOG), vol. 22, no. 3, pp. 917-924, 2003.

[8] L. Buatois, G. Caumon, and B. Levy, “Concurrent number cruncher: a
GPU implementation of a general sparse linear solver,” International
Journal of Parallel, Emergent and Distributed Systems, vol. 24, no. 3,
pp. 205-223, 2009.

[9] V. Galiano, H. Migallón, V. Migallón, and J. Penadés, “GPU-based
parallel algorithms for sparse nonlinear systems,” Journal of Parallel
and Distributed Computing, vol. 72, no. 9, pp. 1098-1105, 2012.

[10] M. Menegotto, P. E. Pinto, and R. C. Slender, “Compressed members
in biaxial bending,” Journal of Structural Division, ASCE, vol. 103,
no.3, pp. 587-605, 1977.

[11] D. C. Kent and R. Park, “Flexural Members with Confined Concrete,”
Journal of the Structural Division, ASCE, vol. 97, no. 7, pp. 1969-1990,
1971.

[12] B. D. Scott, R. Park, and M. J. N Priestley, “Stress–strain behaviour of
concrete confined by overlapping hoops at low and high strain rates,”
ACI Journal, vol. 79, no. 1, pp. 13–27, 1982.

[13] R. W. G. Blakely and R. Park, “Prestressed concrete sections with
cyclic flexure,” Journal of the Structural Division, ASCE, vol. 99, no. 8,
pp. 1717-1742, 1973．

[14] M. H. M. Yassin, “Nonlinear analysis of prestressed concrete structures
under monotonic and cycling loads,” Ph.D. dissertation, University of
California, Berkeley, 1994.

[15] M. N. Nathan, “A method of computation for structural dynamics,”
Journal of Engineering Mechanics, ASCE, vol. 85, no. 3, pp. 67-94,
1959.

[16] nVidai Corporation. July 2013. CUDA C Programming Guide.
Available:
<http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
>

[17] D. Blythe, “Rise of the graphics processor,” Proceedings of the IEEE,
vol. 96, no. 5, pp. 761-778, 2008.

[18] E. Spacone, F. C. Fillippou, and F. F. Taucer, “Fiber beam-column
model for nonlinear analysis of RC frames: Part I. Formulation,”
Earthquake Engineering & Structure Dynamics, vol. 25, pp. 711-725,
1996.

[19] Code for seismic design of buildings (GB 50011-2010), Ministry of
Construction of the People’s Republic of China (MCPRC), Beijing,
China: China Architecture & Building Press, 2010.

Engineering Letters, 23:4, EL_23_4_01

(Advance online publication: 17 November 2015)

__

