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Abstract—Energy cost minimization of a compressor station 

is an integral part of operation optimization for gas pipelines. 

Given the suction flow rate, the suction pressure and 

temperature, and the required discharge pressure of a 

compressor station, the operator needs to figure out the optimal 

compressor combination and load distribution of the station. To 

investigate the feasibility of genetic algorithms for solving this 

problem and to examine how the coding sequence of a genetic 

algorithm influences its performance, four genetic algorithms 

which are different in aspect of coding method and coding 

sequence were devised for this problem. These four algorithms 

are tested on multiple case problems of two in-service 

compressor stations. Comparison of the four algorithms shows 

that the coding sequence of a genetic algorithm influences its 

ability to find a feasible solution. The weaker this ability is, the 

more severely the algorithm is impacted. However, once any 

feasible solution is found, the coding sequence just impacts 

slightly on how steady a genetic algorithm performs in solving a 

problem multiple times, and no obvious bias is observed. 

According to the comparison, one of the four genetic algorithms 

was chosen to compare with two global optimization approaches, 

and the results show that the genetic algorithm is comparable 

with these global optimization methods.  

 
Index Terms—coding sequence, compressor station, genetic 

algorithm, power optimization 

 

I. INTRODUCTION 

IPELINES are the most widely used and economical way 

to transport natural gas on land. When gas flows in a 

pipeline, its pressure decreases gradually due to friction. 

Compressor stations are located along the pipeline to 

compensate this pressure drop. Typically, these compressors 

consume 2% to 3% of the natural gas transported by the 

pipeline. Thus, even minor fuel reduction will lead to 

considerable profit, and minimizing the fuel consumption of a 

pipeline has attracted intense interest [1]-[6]. 

 

In this paper, the problem of how to minimize the energy 

cost of a compressor station was addressed. Usually, serval 

compressors are equipped in a station. These compressors 

may be the same or not in type, and are often arranged in 

parallel, as illustrated in Fig. 1 [7]. Given the suction pressure, 
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Ps, the suction temperature, Ts, the total volumetric flow rate, 
total

isoQ , and the required discharge pressure, Pd, of the station, 

the operation scheme of minimum energy cost is of interest. 

An operation scheme includes which compressors to run, i.e., 

the compressor combination, and how to distribute load 

among the running compressors. 

 

 
Fig. 1.  Topology of a compressor station. 

 

Much research has been done about this subject [8]-[10], 

[19], [20]. These studies often assume that the compressor 

combination has been prefixed, and only the load distribution 

problem is addressed [9], [10], [13], [14], [16], [17]. A 

simulation based optimization method was presented in [9], 

[10] to compute the optimal speed of each running 

compressor at transient state. In [13], a hybrid algorithm 

composed of generalized reduced gradient method and 

generalized projection gradient method was proposed to 

optimize the compressor speeds at steady state. Reference [14] 

adopted data-driven compressor models to compute the 

optimal load distribution. These models took the cooling 

water system of a multi-stage centrifugal compressor into 

consideration. However, they are accurate in predicting the 

power of a compressor within limited operating region [15]. A 

framework in which the optimal compressor combination and 

load distribution of a station were decided in real time was 

developed in [16]. However, only the load distribution 

problem was studied in detail. Similar problem was addressed 

in [17] with adaptive data-driven compressor models [18]. 

 

Research optimizing the compressor combination and load 

distribution of a station simultaneously is rare [7], [8], [11], 

[39]. Heuristics are often adopted to decide the compressor 

combination due to their low computational labor and 

robustness [7], [11], [12]. However, only local optimal should 

be expected for heuristic-based methods.  
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Sometimes, the fuel of a compressor unit is approximated 

by a linear or quadratic function. Then, the optimization 

problem is formulated as a mixed integer programing problem 

or a quadratic programming problem [7], and global optimal 

solution can be expected. However, the fuel of a compressor 

unit can be highly nonlinear, and approximation by a linear or 

quadratic function is probably very coarse. Consequently, the 

optimization results are less reliable.  

 

Global optimization methods have also been adopted to 

minimize the energy cost of a compressor station. Reference 

[8] provided a detailed discussion of the Simulated Annealing 

algorithm as a solution method for determining the optimum 

combination and power settings for multiple compressors 

where the number of compressors is large and arranged in 

serial or parallel. The main shortage of the method is its slow 

convergence rate. A dynamic programming approach was 

reported in [39]. The approach can yield the optimal 

compressor combination and load distribution of a station 

simultaneously and robustly. However, its calculation labor 

rises dramatically as the step size discretizing the feasible 

flow rate region of a compressor decreases. 

 

Genetic algorithms (GAs) mimic the natural evolution 

process, and are a kind of intelligence algorithm. Due to their 

ease of implementation, robustness and high probability 

yielding a global optimal solution, genetic algorithms are 

widely used in solving various optimization problems 

[21]-[27]. For example, the energy variance of a production 

schedule was minimized by a genetic algorithm in [28], and 

reference [29] proposed a dual objective genetic algorithm to 

maximize the security offered to a task with minimum security 

overhead in the security critical grid scheduling. 

 

Genetic algorithms have also been adopted to minimize the 

fuel of a compressor station, including single-objective 

approaches [30], [31] and multi-objective ones [33], [38]. A 

comparison among a genetic algorithm, a heuristic method 

and an exhaustive enumeration method was reported in [32]. 

A brief comparison between a dynamic programming 

approach and a genetic algorithm was also discussed in [39]. 

However, to the best knowledge of the authors, no detailed 

comparison between the genetic algorithms and other global 

optimization methods about minimizing the energy cost of a 

compressor station has been reported. In addition, influences 

of the coding sequence of a genetic algorithm have also not 

been studied in solving the same problem. 

 

In this paper, the mathematical model of the energy cost 

minimization problem is first introduced in section 2. Four 

different genetic algorithms which are different in aspect of 

coding method and coding sequence are formulated in section 

3. In section 4, these four algorithms are adopted to solve 

multiple case problems of two in-service compressor stations. 

The results are analyzed to examine how the coding sequence 

of a genetic algorithm influences its performance. In addition, 

one of the four algorithms is compared with two global 

optimization approaches to investigate its feasibility for 

solving this problem. Finally, the conclusion section closes 

this paper. 

II. MATHEMATICAL MODEL 

Given the suction pressure, Ps, the suction temperature, Ts, 

the total volumetric flow rate, 
total

isoQ , and the required 

discharge pressure, Pd, of a compressor station, the problem 

of minimizing its energy cost is addressed here. This problem 

was formulated as follows [7], [32], [39]: 

 

  1 ,minΣ , , ,N s s d d

i i iso if P T Q P
  (1) 

 

 , , ,. . , 1,2,...,min d max

i iso i iso i i iso is t iy Q Q y Q N     (2) 

 

 0,1, 1,2,...,iy i N    (3) 

 

  i 1 , ,ΣN d consum total

iso i iso i isoQ Q Q     (4) 

 

The objective of the problem is to minimize the total energy 

cost of the compressors in a station, illustrated as (1). Here, N 

is the number of compressors in the station. The energy cost 

of a compressor, f, is influenced by its suction pressure, Ps, 

suction temperature, Ts, discharge pressure, Pd and flow rate 
d

isoQ .  

 

In the constraints, equation (2) defines the feasible flow 

rate region of each compressor, and (3) refers to the 

compressor states: 0 for stopped, 1 for running. In addition, 

equation (4) describes the flow rate balance, in which 
consum

isoQ  

is the fuel consumption of a compressor unit. 

 

It should be noted that only centrifugal compressors were 

considered in this paper. This is due to their wide applications 

in gas pipelines, whereas reciprocating compressors are rarely 

used. In the following, how to calculate the energy cost of a 

centrifugal compressor unit is described first. Then, a robust 

method computing the feasible flow rate region of a 

compressor is reported. 

A. Energy Cost of a Compressor Unit 

This section describes how to compute the energy cost of a 

compressor given its suction pressure, suction temperature, 

discharge pressure and flow rate. This includes two process: 

simulation of a compressor and simulation of its driver. 

 

Simulating a compressor is basically solving an equation 

system composed of (5) to (7) and an equation of state. 

Among these equations, (5) and (6) are adopted to regress the 

performance map of the compressor. The relation of the 

compressor head, H, with its speed, S, and the volumetric flow 

rate under its suction conditions, Qac, is described by (5), and 

(6) shows the relation of the compressor efficiency, ηc, with its 

speed and flow rate. The coefficients in the two equations, a0,0, 

a0,1, …, a2,2, b0,0, b0,1, …, b2,2, are compressor specific, and 

they are computed by regressing its performance map. 

 

Compression in a compressor was considered as a 

poly-tropic process in this paper to minimize the deviation 

between the reality and the optimal solution. The poly-tropic 
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process is described by (7). Besides, (8) and (9) are adopted to 

compute the head and efficiency of the compression process 

respectively. In (8), mv is the poly-tropic exponent, Zs is the 

compressibility factor of the gas compressed by the 

compressor under suction conditions, R is the gas constant 

and MGAS is the molar mass of the gas. The item kave in (9) is 

the average heat capacity ratio, which is calculated by (10) 

with the heat capacity ratio under suction conditions, ks, and 

that under discharge conditions, kd.  

 

 

 

  

  

2 2

0,0 0,1 0,2

2

1,0 1,1 1,2

22

2,0 2,1 2,2

ac

ac

H S a a S a S

a a S a S Q S

a a S a S Q S

  

  

  

  (5) 

 

      
3

0 1 2

2

3ac acc acQ S Q S Q Sb b b b      (6) 

 

  
 1V Vm m

d s s d d sT T Z Z P P


   (7) 

 

  
 1

1
1

V Vm m
d sV

V GAS

s sm
H Z T P P

m M

R   
  

 (8) 

 

      lg /1 lg /d sa d s ave

c

ve P P T Tk k     (9) 

 

   2ave dsk k k    (10) 

 

Once the previous equations system is solved, the energy 

cost of the compressor is calculated by (11) to (14). Among 

these equations, the compressor input power, Pshaft, is first 

calculated by (11) according to its mass flow rate, m , and the 

mechanical efficiency, ηm, which was regarded as a constant. 

Then, if the compressor is driven by a gas turbine, (12) gives 

its fuel according to the low heat value of its fuel, LHV, and its 

driver efficiency, ηdriver. However, if the compressor is driven 

by an electric motor, its fuel equals zero and (13) gives the 

driver input power. Finally, (14) computes its energy cost 

according the fuel unit price, cfuel, or that of electricity, cele.  

 

    shaft c mP Hm    (11) 

 

 
consum

iso shaft driverQ P LHV    (12) 

 

 driver shaft driverP P    (13) 

 

 
consum

fuel iso ele driverQ c Pf c    (14) 

 

If a compressor is driven by a gas turbine, its efficiency is 

calculated by (15) to (19). In (15), Ta and Pa are the 

atmospheric temperature and pressure on site, whereas Ta,0 

and Pa,0 are the atmospheric temperature and pressure of 

design. In addition, the coefficients, e0, e1, …, e5, in it are gas 

turbine specific, and they are calculated by regressing the 

efficiency performance map of the gas turbine. However, if a 

compressor is driven by an electric motor, constant driver 

efficiency is adopted. 

 

 
 

 

2

0 1 2 3

2

4 5

gasturbine PT PT PT
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e e n e N e n

e N e n N

    

 
  (15) 

 

 PTn S    (16) 

 

 ,0a aT T    (17) 

 

 PT shaftN P     (18) 

 

 ,0a aP P    (19) 

 

B. Feasible Flow Rate Region of a Compressor 

In minimizing the energy cost of a compressor station, its 

suction pressure, the suction temperature and discharge 

pressure are given. Consequently, these variables are also 

fixed for each compressor in the station. In this section, the 

feasible flow rate region of a compressor under these fixed 

conditions is computed. 

 

The case in which a compressor is running was considered 

first. If the suction pressure, the suction temperature, and the 

discharge pressure of the running compressor are fixed, its 

head can be considered constant [32]. Consequently, its 

feasible flow rate region is a horizontal line segment on its 

performance map, illustrated as the solid line in Fig. 2. 

Besides, this feasible region is also influenced by the 

maximum available power of its driver, such as the dash line 

in Fig. 2. On the other hand, if a compressor is stopped, no 

flow rate is allowed to pass it. 

 

 
Fig. 2.  Feasible flow rate region of a running compressor. 

 

However, even if the suction pressure, the suction 

temperature, and the discharge pressure of a compressor are 

all fixed, its head varies slightly along with its flow rate 
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fluctuation. Consequently, a simple but more reliable 

approach was devised to compute the feasible flow rate region 

of the compressor. In the following, the method calculating 

the minimum feasible flow rate is described. The method 

computing the maximum one is similar. 

 

1. Calculate the flow rate of the point where the surge line and 

the minimum speed line meet, and that where the stone line 

and the maximum speed line meet. Mark them as Q1 and Q2 

respectively. 

2. Check whether the compressor is able to operate with the 

flow rate (Q1+Q2)/2 and the suction pressure, the suction 

temperature, and the discharge pressure specified in the 

energy cost minimization problem. This means checking 

whether the operating point lies within the operating 

envelope. The operating enveloped of a compressor is 

bounded by its surge line, stone line, minimum speed and 

maximum speed, illustrated as Fig. 2. If it is, go to 3; 

otherwise, go to 4. 

3. Let Q2 = (Q1+Q2)/2, go to 5. 

4. Let Q1 = (Q1+Q2)/2, go to 5. 

5. Check whether |Q2-Q1| <= εfrbound. If the inequality is 

fulfilled, go to 6; otherwise, go to 2. 

6. Convert Q2 to the volumetric flow rate under standard 

conditions, and this is the minimum feasible flow rate. 

 

As stated previously, the maximal feasible flow rate of the 

compressor can be computed by a similar procedure. Thus, 

the feasible flow rate region of a compressor is 
min max0 ,iso isoQ Q    . 

 

III. GENETIC ALGORITHM DESIGN  

To investigate the influences of the coding sequence of a 

genetic algorithm on solving the energy cost minimization 

problem, four different genetic algorithms are formulated in 

this section. A genetic algorithm is basically an iterative 

process, illustrated as Fig. 3. It starts from initializing a set of 

solution candidates, which form a population. And a solution 

candidate should be coded in proper form to be handled by the 

genetic operators. Then, each solution candidate, or 

individual, in the population is evaluated about how optimal it 

is. In this evaluation process, if the problem addressed is 

constrained, proper constraints handling method is necessary. 

Then, some genetic operators are adopted to handle the 

population. Commonly used operators include selection, 

crossover, and mutation. The algorithm continues until some 

stop criterion is satisfied. In the following, different aspects 

including solution coding, population initialization, constraint 

handling and genetic operators are discussed. 

A. Solution Coding 

To solve an optimization problem with genetic algorithms, 

solution candidates should be coded first. There are two kinds 

of coding method: binary coding and real coding. If a solution 

is coded in binary form, it is coded into a string of bits, 0 or 1. 

However, if real coding method is adopted, it is coded into a 

string of real numbers. And some of them are rounded to 

integers if these numbers correspond to the integer variables 

in the solution. Both of these two coding methods were 

adopted in this paper.  

 

In addition to coding method, coding sequence is another 

problem need to be addressed. For a mixed integer nonlinear 

programming problem, a commonly used coding sequence is 

(x1, x2, …, xm, y1, y2, …, yn), in which x1, x2, …, xm are the real 

variables, whereas y1, y2, …, yn denote the integer variables 

[21], [23], [34]. Besides, if the number of the real variables is 

equal to that of the integer ones, a specific coding sequence, 

(x1, y1, x2, y2, …, xm, ym), can be adopted [22]. These two 

coding sequences are named as the common coding sequence 

and the specific coding sequence respectively, CCS and SCS 

in short. 

 

Thus, by combing different coding methods and coding 

sequences, four different genetic algorithms were formulated: 

two binary-coded GAs and two real-coded GAs. It should be 

noted the only difference is their coding sequence between the 

two binary-coded GAs. The same is true for the two 

real-coded GAs. More details about these two kinds of 

algorithms are stated in the following. 

 

 
Fig. 3.  Basic procedure of a genetic algorithm. 

 

B. Population Initialization 

To start a genetic algorithm, an initial population is needed. 

In this paper, the initial population was generated by random 

sampling. For a compressor, the sampling region of y is {0, 1} 

and that of Q is [
min

isoQ , 
max

isoQ ]. And its flow rate equals y*Q. 

Thus, if the compressor is stopped, no flow passes it. 

Otherwise, its flow rate is equal to Q, which has been 
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guaranteed to be feasible. 

C. Constraint Handling 

During an iteration of a genetic algorithm, each individual 

in a population is evaluated about how optimal it is. This 

normally includes evaluating the objective function. Besides, 

if the problem addressed is constrained, checking whether any 

constraint is violated and evaluating how severely a constraint 

is violated are necessary.  

 

In current problem, the constraints (2) and (3) were 

fulfilled by forcing a solution candidate to fall into these 

bounds. Only the flow balance constraint was addressed. 

Penalty function methods are the most popular ones to handle 

the constraints in an optimization problem [22], [24], [27], 

[35], [36]. However, fine parameter tuning is inevitable to 

obtain satisfactory algorithm performance. This can be 

time-consuming. To overcome this drawback, the method 

proposed in [21] was adopted. For current problem, it 

evaluates an individual according to (20) and (21). Illustrated 

as (20), if the flow balance error of an individual lies within 

the tolerance, it is considered feasible and evaluated by its 

objective function. Otherwise, it is regarded infeasible and is 

evaluated in another way. Here, the item, fmax, is computed 

according to (21). If there is no feasible solution in current 

population, fmax equals 0. Otherwise, fmax equals the maximum 

objective function value of all the feasible solutions in current 

population. Thus, the feasible solutions are evaluated 

according to their objective function values, whereas the 

infeasible solutions are evaluated based on their violations of 

the flow balance constraint.  And feasible solutions are always 

in favor than infeasible solutions. 

 

  
 
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
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 

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      

0,

max , { | }max

no feasible solution exists in the population
f

f x f x f x x is feasible

     
 

   
 (21) 

 

D. Genetic Operators 

After each individual in a population is evaluated, several 

genetic operators are adopted to handle the population and to 

generate a new population. Basic genetic operators include 

selection, crossover and mutation. For the binary-coded GAs, 

roulette-wheel selection, uniform crossover, and uniform 

mutation were adopted [27], [37], whereas tournament with 

niching, simulated binary crossover, and polynomial mutation 

were utilized in the real-coded genetic algorithms [21].  

 

To prevent losing the best solution found during the 

algorithm process, elitism was also adopted in the four GAs. 

In the elitism operator, some optimal individuals of the 

previous population are directly copied to the current 

population. Care should be taken about how many individuals 

are directly copied. It the number is high, fast convergence 

rate will be achieved. However, the risk of premature rises at 

the same time. This means that the genetic algorithm is 

probably trapped at some local optimal solution. 

 

IV. ALGORITHM TEST AND ANALYSIS 

To investigate how the coding sequence of a genetic 

algorithm influences it on minimizing the energy cost of a 

compressor station, the four previously designed GAs were 

tested on two in-service compressor stations of different scale. 

One of the two in-service stations is equipped with four 

identical compressors. Some key details are listed in Table I, 

and Table II tabulates the coefficient values of the functions 

describing the characteristics of a compressor set. These 

equations include (5), (6), (15), (22), (23), among which (22) 

and (23) describe the surge line and the stone line of a 

compressor respectively. 

 
TABLE I 

DETAILS OF A COMPRESSOR 

Item Value 

Driver Gas Turbine 

Maximum Driver Power(kW) 30,680 

Minimum Speed 3,965 

Maximum Speed 6,405 

 
TABLE II 

COEFFICIENT VALUES OF FUNCTIONS DESCRIBING A COMPRESSOR SET 

Item Value 
 

Item Value 

a0,0 2.42E-03 
 

c0 5.83E+03 

a0,1 -1.26E-07 
 

c1 -5.00E-01 

a0,2 7.12E-12 
 

c2 3.13E-04 

a1,0 -1.62E-04 
 

d0 3.58E+01 

a1,1 9.09E-08 
 

d1 3.81E+00 

a1,2 -5.25E-12 
 

d2 1.20E-04 

a2,0 -4.56E-05 
 

e0 6.98E-01 

a2,1 -1.40E-08 
 

e1 7.57E-03 

a2,2 1.04E-12 
 

e2 4.03E-04 

b0 6.76E-01 
 

e3 1.33E-07 

b1 9.09E-02 
 

e4 -7.30E-07 

b2 1.16E-02 
 

e5 -1.66E-08 

b3 -6.44E-03    

 

 
2

0 1 2

surge

acQ c c S c S     (22) 

 

 
2

0 1 2

stone

acQ d d S d S     (23) 

 

The other compressor station is equipped with five 

compressors, and some details of these compressors are listed 

in Table III. Notice that two different types of compressor are 

utilized in this station. Table IV shows the coefficient values 

of functions describing the characteristics of the two types of 

compressor. And Table V offers these that describe the 

efficiency characteristic of the gas turbine which drives the 

type-B compressor. 

 

The composition of the natural gas boosted by the two 

compressor stations is tabulated in Table VI. Besides, the fuel 

unit price, cfuel, is 1.6 Yuan/Sm3, and that of the electricity, cele, 

is 0.56 Yuan/(kW*h). 

 

To make the four genetic algorithms complete, some vital 

algorithm parameters were set as Table VII. In addition, the 
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step size adopted to code a real variable into binary form was 

10-4*Qtotal, which is the typical measurement accuracy of a 

flow rate meter equipped on a gas pipeline. The mutation rate 

of the binary-coded genetic algorithms was 0.1. The 

tournament size and mutation rate of the real-coded genetic 

algorithms were identical to that adopted in [21]. Finally, in 

the elitism operation, the optimal individual of the former 

population was directly copied to current generation. 

 
TABLE III 

SOME DETAILS OF TWO COMPRESSORS 

Item Type-A Type-B 

Amount 3 2 

Driver Electric Motor Gas Turbine 

Driver Efficiency 0.98 -- 

Maximum Driver Power (kW) 20,000 30,000 

Minimum Speed 6,000 2,400 

Maximum Speed 10,500 5,040 

 
TABLE IV 

COEFFICIENT VALUES OF FUNCTIONS DESCRIBING A COMPRESSOR 

Item Type-A Type-B 

a0,0 -1.77E-05 -5.13E-03 

a0,1 4.87E-07 4.57E-06 

a0,2 -4.39E-11 -9.14E-10 

a1,0 2.35E-03 8.34E-03 

a1,1 -5.58E-07 -2.70E-06 

a1,2 5.71E-11 5.37E-10 

a2,0 -1.40E-03 -1.88E-03 

a2,1 1.78E-07 4.54E-07 

a2,2 -1.72E-11 -7.81E-11 

b0 6.71E-01 1.90E+00 

b1 3.00E-02 -1.16E+00 

b2 3.23E-01 4.28E-01 

b3 -1.95E-01 -5.42E-02 

c0 3.58E+03 3.19E+03 

c1 -2.57E-01 1.56E-01 

c2 7.69E-05 3.16E-04 

d0 -1.74E+03 -1.59E+01 

d1 1.56E+00 2.89E+00 

d2 3.19E-05 2.38E-04 

 
TABLE V 

COEFFICIENT VALUES DESCRIBING EFFICIENCY CHARACTERISTIC OF A GAS 

TURBINE 

Item Value 

e0 -2.4083E+01 

e1 1.7077E-02 

e2 7.7093E-04 

e3 6.6169E-08 

e4 -1.6391E-06 

e5 -1.6373E-08 

 
TABLE VI 

NATURAL GAS COMPOSITION 

Content Molar Percentage (%) 

C1 92.545 

C2H6 2.41 

C3H8 0.37 

IC4 0.05 

NC4 0.08 

IC5 0.02 

NC5 0.02 

C6 0.06 

N2 1.53 

CO2 0.92 

H2S 1.995 

 

TABLE VII 

ALGORITHM PARAMETERS 

Item Value 

Population Size 20 

Maximum Generation 100 

Crossover Probability 0.8 

εfrbound 10-4*Qtotal  

εeq 10-4 

 

To make the statement more concise, the four algorithms 

were named as GAbn, GAbs, GArn, and GArs respectively. In 

the name, “b” and “r” refer to the two coding methods, i.e., the 

binary-coding method and the real-coding method. And the 

character “n” and “s” refer to the two coding sequences, that is, 

the common coding sequence and the specific coding 

sequence. 

 

In the following, the four genetic algorithms were utilized 

to minimize the energy cost of the two in-service compressor 

stations under different operation conditions. Each problem 

was solved 50 times independently due to the random nature 

of genetic algorithms. Based on the results, the algorithms 

were compared with each other from aspects of feasibility rate 

and optimal objective function values to investigate the 

influence of the coding sequences. The feasibility rate of an 

algorithm is defined as the proportion of the runs in which it 

finds any feasible solution out of its total runs. Finally, one of 

these four algorithms was chosen based on the comparison to 

compare with two other global optimization approaches. 

A. Test on Station Equipped with Identical Compressors 

59 case problems in total were computed. The parameters 

describing a case problem vary among the ranges listed in 

Table VIII. And each problem was solved by each algorithm 

50 times independently, stated as before. 

 
TABLE VIII 

PROBLEM PARAMETERS 

Item Value 

Flow Rate (×104 Sm3/hr) 100~400 

Inlet Pressure (kPa) 6,000~7,000 

Inlet Temperature (℃) 5~20 

Discharge Pressure (kPa) 8,000~9,800 

 

It should be noted that minimizing the energy cost of a 

station equipped with identical compressors can be 

considered as an easy problem. This is because distributing 

the load among the running compressors is optimal or near 

optimal [31], [39]. Consequently, the only problem left is to 

decide how many compressors to run. Although this heuristic 

was not coded into the genetic algorithms, minimizing the 

energy cost of this station should be considered easier than the 

other one on account of the identical compressors equipped in 

the station.  

 

According to the results, the feasibility rates of the four 

algorithms were calculated, and are depicted in Fig. 4. It 

shows that the real coded algorithms can always offer a 

feasible solution except for several problems, whereas the 

binary coded algorithms are inferior. In addition, the coding 

sequence of the real coded algorithm barely influences its 

feasibility rate, whereas the binary coded one is severely 
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influenced. 

 

 
Fig. 4.  Feasibility rate. 

 

 
Fig. 5.  Influence of coding sequence on feasibility rate (Binary Coding). 

 

 
Fig. 6.  Influence of coding sequence on feasibility rate (Real Coding). 

 

For the two binary coded algorithms, the histogram of 

feasibility rate difference is plotted in Fig. 5. The difference is 

equal to the feasibility rate of GAbs minus that of GAbn. Fig. 

5 shows that the feasibility rate of GAbs is a little lower than 

that of GAbn, which means that the specific coding sequence 

makes the algorithm slightly worse. The same but lighter 

influence is observed in the two real coded algorithms, 

illustrated as Fig. 6. 

 

 
Fig. 7.  Best solution of each case problem. 

 

 
Fig. 8.  Worst solution of each case problem. 

 

For the feasible solutions resulted from multiple runs for 

the same problem, the best, the worst, and the standard error 

of these solutions were calculated for each algorithm. The 

best solution and the worst solution of each case problem are 

plotted in Fig. 7 and Fig. 8 respectively. It can be seen that the 

coding sequence barely influences.  

 

For the two binary coded algorithms, the histogram of the 

standard error difference is plotted in Fig. 9. The difference is 

equal to the standard error of GAbs minus that of GAbn. No 

obvious bias can be observed in Fig. 9, whereas slightly 

higher standard error is found for GArs, as illstrated in Fig. 

10. 

 

In summary, the tests show that the coding sequence of a 

genetic algorithm influences its ability to find a feasible 

solution. And the weaker this ability is, the more severely the 

algorithm is influenced. In addition, adopting the specific 

coding sequence makes a genetic algorithm performs a little 

worse in aspect of finding a feasible solution.  

 

Comparison of the feasible solutions resulted from multiple 
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runs for the same problem reveals that the coding sequence 

influences the standard error of these solutions slightly. And 

the specific coding sequence makes that of the real coded 

algorithm a little bigger, whereas no influence bias is 

observed for the binary coded algorithm. 

 

 
Fig. 9.  Influence of coding sequence on standard error (Binary coding). 

 

 
Fig. 10.  Influence of coding sequence on standard error (Real coding). 

 

B. Test on Station Equipped with Different Compressors 

The four genetic algorithms were adopted to solve 72 case 

problems in total. And the parameters describing a case 

problem vary among the ranges listed in Table IX. It should 

be noted that minimizing the energy cost of a station equipped 

with compressors of different types is a harder problem 

compared with the former one. 

 
TABLE IX 

PROBLEM PARAMETERS 

Item Value 

Flow Rate (×104 Sm3/hr) 50~200 

Inlet Pressure (kPa) 4,000~6,000 

Inlet Temperature (℃) 5~20 

Discharge Pressure (kPa) 8,000~9,800 

 

As stated before, each problem was solved by each 

algorithm 50 time independently. According to the results, the 

feasibility rates of the four algorithms were calculated. The 

results are plotted in Fig. 11. Similar pattern is found as the 

former case study. The real coded algorithms are superior to 

the binary coded ones, and they are severely influenced by the 

coding sequence. 

 

 
Fig. 11.  Feasibility rate. 

 

 
Fig. 12.  Influence of coding sequence on feasibility rate (Binary coding). 

 

 
Fig. 13.  Influence of coding sequence on feasibility rate (Real coding). 

 

Fig. 12 depicts the histogram of the feasibility rate 

difference for the two binary coded algorithms. It shows again 

that the specific coding sequence makes the algorithm 
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performs worse in aspect of finding a feasible solution. 

However, this coding sequence makes the real coded 

algorithm works slightly better, illustrated as Fig. 13. 

 

For the feasible solutions resulted from multiple runs for 

the same problem, the best, the worst and the standard error of 

these solutions were calculated for each algorithm. And the 

best solution and the worst solution are plotted in Fig. 14 and 

Fig. 15 respectively. As the former case, almost no difference 

is found among different algorithms. 

 

For the two binary coded algorithms, the histogram of the 

standard error difference is plotted in Fig. 16. It can be seen 

that adopting the special coding sequence slightly decreases 

the standard error. However, no influence bias was found for 

the real coded algorithms. 

 

In summary, the tests show again that the coding sequence 

of a genetic algorithm influences its ability to find a feasible 

solution, and the weaker this ability is, the more severe the 

influence is. Besides, the specific coding sequence also makes 

the binary coded algorithm performs a little worse in this 

aspect. On contrast, this coding sequence makes the real 

coded algorithm performs a bit better. 

 

 
Fig. 14.  Best solutions of each case problem.  

 

 
Fig. 15.  Worst solution of each case problem. 

 

 
Fig. 16.  Influence of coding sequence on standard error (Binary coding). 

 

 
Fig. 17.  Influence of coding sequence on standard error (Real coding). 

 

Comparison of the feasible solutions resulted from multiple 

runs for the same problem reveals again that the coding 

sequence just impacts the standard error of these solutions 

slightly. And the specific coding sequence makes that of the 

binary coded algorithm a little smaller, whereas no influence 

bias is observed for the real coded algorithm. 

C. Comparison with Global Optimization Approaches 

To evaluate the feasibility of the genetic algorithms for 

minimizing the energy cost of a compressor station, the results 

of GArn were compared with two global optimization 

approaches. On account of the fact that previous study reveals 

that the four algorithms differ little in aspect of the best 

solution and the worst solution found in multiple runs, any of 

the four genetic algorithms can be chosen for the comparison. 

 

As previously stated, if a station is equipped with identical 

compressors, only how many compressors to run need be 

decided to minimize its energy cost. And the load is 

distributed among the online compressors equally. This 

solution can considered as global optimum.  

 

For the first set of case problems, the optimal amount of 

online compressors was computed by enumeration. This 

solution, together with the best, the worst and the average 
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solution of GArn, is plotted in Fig. 18. Although the worst 

solution of GArn is modestly higher than the result of the 

equal-distribution approach, the best and the average solution 

of GArn are comparable with the result of the 

equal-distribution approach.  

 

For the station equipped with compressors of different 

types, the dynamic programming approach reported in [39] 

was adopted to compute the global optimum. This optimum, 

together with the best, the worst, and the average solution of 

GArn, is plotted in Fig. 19. Similar pattern can be observed as 

the former case study. Although the worst solution of GArn is 

modestly higher than the global optimum, its average and best 

solution are comparable with the global optimum.  

 

 
Fig. 18.  Comparison of GArn with Equal-Distribution Approach. 

 

 
Fig. 19.  Comparison of GArn with a dynamic programming approach.  

 

V. CONCLUSION 

By comparing four genetic algorithms which are different 

in aspect of coding method and coding sequence with each 

other and with two global optimization approaches, some 

conclusions can be made. First, the coding sequence of a 

genetic algorithm impacts its ability to find a feasible solution. 

And the weaker this ability is, the more severely the algorithm 

is influenced. In addition, for the algorithms discussed in this 

paper, the specific coding sequence can make the binary 

coded algorithm performs a little worse in this aspect, 

whereas no influence bias is observed for the real coded 

algorithm. Second, for the feasible solutions resulted from 

multiple runs of the same problem, the standard error of these 

solutions are just slightly influenced by the coding sequence, 

and no certain conclusion can be made about the influence 

pattern. Finally, according to the comparison with two global 

optimization approach, it can be concluded that genetic 

algorithms are comparable with these methods in minimizing 

the energy cost of a station. Take the universal feasibility of 

the genetic algorithms into account, more applications of 

genetic algorithms in gas pipeline industries should be 

expected. 

 

The algorithms discussed in this paper are intended to be 

modified to minimize the energy cost of a gas pipeline at 

steady state and transient state. The comparison of the four 

genetic algorithms carried out in this paper is an important 

reference for future algorithm modification and design. 
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