

Abstract—Providing authenticity of information has always
been a challenging task in todays age of technology.
Emergence of smart phones has only broadened the field.
However, it also provides new means which can be employed
to implement better authentication models. We have
implemented a multi factor biometric authentication system
that utilizes mobile platform. This model can easily be
implemented with existing single or multi factor
authentication model which enable a more sophisticated and
dependable authentication for day to day use.

Index Terms— Authentication, Smart Phone, Signature, Bio-
metric.

I. INTRODUCTION

UTHENTICATION is the process of proving or verifying
one’s identity. We authenticate ourselves everyday

countless times. Whether it's opening a door with a key or
riding a bus using a ticket, we have to authenticate ourselves.
For the first example, we authenticated using the key and for
the second example, we authenticated using the bus ticket[1].

However, most common form of authentication used by us is
facial recognition. Most of human transactions happen
face-to-face because of it's reliability. When face-to-face
situation is not applicable, we use other methods like hand-
writing recognition or stylistic recognition (e.g. a person's
writing style or painting style) for authentication.

The authentication methods used by us can be categorized in
three types: something we know, like passwords; something we
have, like bus tickets or tokens; and something we are, like our
face, voice, signatures etc. The third type is known as biometric.
There is also a fourth type that is gaining foothold nowadays
which is someplace we are. This is based on our location and
typically uses GPS (Global Positioning System).
 With the emergence of computers, the authentication issue
has become more important. A lot of research is done to ensure
authenticity of the users of computers. Though password or
token based authentications are easy to implement in electronic
authentication systems, they are prone to hacking. On the other

This work is supported by Independent University, Bangladesh.
Navid Forhad is with the Computer Vision & Cybernetics Research Group,

SECS, Independent University, Bangladesh, Bashundhara, Dhaka 1229,
Bangladesh (e-mail: nforhad@gmail.com).

Bruce Poon is with the School of Electrical & Information Engineering,
University of Sydney, NSW 2006, Australia (e-mail: bruce.poon@ieee.org).

M. Ashraful Amin is with the Computer Vision & Cybernetics Research
Group, SECS, Independent University, Bangladesh, Bashundhara, Dhaka
1229, Bangladesh. (e-mail: aminmdashraful@iub.edu.bd).

Hong Yan is with the Department of Electronic Engineering, City
University of Hong Kong, Hong Kong, China (e-mail:h.yan@cityu.edu.hk)

hand, biometric authentication is more complicated to
implement and maintain. However, it provides a much more
reliable and secure mode of authentication.

Multi-modal input based authentication model is another
way to increase the reliability and security of the authentication
mechanism. In this model, instead of relying on a single mode
of input, we combine multiple modes of input for
authentication process.

Recent advance in mobile devices (i.e. smart phones) have
also shifted the tides of authentication models. They have
gained a high level of popularity in the context of convergence
and ubiquitous access to information and services. This makes
mobile devices a prime candidate for implementing
authentication models based on them. The possibilities are
endless if we combine mobile based solution with computer
based ones to implement authentication models.

Forhad et al. [2] proposed an authentication approach which
combines these different types of authentication to achieve a
robust system. It leverages smart phone to capture users
signature along with other credentials like username and
password to authenticate the user.

The solution is a simple client-server based model. The
client (mobile) application captures the users data and the
server application verifies the data.

We follow the data collection protocol to ensure the
collected data is both consistence and variant. To get a better
understanding of the proposed authentication approach, we
provide information on the system architecture of the software
for both client & server and information on the development
platform. In addition to the algorithm performance, we also
include the system performance base on the hardware and
network provided for the experiments.

II. RELATED WORKS

A simple form of biometric authentication that is done using
Mobile devices is secret path authentication [3]. This type of
authentication is now very common in mobile devices and is
used to authenticate mobile device users. Signature based
authentication can be considered as a more advance form of this
type of authentication where user uses their own signature as
the secret path.
 Though the boom in smart phone market is more recent,
Other hand-held devices like PDAs became prolific long ago.
Many works have already been done on authentication systems
that employ PDAs [4]. Most of these works use feature-based
signature verification to authenticate identity [5] [6] [7].
Feature-based systems model the signature as a holistic
multidimensional vector composed of global features. These
multidimensional vector samples are then processed through a
Neural Network to train the authentication system. Another
system of verification is function-based system. This system

Navid Forhad, Bruce Poon, M. Ashraful Amin, Hong Yan

Mobile Based Online Signature Verification for
Multi-modal Authentication

A

Engineering Letters, 23:4, EL_23_4_08

(Advance online publication: 17 November 2015)

__

extracts time function from the signature (pen/stylus
coordinates, pressure, etc.) and performs signature matching
via elastic or statistical techniques like Dynamic Time Warping
(DTW) [8] or Hidden Markov Models (HMM) [9].

Considering this, our approach to the mobile based online-
Signature authentication can be considered unique. It is a
function-based system that extracts time function from the
signature and uses them to create a string representation of the
biometric signature. By using well known string comparison
algorithm, the system verifies the signature.

III. METHODOLOGY &IMPLEMENTATION

To test our approach, we have collected maximum of 20

sample signatures from different subjects using a Smartphone
with pen. However, we were only able to collect maximum of
20 samples for 8 subjects. Therefore, all calculation detailed in
this paper are based on the 160 samples.

To verify the generated strings, we used the Approximate
String Matching algorithms - Lavenshtein Distance,
Damerau-Lavenshtein Distance, and Sift3 [10].

A. Data Collection Protocol

To ensure that the collected data is both consistent and
variant, we followed a protocol. The rules of the protocol were:

 People have do some practice runs with the system before

actually giving the signs .
 To ensure that the signs they are giving are accurate

people have to give 5 signs consecutively.
 To ensure variance, the group will follow the above step

for four days.

First rule ensures that the subjects attain a minimum level of
familiarity with the system. Second rule is there for assurance
that the sign taken form the subjects are identical to one another.
However, this raises another problem. If a task is done
repetitively, the subject will get good at it and the samples will
become too much similar. We also need some variance to
ensure accuracy. To balance out the consistency and variance,
we apply the third rule. This rule is a safeguard for maintaining
the balance.

A sample of the raw data is given below:

M 110.0023 365.5539 0.4700 0.0000 0

L 110.0023 365.5539 0.4700 0.0000 12
L 110.0023 367.1162 0.4800 0.0000 12
L 110.0023 367.1162 0.4800 4.8000 12
L 113.2310 366.2830 0.4800 0.0000 36
L 115.6264 367.9495 0.4800 0.0000 36

L 122.3963 367.0121 0.4900 0.0000 37

.. .

...

...

The raw data contains space delimited values. Each line
represents the states of one point that is registered by the device.
If we take the first line of the sample raw data given above, then
'M' represents the type of point. In this case it is move. The
second value 110.0023 represents the points value on the x-axis.
The third point represents the points value on the y-axis. The
fourth value 0.0000 point represent the tilt of the pen. And the
last value 0 represents the elapsed time after the first point is
registered. For our verification system we did not use the last
two values because tilt value is less reliable and as the system
was a little new to the subjects, their time was varying
drastically.

B. Data Processing

The signature data which we collected were text files with X
and Y coordinate information. Since user can orient the device
in any way they want, the raw samples inherit differences that
needed to be taken care of before generating the strings. Figure
1 shows the JPEG version of one original signature and figure 2
shows the plot of the X and Y coordinates.

Fig. 1. JPEG version of one original signature

Fig. 2. Plot of the X and Y co-ordinate

The first step is to scale the data to a fixed range of X and Y

value. We scale the data to X range of 0 to 1 and Y range of 0 to
1. Figure 3 shows the same sample plotted after scaling.

Engineering Letters, 23:4, EL_23_4_08

(Advance online publication: 17 November 2015)

__

Fig. 3. Plotted after scaling

From the plotted figures, the sign is upside down. This is

because the X-Y plane for most display units (including mobile
devices) are flipped over the X-axis.

Next, we then reflect the points to make the signature
straight. Figure 4 shows the signature after reflection.

Fig. 4. Signature after reflection

We then translated the sign so the first point lied on

(0,0).This helps generating the string because the origin of all
samples become the same. Figure 5 shows the plotted signature
after translation.

Fig. 5. Plotted signature after translation

Fig. 6. Signature after rotation

Finally, we rotated the sign to make every sample rotational

invariant. Figure 6 shows the sample after we rotated it using
the line that passes through (0,0) and the center of mass point.
However, rotating the signs didn’t help out as much as
expected. Therefore, we removed rotational variance at the end
by changing out string generating algorithm.

C. Methods of String Generation

To generate string from signatures, we needed to fashion
algorithms of our own which could take the raw signature data
and produced a string. We then used approximate string
matching algorithms to calculate the similarity of the string.

We put together multiple algorithms which could produce a
string from the raw signature data. For each new algorithm, we
eliminated some of the short falls of the old ones. We named
the algorithms to the way they work.

 1) Frequency String Method: For this method, we divided
the XY plane into 10 x 10 grid and started counting the points
from (0,0). For each grid cell, the algorithm counts the number
of X and the number of Y that falls into the grid. Therefore, the
algorithm basically counts the frequency of X and Yin the
signature for each grid. To illustrate how the algorithm works,
consider figure 7(a) and table I.

TABLE I :FREQUENCY STRING GENERATION STEPS

Point No x-counter y-counter string

4 4 4 X4

7 3 7 X4Y7

10 6 3 X4Y7X6

13 3 6 X4Y7X6Y6

14 4 1 X4Y7X6Y6X4Y1

Each time the counter is reset, the previous value is appended to
the generated string.

 2) Angle String Method: The Angle String method uses the
angles that are made by the line of two consecutive points of a
signature path and the x-axis. Figure 7(b) shows two such
angles. This information is appended to the string along with

Engineering Letters, 23:4, EL_23_4_08

(Advance online publication: 17 November 2015)

__

the type of the point. Currently mobile devices1 can capture
three types of points. The points that are registered by the
device when the pen is hovering over the screen, the first point
registered when the pen touches the screen after hovering and
the consecutive point that is registered when the pen is touching
the screen. The types are hover, move and line.

An example of the string that this method generate is
“H45M45L3L20”. Here the letters ‘H’, ‘M’, and ‘L’ represents
the type of the point. i.e. hover, move, and line respectively.
“H45” means that the current point is of type hover and the line
through this point and the point after it creates a 45 degree angle
with the x-axis. Just like the previous method this method
iterates through all the signature path points and generates the
string accordingly.

Fig. 7. Calculating Frequency String

 3) Side Angle String Method: Just like Angle String method,
Side Angle String method works with angles and point type.
However, the angle this method works with is the external
angle made by the triangle of three consecutive points on the
signature path. If the current point is n, then the angle that
would be associated with it is the supplementary angle to
Ln(n + 1)(n + 2). Such an angle is shown in figure 7(c).

The point 1 to 5 are points that has been registered by the
mobile device. The method iterates through these points and
calculates the side angle string. According to the figure
mentioned just now, when the method is at point 2, it calculates
the point that is supplementary to the angle L123 or the external
angle of the triangle Δ123 created at point 2 which lies on the
line that goes through point 1 and point 2. An example of the
string that this method generate is“H45M45L3L20”.

If signature is considered as a path, then Side Angle method
calculates how much the next point deviates from the current
path. If the sign was a straight line, then the deviation will

1

This information is verified only for Android OS based mobile devices

always be zero. One drawback of this method is that it only
calculates the value of deviation. It does not state which way
from the original path did the deviation occurred.

To capture or calculate this, a modified version of Side
Angle method is constructed. This method is named Rotation
Invariant Side Angle String Method. The method is called
rotation invariant because rotating the points will not affect the
outcome of this method. It considers the sign as a path which
starts at the first registered point and ends at the last registered
point. It takes three points A,B, and C, where B is the current
point, A is the previous point, and C is the next point in the path
and then calculates whether the path turns left or right at point
B. Consider the figure 7(d). If we draw a line from point A to
point B, then this method calculates which side of the line AB
point C is on.

To calculate the side of the point C, this method uses the
equation 1.

 xxyyxx ACyAByACABR

(1)

If R is zero, then C lies on the same line. If R is negative, C lies
on the right side, and for positive R, C lies on the left side.

Calculation of the deviation is done using equation 2. This
gives the value of the angle LABC (figure 2(d)). The deviation
angle is 180 -LABC.

bcab

acbcab
ABC

2
cos

222
1

(2)

Here, ab is Euclidean distance of A and B, bc is Euclidean
distance of B and C, and ac is Euclidean distance of A and C.

When generating sign string, the modified version also
considers the direction of the path. The method first appends
the current points type to the string, then the direction of the
next point, and finally the deviation angle. An example of the
generated string is “HL4OMR35LLI”.

Since modern smart phones have high resolution screen, they
can register lot of points during the capturing of sign.
Therefore, the string generated for signs using any of the
methods presented above becomes very large. Comparing the
edit distance of such large strings is very costly. Hence we
further modified the Rotation Invariant Side Angle String. In
this version, we reduced the number of points in the signature
path by method of quantization and then generated the string
using Rotation Invariant Side Angle String. We named this
version Reduced Rotation Invariant Side Angle String.
Compared to the other strings, the strings generated from this
are much smaller in length which reduces the cost of running
the string comparison.

D. Authentication

We generated string of each sample for every subject. After
then, we calculated the edit distance for each subject. That is,
we compared every sign of on subject with each other and
found out the average edit distance of the samples. For a
signature of this person to be authentic, it has to have a score
which is close to the average score of the sample signatures. It

Engineering Letters, 23:4, EL_23_4_08

(Advance online publication: 17 November 2015)

__

means that we need a minimum and maximum score for each
subject. To calculate the minimum and maximum value, we
first calculated the mean value λ. We then calculated the
standard deviation δ. So the minimum value is λ- δ and the
maximum value is λ + δ. Figure 8 shows a bar graph of the
minimum and maximum score for each subjects reference
signature.

Fig. 8. Minimum and Maximum Scores of Sample

IV. SYSTEM ARCHITECTURE

Since the system will be more effectively used in a N-factor
authentication system, the basic system architecture needs to be
simple. This will simplify integration with other systems. The
basic system level architecture is shown in Figure 9.

Fig. 9. Basic System Level Architecture

 In Figure 9, the signature information is sent to the server
using Java Script Object Notation (JSON) object over the
network with REST API. The server then processes the
information and also sends a reply with a JSON object. Instead
of JSON, we could have used Simple Object Access Protocol
(SOAP) based web service. However, use of JSON makes the
system much more flexible.

A. Software Architecture

1) Client Side Architecture: The client application is known
as MSign. Currently, this application performs two tasks. First
is to collect sample signatures, and second is to verify
signatures with the help of server side application.

The basic functionality of this application is to:

 Capture user's signature.
 Convert the signature into string.

 Send the string to server for verification.
 Receive verification message from server.
 Display the verification message to user.

Figure 10 shows the software architecture of MSign.

Fig. 10. Client Software Architecture

The client software uses Android Canvas library to capture

the sign of the user. When the user is giving sign, the software
also records all the points that make up the signature in an
Array List. These points capture attributes such as:

 X-axis value
 Y-axis value
 Pressure value
 Tilt of pen
 Type of point. i.e. Move, Hover or Line.

After the capturing process is completed, the array of points

is used to generate the string. To be more precise, the string is
generated when the user submits the sign for verification to the
server.

Currently, this application is also used to collect sample
signature data. For a production environment, that will not be
the case. For data collection, the array of points is saved on the
mobile device as a text file along with the image of the sample
being saved.

 2) Server Side Architecture: The server side application
handles the verification request send to it from the client
software. It uses the RESTful web service architecture which
can be easily implemented by any software. In future, MSign
client application can easily be developed for other platforms
like iOS, windows phone, blackberry, ubuntu mobile, firefox os
etc. Figure 11 depicts the server application architecture.

The server waits for clients request. When a request is
received, server processes the request and generates a response.
This response is then sent to the client.

Engineering Letters, 23:4, EL_23_4_08

(Advance online publication: 17 November 2015)

__

B. Development Platform

For developing the system, we have used technology and
programming language as mentioned in Table II.
 For initial research, we used Matlab to analyse the data.
However, all calculations used Java in the final product.

Fig. 11. Server Software Architecture

TABLE II : DEVELOPMENT PLATFORM

Category Detail Name

Server Side OS Windows 8

 IDE Eclipse

 HTTP Server Glassfish 4.0

 Language Java 7

 Database SQLite

Client Side Mobile Device Samsung Galaxy Note 2

 IDE Eclipse with Android SDK

 Mobile OS Android 4.1.2 & 4.3

 Language Java 7

Miscellaneous Training Matlab, Java

 Plotting Matlab

V. PERFORMANCE

A. Algorithm Performance

We have scored the biometric references or sample signa-
tures using all the string comparison algorithms mentioned in
section III. During the scoring process, we also recorded the
time taken by each algorithm to complete the total scoring
process. Our sample had total 8 sets of reference signature
strings with each containing 20 signature strings. Each string
was compared with the other 19 string of it’s respective set. For
each run, the system did 20C2 * 8 or 1520 comparisons. Table III
shows the amount of time taken to perform 1520 comparisons
for each algorithm.

TABLE III: TIME TAKEN FOR 1520 STRING COMPARISON

Algorithm Comparison Time (Seconds)

Lavenshtein 23

Damerau-Lavenshtein 20

Sift3 3

Among the three algorithms, Sift3 is the fastest. In fact, this
algorithm is a lot faster than the other two. Performance of
Lavenshtein and Damerau-Lavenshtein are pretty close to each
other.

B. System Performance

The overall systems performance can be calculated by timing
the whole authentication cycle. That is from the time user
invoke the verification event to the time when user receives the
result from the server. The performance depends on the
following factors:

 Server's processing speed
 Client's processing speed
 Server-client connection speed/bandwidth

Anyone of these can cause the system to become slow. Our

current systems spec is given in table IV. With this spec-
ification the average time taken for a whole authentication
cycle to complete is around quarter to half a second.

TABLE IV : SYSTEM HARDWARE SPECIFICATION

Server Intel i3 Processor with 8GB RAM

Client ARM quad-core processor with 2GB RAM

Network Ad-hoc Wifi connection between server and Client

It is worth mentioning that on the server side, application

runs comparison for all 20 samples that are saved against a
subject. This process is sequential. That means the system
sequentially runs the comparison in a single thread. By making
this process multi-threaded, the system can be made much
faster. For a production environment with a server running on
much more ram and processor with 16 or more cores, this
authentication process can compare a lot more samples in much
less time.

VI. RESULT& ANALYSIS

In section III-D we have already discussed how the minimum

and maximum scores are calculated.
To calculate the correctness of the system, we asked the

subject to give 5 signatures consecutively for verification.
When a user gives a signature for verification, MSign
application generates the string from the raw data and sends it
to the server for verification directly. Table V shows the
accuracy of those 5 signatures for each subject along with
minimum score and maximum score.

The results show that accuracy of the system is very poor.

Engineering Letters, 23:4, EL_23_4_08

(Advance online publication: 17 November 2015)

__

The overall accuracy is about 2.5%. This means that our system
is too conservative. To increase accuracy, we need to make the
system less conservative. To do so, we need to increase the
min-max score band. We did it by doubling the value of
standard deviation δ. The min and max score formula becomes
λ- 2δ and λ+ 2δ respectively.

TABLE V:ACCURACY OF VERIFICATION for δ

Sub. No Min-Score Max-Score Accuracy

1 231 281 0%

2 166 205 0%

3 274 361 0%

4 316 387 0%

5 306 387 0%

6 319 387 20%

7 344 424 0%

8 290 389 0%

When we calculated the accuracy of the system for 2-sigma,
it was much higher. Table VI shows the accuracy for each
subject.

TABLE VI: ACCURACY OF VERIFICATION for 2δ

Sub. No Min-Score Max-Score Accuracy
1 207 306 0%

2 147 224 100%

3 230 404 0%

4 281 422 80%

5 266 427 80%

6 290 408 80%

7 304 463 0%

8 242 438 20%

For 2-sigma calculation, the overall accuracy of the system

became 45%. If we go to 3-sigma, the accuracy of the system
becomes 100%. Figure 12 shows how accuracy increases if the
value of sigma increases. When sigma reaches 3, accuracy
becomes almost 100%.

Fig. 12. Sigma vs. Accuracy Curve

VII. CONCLUSION & FUTURE WORKS

Our mobile based authentication system can be considered as

a complete solution for multi-factor authentication. However,
the accuracy of the system is still in rudimentary stage. In
future, we would like to work on increasing the systems
accuracy so that it can perform at its best even in 1-sigma range.
To increase the accuracy, we can include more features in the
biometric reference string. We can even look into creating a
new method for generating the strings. The string matching
algorithm is another area that can be explored. By investigating
other string algorithms, we may find one that can outperform
the edit distance algorithms which we have used in our system.

REFERENCES
 [1] A Brief History of Authentication, (2014). CertiVox. Available from

http://www.certivox.com/m-pin/a-brief-history-of-authentication/
 [2] N. Forhad, B. Poon, M A. Amin and H. Yan. Online Signature Verification

for Multi- modal Authentication using Smart Phone. Lecture Notes in
Engineering and Computer Science: Proceedings of the International
MultiConference of Engineers and Computer Scientists 2015, IMECS
2015, 18-20 March, 2015, Hong Kong, pp.328 – 331.

 [3] M. Beton, Y. Marie and C. Rosenberger (2013). Biometric Secret Path for
Mobile User Authentication: A Preliminary Study.

[4] M. Martinez-Diaz, J. Fierrez, J. Galbally and J. Ortega-Garcia
(2008).Towards Mobile Authentication Using Dynamic Signature
Verification: Useful Features and Performance Evaluation.

[5] L. L. Lee, T. Berger and E. Aviczer. Reliable on-line human signature
Verification systems. IEEE Trans. on Pattern Analysis and Machine
Intelligence, I 8(6):643-647, 1996.

[6] J. Richiardi, H. Ketabdar and A. Drygajlo. Local and global feature
selection for on-line signature verification. In Proc. ICDAR, Seoul, Korea,
August-September 2005.

[7] J. Fierrez-Aguilar, L. Nanni, J. Lopez-Penalba, J. Ortega-Garcia and D.
Maltoni. An on-line signature verification system based on fusion of local
and global information. In Proc. AVBPA, pages 523-532, Springer LNCS,
2005.

[8] A. Kholmatov and B. Yanikoglu. Identity authentication using improved
online signature verification method. Pattern Recognition Letters, 26(15):
2400-2408, 2005.

[9] J. Fierrez, D. Ramos-Castro, J. Ortega-Garcia and J. Gonzalez-Rodriguez.
HMM-based on-line signature verification : feature extraction and
signature modeling. Pattern Recognition Letters, 28(16): 2323-2334,
2007.

[10] L. Allison. Dynamic Programming Algorithm for Edit Distance. Available
from http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Dynamic/Edit/

Engineering Letters, 23:4, EL_23_4_08

(Advance online publication: 17 November 2015)

__

