
Predicting Position of a Functional Target from an
External Marker in Radiotherapy
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Abstract—The main goal of radiotherapy is to destroy the tu-
mor while minimizing harm to nearby healthy tissue. Advances
in the digital control have enabled planning and performing
accurate treatments. However, todays technology is unable to
compensate respiration induced motion, and therefore, ensure
sufficient precision. One of the tasks in compensating respi-
ratory motion is predicting position of the functional target
(tumor) from an external marker during fraction. Performance
of techniques, such as Pearson correlation, Gaussian filters,
Fourries transformation, cross correlation, linear interpolation
and partial-least squares, still leave plenty space for the
improvement. We reports results of work in progress, i.e.
experiments of applying different types of regressions to predict
motion of functional target from different external markers.
Results seem to be promising in most of the cases.

Index Terms—respiratory motion compensation in radiother-
apy, respiratory tumor motion, regression.

I. INTRODUCTION

RADIOTHERAPY aims at focused emission of radiation
dose to the target volume of tissue, while minimizing

exposure to radiation for the surrounding healthy tissue.
Progress of computer-based control allows accurate planning
and treatment [1], [2]. However, respiration induced motion
still remains unsolved problem, i.e. current techniques do not
provide sufficient precision [3], [4], see [5], [6], [7] for an
overview of recent results in predicting respiration induced
motion of tumor.

In this paper we present a work–in–progress, which aims
at proposing a technique for predicting a tumor position from
the position of an external marker during a treatment session.
There have been several attempts to analyze internal/external
correlation [8], [9], where Pearson correlation and Gaussian
filters, Fourier transformation and cross-correlation, simple
linear regression [10] and models with firstorder autoregres-
sive errors [11] are used. The results are promising, all
techniques produce similar results, but there is a lot of space
for improvement as well.

The paper is organized as follows. In section II prob-
lem formulation, and computational methods are presented.
Section III discusses data collection. Section IV discusses
experimental results. Section V presents concluding remarks,
and discusses future research.
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II. PROPOSED TECHNIQUES

A. Problem Formulation

Suppose, we have two signals M = o1, o2, . . . , on and
T = p1, p2, . . . , pn consisting of n observations, where oi =
(xmi , y

m
i ) is a two–dimensional vector indicating the position

of an external marker at time i while pi = (xti, y
t
i) is a

two–dimensional vector indicating the position of the target
at time i. Our goal is to find an expression of functional
relationship T = F(M) between the signals, separately for
each component:

xt = F1(xm), (1)
yt = F2(ym), (2)

where the relations F1 and F2 are assumed to have the same
functional form, but different values of the parameters.

B. Evaluation of performance

Suppose, we have a testing dataset consisting of n obser-
vations, where pi = (xti, y

t
i) is the true position of the tumor

at time i, and p̂i = (x̂ti, ŷ
t
i) is our prediction for the same

time i. To evaluate the performance of prediction we use two
different measures:

1) the mean absolute error, i.e. the average distance from
the predicted position to the true position of the tumor:

MAE =

∑n
i=1

√
(x̂ti − xti)2 + (ŷti − yti)2

n
. (3)

2) the root mean square error, i.e. the sample standard
deviation of the differences between predicted and
observed tumor position:

RMSE =

√∑n
i=1(x̂ti − xti)2 + (ŷti − yti)2

n
. (4)

C. The periodogram

Periodogram [12] allows estimating the periodic tenden-
cies in the observed time series. The periodogram of a time
series {Yn}, n = 1, 2, , N is defined as

IN (wj) =
1

N
|Y (wj)|2, (5)

where Y (wj) is the discrete Fourier transform of {Yn}:

Y (wj) =
N−1∑
n=0

Yne−2πiwjn, (6)

wj = j/N is a set of possible frequencies for j =
1, 2, . . . , (N − 1)/2 and i is imaginary unit.

In order to stabilize the estimate of the spectrum it is
necessary to smooth the periodogram. It is recommended
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TABLE I
CORRELATION RESULTS INTERPRETATION

rxy Strength of relationship
0.5 < |rxy | < 1 Strong
0.3 < |rxy | < 0.5 Medium
0.1 < |rxy | < 0.3 Weak
0 < |rxy | < 0.1 None or very weak

[12] to use the Daniell window as a smoothing filter for
generating an estimated spectrum from the periodogram. The
modified Daniell window of length m is defined as

gi =

{
1

2(m−1) , i = 1 or i = m
1

m−1 , i otherwise
(7)

where m is the number of weights of the filter, gi is the ith

weight of the filter and i = 1, . . . ,m is an index.
Using periodogram plots it is easy to identify frequency

(frequencies) wj which corresponds to dominant spike
(spikes) of the periodogram and then calculate dominant
period (periods) using formula T = 1/wj .

D. Correlation coefficient

In order to determinate the degree to which external
markers and functional targets movements are associated
we use Pearson correlation coefficient. Correlation coeffi-
cient between two variables x = x1, x2, . . . , xn and y =
y1, y2, . . . , yn is calculated by:

rxy =

n∑
i=1

(xi − x̄)
n∑
i=1

(yi − ȳ)

nσxσy
, (8)

where x̄, ȳ are averages of x and y, σx, σy are standard
deviations of x and y, n is the sample size.

Coefficient values ranges from -1 to 1. The closer the ab-
solute value of rxy gets to 1, the stronger linear relationship
between the variables is, see table I.

E. Linear regression

Linear regression assumes that two variables are system-
atically linked by a linear relationship:

y = β0 + β1x+ ε, (9)

where x is the input variable, y is the response (predicted)
variable, (β0, β1) are model parameters, and ε is a random er-
ror. Ordinary least squares method [13] is a typical approach
for estimating the unknown model parameters (β0, β1), given
a set of observations (x, y).

The extension to multiple predictor variables is known as
multiple linear regression. Formally, the model for multiple
linear regression can be written as

y = β0 + β1x1 + β2x2 + . . .+ βpxp + ε, (10)

where p is the number of independent variables and other
notations remain unchanged.

One of the key assumptions behind the linear regression
models is that the errors ε are independent from each other,
i.e. E(εtεs) = 0, when t 6= s and when t = s, E(εt)

2 = σ2,
where E(x) denotes the mean of x, and σ2 denotes the vari-
ance of εt. If E(εtεs) 6= 0, then the assumption is violated,

Fig. 1. Points of interest in DICOM image

and the regression model has a problem of autocorrelation.
Mathematically first–order autocorrelation means that the
model errors satisfy a recursive relationship [14]:

εt = ρεt−1 + ut, (11)

where {ut, t = 1, 2, ...n} is a sequence of independent
random variables, which are normally distributed with zero
mean and a constant variance, and ρ is the autoregressive
coefficient (|ρ| < 1). When ρ = 0, errors εt are uncorre-
lated. The most typical case is the first–order autoregressive
error. For determining whether the errors are following the
first–order autoregressive process, we use the Durbin–Watson
test [15].

If autocorrelation is found, we modify the model by
including the estimated first–order autoregressive coefficient
of the error term:

yi = β0 + β1xi + . . .+ βpxp + ei, (12)
ei = ρei−1 + εi, (13)

where ei are regression model residuals, ε random error and
ρ is autoregressive coefficient which can be computed using
residuals of initial model (equation (9)):

ρ̂ =

n∑
i=2

eiei−1

n∑
i=2

e2i−1

. (14)

III. DATA COLLECTION

Respiratory motion data was collected with MRT Achieva
XR (Philips Medical Systems) (with a 16–channel SENSE
XR Torso coil). 8 sets of 2D signals (see fig. 2) were
collected, using 3 surrogate markers. Two persons data was
collected from using three external markers placed at the
different positions . Records were produced in DICOM1.

1Digital Imaging and Communications in Medicine (DICOM) is de facto
standard for handling, storing, printing, and transmitting information in
medical imaging.

Engineering Letters, 23:4, EL_23_4_12

(Advance online publication: 17 November 2015)

 
______________________________________________________________________________________ 



Fig. 2. Motion directions

TABLE II
SIGNALS SUMMARY: MIN AND MAX DISPLACEMENT (MIN, MAX),

STANDARD DEVIATION (SD) AND DOMINANT PERIOD (T)

Direction Min Max SD T
P0 x 25.9 30 0.97 11.91
P0 y 74.8 75.5 0.18 11.91
P1 x 23.7 24.7 0.24 11.91
P1 y 48.4 48.6 0.05 11.91
P2 x 23.8 24.8 0.22 11.91
P2 y 20.9 21.4 0.11 11.91
P3 x 45.7 50.7 1.21 11.63
P3 y 56.8 61.8 1.42 *
P4 x 35.1 37.8 0.62 11.91
P4 y 34.3 40.4 1.53 11.91
P5 x 29.2 29.8 0.12 11.91
P5 y 27.3 31.5 1.16 11.91
P6 x 41.8 46.8 0.88 11.91
P6 y 29.3 34 1.5 11.91
P7 x 44.5 46 0.33 11.91
P7 y 36.5 43.3 1.7 11.91
P8 x 50.6 53.8 0.74 11.91
P8 y 29.9 38 2.02 11.91
P9 x 42.5 46.2 0.64 *
P9 y 24.9 30.5 1.45 11.91

Time series from the records were extracted using in–house
tools, where several (6—10) points–of–interest (POI) were
tracked instead of tumors. The duration of the records varied
from 300 to 500 frames, i.e. 150—400 sec. Overall, 87
signal–pairs were obtained. However, some signals (6) were
deemed useless, because either target or marker did not
move. All signals were defined by two components: one part
of the signals had lateral and anterior-posterior directions
(superior inferior direction was ignored), and another part
had anterior–posterior and superior inferior directions (lateral
direction was ignored), see fig. 1 for an example of POIs.

In this paper part of data, consisting of three external
markers (P0 — P2) and seven functional targets (P3 — P9)
was used, see summary in table II.

Analysis of collected signals shows that maximum range
of the internal POI’s (functional targets) is higher than exter-
nal markers, i.e. functional targets move more. Moreover, ex-
ternal markers move more in x (anterior – posterior) direction
and targets move more in y (superior – inferior) direction. In
this case lateral direction was not observed. When anterior
– posterior and lateral directions were observed (superior
– inferior direction was ignored) targets and markers move
more in anterior – posterior direction.

To identify the periodic tendencies in the observed time
series we use periodograms. Based on this analysis results
(see table II), it can be concluded that each signal usually
has one period which is more or less constant for all signals
of each series. Exceptional cases (marked by the symbol *)

TABLE III
CORRELATION MATRIX

P0 x P0 y P1 x P1 y P2 x P2 y
P3 x 0.05 -0.06 0.07 -0.07 0.06 0.03
P3 y -0.33 0.37 -0.33 0.26 -0.3 -0.24
P4 x 0.98 -0.91 0.97 -0.82 0.93 0.89
P4 y -0.99 0.93 -0.98 0.85 -0.94 -0.89
P5 x 0.77 -0.64 0.79 -0.65 0.9 0.85
P5 y -0.97 0.88 -0.95 0.82 -0.96 -0.91
P6 y -0.72 0.72 -0.74 0.64 -0.73 -0.66
P7 x 0.92 -0.91 0.92 -0.79 0.84 0.79
P7 y -0.99 0.93 -0.97 0.84 -0.93 -0.88
P8 x 0.97 -0.91 0.96 -0.82 0.91 0.86
P8 y -0.97 0.91 -0.96 0.83 -0.92 -0.88
P9 x -0.09 0.04 -0.05 0.03 -0.01 -0.06
P9 y -0.79 0.78 -0.8 0.7 -0.79 -0.73

are observed for signals with failed detection: in these cases
period can not be identified because periodograms have a lot
of dominant spikes.

Data was transformed for the analysis, i.e. each time series
was normalized such that the minimum value is zero, and the
maximum is equal to max(Pi)−min(Pi), as follows

x′ij = xij −min(xi1, xi2, . . . , xin), (15)
y′ij = yij −min(yi1, yi2, . . . , yin), (16)

where Pi = {pi1, pi2, . . . , pin} is a time series consisting of
n observations and pij = {xij , yij}.

IV. EXPERIMENTAL ANALYSIS

A. Correlation

To evaluate the strength of the (linear) relationship be-
tween markers and targets we use Pearson correlation co-
efficient. Calculated measures are provided in table III. To
simplify the analysis of correlation results we use heatmap,
where white colour indicates weak correlation between sig-
nals and black – strong correlation. Correlation values in this
graph are represented in terms of absolute size (see fig. 4).

Correlation analysis shows, that most of the signals are
linked by strong or medium relationships. Overall data
correlation varies from 0.001 to 0.991 with average equal
to 0.492. In this particular case the strongest correlation
was observed between target P0 and marker P4. The lowest
degree of correlation were obtained between markers P3, P9
and all external markers due to the failed detection of P3 and
P9. Despite the fact that correlation between target P6 and
all external markers is quite strong this target detection has
failed as well 2.

Moreover, correlation analysis shows that the strength of
the (linear) relationship between targets and markers also
depends on the external marker position. In almost all cases,
the strongest correlation was observed between targets and
markers from position P0 (abdomen area).

B. Prediction of Functional Target Position

Multiple linear regression is another approach for pre-
dicting position of the functional target from an external
marker. In this case it is assumed that the position of each

2Markers with failed detection were eliminated from the further analysis.
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Fig. 4. Signals correlation heatmap

coordinate of the internal point depends on all coordinates
of the external marker:

x
(t)
i = β̂x0 + β̂x1x

(m)
i + β̂x2 y

(m)
i (17)

y
(t)
i = β̂y0 + β̂y1x

(m)
i + β̂y2y

(m)
i . (18)

At this stage dataset was split into training and test
sets as 50:50. All possible pairs between external markers
and internal points–of–interest were analyzed. Based on the
correlation analysis results linear model was chosen.

C. Simple linear regression

Using simple linear regression each coordinate of internal
signal is predicted separately based on the corresponding
coordinate of the external marker:

x
(t)
i = β̂x0 + β̂x1x

(m)
i , (19)

y
(t)
i = β̂y0 + β̂y1y

(m)
i . (20)

Table IV for some results. Using MAE and RMSE mea-
sures we evaluated performance of the predictors on the

two-dimensional trajectories (2D) and separate x and y
predictions. The table also shows p–values of Durbin–Watson
test and adjusted coefficient of determination values (R2

adj)
that indicate how well a regression line fits the data.

The table shows that better results are obtained by pre-
dicting x coordinate: average value of MAE for coordinate
x is 0.14 mm and for y –0.75 mm; average value of RMSE
for x is 0.31 mm and for y –0.93 mm. For both directions
regression models are characterized by relatively high values
of R2

adj . However, almost all the standard linear regression
models suffer from the problem of autocorrelation, since in
the most of cases p–values of the Durbin–Watson test are
lower than 0.05. This may lead to the conclusion that values
of R2

adj may be overrated. In order to solve this problem we
apply a modified version of the regression model that takes
into account the first–order autoregressive errors. The results
are reported in the Table V.

Comparing the results obtained by the linear regression
model with the first–order autoregressive errors we can see
that all p–values of Durbin–Watson test are greater than 0.05,
which suggests that the problem of autocorrelation is solved.
Moreover, the proposed models have larger values for the
adjusted coefficient of determination (R2

adj), i.e. models with
first–order autoregressive errors fit the data better.

In table VIII we present performance of all the models.
We can see that the average values are slightly higher due
to the first-order dependencies. More substantial changes are
observed in maximum values of the performance measures.
Since the main goal is to find a model with the best
forecasting performance it can be concluded that simple
linear regression model is more suitable for the functional
target tracking in comparison with the simple linear model
with AR(1) errors.
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TABLE IV
PREDICTION ERROR USING SIMPLE LINEAR REGRESSION

Model MAE, mm RMSE, mm p–value R2
adj

x y 2D x y 2D x y x y
P4∼P0 0.1 0.53 0.55 0.14 0.67 0.69 0 0 0.96 0.89
P4∼P1 0.15 0.76 0.79 0.18 0.92 0.94 0 0 0.93 0.74
P4∼P2 0.2 0.85 0.89 0.26 1.01 1.04 0 0 0.87 0.81
P5∼P0 0.07 0.49 0.51 0.09 0.63 0.64 0 0 0.53 0.8
P5∼P1 0.07 0.6 0.61 0.09 0.73 0.73 0 0 0.55 0.7
P5∼P2 0.05 0.61 0.61 0.06 0.73 0.73 0 0.03 0.72 0.86
P7∼P0 0.1 0.6 0.62 0.13 0.76 0.77 0 0 0.82 0.88
P7∼P1 0.11 0.85 0.87 0.14 1.04 1.05 0 0 0.83 0.72
P7∼P2 0.15 0.93 0.95 0.19 1.1 1.12 0 0 0.66 0.8
P8∼P0 0.15 0.81 0.85 0.19 1.01 1.03 0.13 0 0.93 0.85
P8∼P1 0.22 0.99 1.04 0.26 1.24 1.26 0.03 0 0.91 0.68
P8∼P2 0.29 1.03 1.1 0.38 1.26 1.32 0 0 0.85 0.77

TABLE V
PREDICTION ERROR USING SIMPLE LINEAR REGRESSION WITH AR(1) ERRORS

Model MAE, mm RMSE, mm p–value R2
adj

x y 2D x y 2D x y x y
P4∼P0 0.10 0.53 0.56 0.14 0.68 0.7 0.82 0.96 0.97 0.93
P4∼P1 0.15 0.75 0.79 0.18 0.91 0.93 0.35 0.50 0.94 0.75
P4∼P2 0.18 0.81 0.84 0.24 0.94 0.97 0.36 0.90 0.91 0.83
P5∼P0 0.07 0.52 0.53 0.09 0.67 0.68 0.09 0.59 0.68 0.9
P5∼P1 0.07 0.60 0.61 0.09 0.72 0.73 0.1 0.85 0.68 0.74
P5∼P2 0.04 0.59 0.6 0.06 0.71 0.71 0.72 0.91 0.74 0.86
P7∼P0 0.11 0.60 0.62 0.14 0.76 0.77 0.3 0.93 0.86 0.92
P7∼P1 0.10 0.85 0.87 0.13 1.03 1.04 0.77 0.36 0.85 0.73
P7∼P2 0.16 0.88 0.91 0.19 1.03 1.05 0.34 0.82 0.77 0.82
P8∼P0 0.15 0.82 0.85 0.19 1.01 1.03 0.13 0.74 0.93 0.88
P8∼P1 0.22 0.99 1.04 0.26 1.23 1.26 0.91 0.37 0.91 0.7
P8∼P2 0.27 0.97 1.04 0.35 1.19 1.24 0.47 0.62 0.86 0.8

D. Multiple linear regression

Multiple linear regression results are provided in Table VI.
The results are similar to the simple linear regression case: x-
coordinate predictions are more accurate than y-coordinate,
regression models are characterized by relatively high values
of R2

adj , but suffer from the problem of autocorrelation, i.e.
p–values of the Durbin–Watson test are lower than 0.05.
However, analyzing the testing accuracies over all the models
(Table VIII) we can see a noticeable decrease in average
values of MAE and RMSE. Improvement in accuracy was
caused by more precise predictions of coordinate y. In this
case the use of multiple linear regression does not have a
significant impact on the x-coordinate predictions. Relation
between prediction accuracy and the range of signal motion
was observed in all models: in cases where x is lateral
direction and y is anterior – posterior, coordinate y is the
one with a greater range of movement and has more accurate
predictions. When lateral direction was ignored, prediction
of anterior–posterior direction was more successful than
superior–inferior and the range of markers motion is wider
for anterior–posterior direction. This may lead to the conclu-
sion, that more accurate results are obtained using coordinate
with a greater range of movement. In the future we are
planning to test the hypothesis, that quite high accuracy
can be obtained using only one coordinate with the largest
amplitude.

In order to solve the above-mentioned problem of the
autocorrelation an inclusion of the estimated first–order au-
toregressive coefficient of the error term was investigated.
The results (see Table VII) show that this modification
solved the problem of autocorrelation. Moreover, models
with the first–order autoregressive errors have larger values

for the adjusted coefficient of determination (R2
adj). How-

ever, analyzing the prediction error over all the models (Table
VIII) we can see that more accurate results are obtained
using multiple linear regression model. This leads to the
conclusion that models with the first–order autoregressive
errors suffer from the problem of overfitting. In summary, it
can be concluded that multiple linear regression model can
be identified as the most suitable method for functional target
motion prediction in context of the analyzed methods.

E. Relation between predictor performance and marker po-
sition

Previous results showed that multiple linear regression pro-
vides the most accurate predictions. More detailed analysis of
these results (Table VI) suggest that prediction performance
depends on the position of an external marker POI. It is
easy to see that more accurate predictions are obtained using
external markers placed in position P0 –area of the abdomen.
Also we can see that the minimum value of MAE is observed
for relation P5∼P0 (see fig. 7, fig 8), while RMSE - for
relation P4∼P0 (see fig. 5, fig 6).

V. CONCLUSION

A comprehensive analysis of selected signals shows that
functional targets move more than external markers. Signals
movement range depends on their directions as well: mark-
ers move more in anterior–posterior direction; targets –in
superior inferior direction, if this direction is ignored, then
in anterior–posterior. Experiments show that multiple linear
regression model is the most suitable method for functional
target motion prediction from the analyzed methods. Further-
more, better result are obtained using external markers with
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TABLE VI
PREDICTION ERROR USING MULTIPLE LINEAR REGRESSION

Model MAE, mm RMSE, mm p–value R2
adj

x y 2D x y 2D x y x y
P4∼P0 0.09 0.2 0.24 0.12 0.25 0.27 0 0 0.97 0.98
P4∼P1 0.15 0.32 0.37 0.18 0.39 0.43 0 0 0.93 0.95
P4∼P2 0.22 0.55 0.61 0.3 0.76 0.82 0 0 0.9 0.9
P5∼P0 0.06 0.21 0.23 0.08 0.27 0.28 0 0 0.58 0.96
P5∼P1 0.07 0.34 0.35 0.09 0.4 0.41 0 0 0.56 0.91
P5∼P2 0.04 0.4 0.4 0.06 0.54 0.54 0 0 0.72 0.95
P7∼P0 0.11 0.22 0.26 0.15 0.27 0.31 0 0.07 0.85 0.97
P7∼P1 0.11 0.36 0.39 0.14 0.44 0.46 0 0 0.83 0.93
P7∼P2 0.15 0.6 0.63 0.19 0.82 0.85 0 0 0.67 0.89
P8∼P0 0.15 0.42 0.47 0.19 0.49 0.53 0.28 0 0.94 0.94
P8∼P1 0.21 0.52 0.59 0.25 0.63 0.67 0.05 0 0.91 0.89
P8∼P2 0.32 0.73 0.83 0.43 0.97 1.07 0 0 0.87 0.87

TABLE VII
PREDICTION ERROR USING MULTIPLE LINEAR REGRESSION

Model MAE, mm RMSE, mm p–value R2
adj

x y 2D x y 2D x y x y
P4∼P0 0.09 0.21 0.24 0.12 0.25 0.28 0.78 0.6 0.97 0.98
P4∼P1 0.16 0.33 0.38 0.19 0.4 0.45 0.42 0.18 0.94 0.96
P4∼P2 0.2 0.47 0.53 0.27 0.63 0.69 0.44 0.69 0.93 0.94
P5∼P0 0.06 0.23 0.25 0.08 0.29 0.3 0.41 0.77 0.69 0.97
P5∼P1 0.07 0.39 0.41 0.09 0.46 0.47 0.2 0.1 0.67 0.95
P5∼P2 0.04 0.36 0.37 0.06 0.5 0.5 0.76 0.55 0.74 0.96
P7∼P0 0.11 0.22 0.26 0.15 0.27 0.31 0.7 0.07 0.87 0.97
P7∼P1 0.11 0.37 0.4 0.14 0.45 0.47 0.68 0.34 0.85 0.95
P7∼P2 0.16 0.53 0.57 0.19 0.7 0.73 0.45 0.6 0.78 0.93
P8∼P0 0.15 0.43 0.48 0.19 0.5 0.53 0.28 0.27 0.94 0.94
P8∼P1 0.21 0.51 0.58 0.25 0.62 0.67 0.05 0.57 0.91 0.92
P8∼P2 0.3 0.66 0.76 0.4 0.88 0.97 0.58 0.49 0.88 0.91

TABLE VIII
PREDICTION ERROR OVER ALL MODELS

Simple lin. regr. Simple lin. regr. with AR(1) Multiple lin. regr. Multiple lin. regr. with AR(1) errors
MAE,mm RMSE, mm MAE,mm RMSE, mm MAE,mm RMSE, mm MAE,mm RMSE, mm

Average 1.069 1.245 1.074 1.252 0.81 0.958 0.812 0.962
Min 0.25 0.29 0.25 0.29 0.13 0.15 0.14 0.15
Max 3.44 4.01 3.76 4.28 3.35 4.05 3.47 4.17

a greater range of movement and that is usually abdomen
area.

Our plans include testing the hypothesis, that quite high
accuracy can be obtained using only one coordinate with
the largest amplitude. We plan to analyze respiratory motion
prediction and design cases of an overall system radiation
therapy system with respiratory motion compensation.
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Fig. 5. Forecast and error term of x from relation P4∼P0 (Multiple Linear Regression)
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Fig. 6. Forecast and error term of y from relation P4∼P0 (Multiple Linear Regression)

Engineering Letters, 23:4, EL_23_4_12

(Advance online publication: 17 November 2015)

 
______________________________________________________________________________________ 



0 50 100 150 200 250

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

time

m
m

forecast
true signal

0 50 100 150 200 250

−
0.

2
−

0.
1

0.
0

0.
1

Error

time

m
m

Fig. 7. Forecast and error term of x from relation P5∼P0 (Multiple Linear Regression)
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Fig. 8. Forecast and error term of y from relation P5∼P0 (Multiple Linear Regression)
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