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Abstract—A 6-DOF trajectory model with lateral force is 

established for guided projectiles with impulse thrusters. The 

trajectory correction capability is simulated under conditions of 

different impulse shapes, max lateral forces, impulse durations 

and total impulses of impulse thrusters. As the simulations 

indicated, the trajectory correction capability has a linear 

relationship with the total impulse deployed and steadily 

increases with the total impulse, but has little relationship with 

impulse shapes, max lateral forces, or impulse durations. 

However, the actual trajectory correction capability is degraded 

because projectiles spin and thrusters act with a short-time 

delay and a certain duration. The function is formulated 

between the trajectory capability and the impulse duration, 

projectile spin rate, and impulse action delay. Live firing 

experiments indicate that the simulations and formulations are 

effective for engineering design of trajectory correction 

projectiles with impulse thrusters. 

 
Index Terms—Guided projectiles, impulse thrusters, 

modeling, trajectory correction capability 

 

I. INTRODUCTION 

RTILLERY rockets are used in the battlefield for 

indirect fire on distant targets, they have large impact 

point dispersion and are commonly used as area rather than 

precision weapons. Modern warfare, however, demands 

higher precision in order to avoid or reduce the collateral 

damage as much as possible. One solution for artillery rockets 

that could meet the demands of modern warfare is to retrofit 

these projectiles with some level of low cost precision. 

Impulse thrusters are a practical low-cost way to correct the 

flight trajectory of projectiles and improve the firing precision 

of projectiles. 

Research and development on the use of impulse thrusters 

in order to improve the precision of missiles and rockets has 

been going on for decades now. The thrusters’ application on   

rockets has been originally considered by Harkins and Brown. 
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They have proposed a method using a set of thrusters to 

marginalize the off-axis angular rates of the rockets just after 

exiting the launcher and managed to reduce the impact point 

dispersion by the factor of 4 [1]. Thanat Jitpraphai and Mark 

Costello have conducted studies that consider the effect of the 

number of pulse jets, pulse jet impulse, and trajectory tracking 

window size on impact point dispersion [2]. S.K.Guta et al. 

have conducted simulation studies to arrive at tuning 

parameters, namely the tracking error window size, the 

required elapsed time between the pulsejet firings and the 

angle of tolerance between the tracking error and the 

individual pulsejet force, to get the best trajectory correction 

performance [3]. D.Corriveau, C.Berner, and V.Fleck have 

researched the method to determine the impulse thrusters’ 

configurations that yield the best control authority and thus 

the greatest amount of correction on the projectile trajectory, 

results indicated that locating the impulse thruster at or aft of 

the center of gravity provides greater drift correction for a 

given impulse magnitude [4]. D. Corriveau, P. Wey, and C. 

Berner have presented a technique to properly pair impulse 

thrusters on fin-stabilized projectile in order to maximized 

drift correction while minimizing the range lost due to the 

angular motion [5]. Recently, Bojan Pavković and Miloš 

Pavić have presented a simplified control scheme for artillery 

rockets named the active damping method which performs a 

correction of disturbances immediately after a rocket exits a 

launcher tube, the overall performances of the active damping 

control system in relation to its energy resources – number 

and magnitude of the pulsejets were analyzed in this paper 

[6]. 

Researches on the use of impulse thrusters described above 

did not involve the impact of impulse shapes and many 

parameters such as the impulse duration, projectile spin rate, 

and impulse action delay on the trajectory correction 

performance. The objective of this paper is to elucidate the 

impact of the impulse shapes and thruster parameters on the 

trajectory correction performance for fin-stabilized 

projectiles though simulations and analyses. 

II.   MODELING AND METHODOLOGY 

The numerical simulation employed in this study consists 

of a rigid body six degree of freedom model typically utilized 

in flight dynamic modeling of projectiles. The general model 

is illustrated in Fig. 1, in this Figure, l is the axial location of 

the thruster ring,   is the phase angle of the impulse force. 

We established the 6-DOF trajectory model with lateral force 

by substituting the lateral force and its moment into the 

ballistic motion equations [7]. 
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Fig. 1.  Layout and lateral force of impulse thrusters 

 

The lateral force in quasi-body reference frame is described 

as 
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where T  denotes the lateral force of an impulse thruster,    

is the phase angle of the lateral force.  

We can get the lateral force in the aero-ballistic reference 

using the expression 
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where   is the sideslip angle , and    is the attack angle. 

The translational kinetic differential equations of the rocket 

in aero-ballistic reference frame are given by 
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  (3) 

The applied loads appearing in (3) consist of lateral 

thruster force (T ), main rocket thrust ( P ), and other force 

( F ) components. V ,   , and v  are the velocity, 

trajectory incline angle, and flight path azimuth angle of the 

rocket, respectively. 

Lateral moments of an impulse thruster in quasi-body 

reference frame are given by 
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The rotational kinetic differential equations of the rocket in 

quasi-body reference frame are given by 
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 (5) 

The applied moments appearing in (5) contain 

contributions from lateral thruster forces (denoted by TM ) 

and other forces (denoted by M ).   is the Euler roll angle 

of the rocket. 
4 4 4
, ,x y zw w w are components of the angular rate 

vector. 
4 4 4
, ,x y zJ J J  are components of the transverse moment 

of inertia. 

The translational kinematics differential equations of the 

rocket in inertial frame are given by 
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where x , y , and z  are the position vector components of 

the rocket. 

The rotational kinematics differential equations of the 

rocket in inertial frame are given by 
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where    and   are the yaw and pitch angle of the rocket, 

respectively. 

The angles in (1) ~ (7) have the relation as follows: 
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Equations (1) ~ (8) constitute the 6-DOF trajectory model 

for guided projectiles with impulse thrusters, they can be 

solved by the fourth order Runge-Kutta method.  

Three impulse shapes are modeled, including the 

rectangular impulse, triangular impulse, and trapezoidal 

impulse, as shown in Fig. 2. In Fig. 2, mF  is the max lateral 

force, pt  is the impulse duration. 

The impulse force of the rectangular impulse is described 

as 

 0m pF F t t    (9) 

The impulse force of the triangular impulse is described as  
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The impulse force of the trapezoidal impulse is described 

as 
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Fig. 2.  Impulse shapes 

III. TRAJECTORY CORRECTION CAPABILITY SIMULATIONS 

A fin-stabilized, indirect-fire rocket was selected for this 

study and the results are typical for this class of projectile. 

The rocket configuration used in the simulation study is a 

representative 122 mm artillery rocket, 2.99 m long, 

fin-stabilized. The main rocket motor burns for 3.6 s and 

imparts an impulse to the rocket of 60788 Ns. During the main 

rocket motor burns, the forward velocity of the rocket is 

increased from 39.6 m/s to 958.0 m/s. The rocket weight, 

mass center location from the nose tip, roll inertia, and pitch 

inertia before and after burn is 66.1/43.0 kg, 1.43/1.21 m, 

0.16/0.12 kg-m2, and 48.42/36.36 kg-m2, respectively. The 

rocket is launched at sea level toward a target on the ground 

with altitude and cross range equal zero at a range of 30 km. 

The simulations have been done using a fourth order 

Runge-Kutta algorithm. The thruster ring is assumed to be 

located at 0.869 m from the nose tip of the rocket, and 

contains a certain number of individual thrusters where each 

individual thruster imparts an impulse on the rocket body over 

a certain duration.  

The calculation method of trajectory correction capability 

is: all the individual thrusters are fired for range or cross range 

correction, the cross range correction capability is obtained 

through the cross range of the controlled trajectory minus the 

cross range of the uncontrolled trajectory, and the range 

correction capability is obtained through the range of the 

controlled trajectory minus the range of the uncontrolled 

trajectory. The range correction performance of 10 individual 

thrusters is shown in Fig. 3, and the cross range performance 

of 10 individual thrusters is shown in Fig. 4. Each individual 

thruster has an impulse of 60 Ns, and is fired around 45 s with 

the firing interval equals 0.2 s. The range correction capability 

of 10 individual thrusters is 410.0 m, while the cross range 

correction capability is 561.1 m, according to the calculation 

method described above. 

The trajectory correction capability is simulated under 

conditions of different impulse shapes, different max lateral 

forces, different impulse durations, and different total 

impulses. In these simulations, 10 individual thrusters with 

rectangular impulse, triangular impulse, or trapezoidal 

impulse were fired around 45 s with the firing interval equals 

0.2 s for range or cross range correction, and the individual 

thruster impulse was examined over a range of 6 Ns to 60 Ns 

in steps of 6 Ns. The impulse duration is set as 5 ms, 10 ms, 

and 20 ms, 1 、 2  obeys the relation 1 2   for the triangular 

impulse, 1 、 2  、 3  obeys the relation 1 2 32 2     for the 

trapezoidal impulse. The max lateral force of the impulse 

thrusters is adjusted according to the change of the thruster 

impulse and the impulse duration. The projectile spin rate was 

set as 0 r/s to isolate the impact of the projectile spin rate on 

the trajectory correction performance. Simulation Results is 

shown in Fig. 5.  
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Fig. 3.  Range correction performance of thrusters 
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Fig. 4.  Cross range correction performance of thrusters 
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a)Cross range correction 

(impulse duration = 5ms) 
c) Cross range correction 

(impulse duration = 10ms) 
e) Cross range correction 

(impulse duration = 20ms) 
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b) Range correction 

(impulse duration = 5ms) 
d) Range correction 

(impulse duration = 10ms) 
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(impulse duration = 20ms) 

Fig. 5.  The impact of parameters of thrusters on correction capability 

 

Fig. 5(a) and Fig. 5(b) consider thrusters with 5 ms impulse 

duration, while Fig. 5(c) and Fig. 5(d) consider 10 ms impulse 

duration, and Fig. 5(e) and Fig. 5(f) consider thrusters with 20 

ms impulse duration. In all cases, as the results indicated, the 

trajectory correction capability has a linear relation with the 

total impulse deployed, and the trajectory correction 

capability increases steadily as the total impulse increases, 

however, the trajectory correction capability has little 

relationship with impulse shapes, max lateral forces, or 

impulse durations. Therefore, (12) can be obtained by 

defining the coefficient k as the ratio between the trajectory 

correction capability R and the total impulse I . 

 R k I   (12) 

where k is the coefficient of converting the impulse to the 

trajectory correction capability, and the coefficient value 

reflects the correction efficiency of the impulse thruster. 

As shown in Fig. 5(a) and Fig. 5(b), correction efficiency of 

the impulse thruster for range and cross range correction is 

different, for example,  the cross range correction capability is 

290m when the total impulse deployed is 300 Ns, whereas the 

range correction capability is 210m when the total impulse 

deployed is 300 Ns. The converting coefficients for range and 

cross range correction, denoted by xk  and zk  respectively, 

have different values, and it should be noted that the xk  and 

zk  will change with flight time. Simulation results of  xk  and 

zk  of the rocket are shown in Fig.6. The launch angle of the 

rocket is 45 deg in the simulations. 

As shown in Fig. 6, xk  and zk  have different change trends, 

xk  increases gradually in ballistic ascending segment and 

decreases gradually in ballistic descending segment, while zk  

decreases gradually with the decrease of time to go. The 

change trends of xk  and zk  indicate that the longitudinal 

correction efficiency of impulse thrusters is lower compared 

to the horizontal correction efficiency in ballistic ascending 

segment, and longitudinal and horizontal correction 

efficiency reduces with the decrease of time to go in ballistic 

descending segment. The change trends of xk  and zk  is 

import for the design of trajectory correction scheme, which 

suggests that the impulse thrusters should be fired at time 

when the correction efficiency is higher to get the maximum 

trajectory correction capability. 
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Fig. 6.  Converting coefficients vs. flight time 

IV. IMPULSE UTILIZATION EFFICIENCY ANALYSIS 

The fin-stabilized projectiles usually spin slowly during the 

flight time, then the firing delay dt  and the impulse duration 

pt  have an important impact on the trajectory correction 
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performance, because they make the actual direction of 

impulse force has an angle error d  with the commanded 

direction of impulse force, as shown in Fig. 7.  
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Fig. 7.  Firing progress of an impulse thruster 

 

We obtain the expression of d  by using *I  depicts the 

impulse of a thruster, and *  depicts the time corresponding 

to *1

2
I : 

 *( )d dw t    (13) 

Then the impulse utilization efficiency of an impulse 

thruster is described as 
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The impulse utilization efficiency 1  can be improved 

significantly by sending ignition signal of impulse thrusters 

ahead with the time *dt  . 

At the same time, the thrusters exerted impulse forces and 

moments over a roll window (denoted as pwt ) of the entire 

roll cycle, due to the gyroscopic action, as shown in Fig. 7, 

which will also cause the impulse utilization efficiency loss of 

thrusters. The impulse utilization efficiency model due to 

impulse duration of the impulse thrusters with rectangular 

impulse, triangular impulse, and trapezoidal impulse will be 

analyzed in the following sections. 

A. Rectangular Impulse 

For the thrusters with rectangular impulse, the total impulse 

of a thruster is computed as 
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*  is described as 

 * / 2   (16) 

As shown in Fig. 7,   depicts the angle between the 

direction of impulse force and the actual direction of impulse 

force during the impulse thruster burns,  is computed 

according to 

 *w wt    (17) 

The impulse of a thruster converts to the actual direction is 

described as  
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With the expression of I  in (19) and the expression of *I  

in (15), the impulse utilization efficiency of the rectangular 

impulse is computed as 
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B. Triangular Impulse 

For the thrusters with triangular impulse, the total impulse 

of a thruster is computed as 
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When 1 2  , *  obeys the following relation: 
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The solution to (24) is: 
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The impulse of a thruster converts to the actual direction is 

described as: 
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We obtain (27) by substituting (17) into (26): 
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The impulse utilization efficiency of the triangular impulse 

is computed as 
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  (28) 

C. Trapezoidal Impulse 

 For the thrusters with trapezoidal impulse, the total 

impulse of a thruster can be computed as 

 1 2 3
0

( 2 )
2

pt
mF

I Fdt         (29) 
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*  obeys the following relation: 
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The solution to (30) is: 
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 The impulse of a thruster converts to the actual direction is 

described as 
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The impulse utilization efficiency of the trapezoidal 

impulse is computed as 
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Through analyses above, the total impulse utilization 

efficiency of the thruster with rectangular impulse is 

computed as 
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The total impulse utilization efficiency of the thruster with 

triangular impulse is computed as 
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The total impulse utilization efficiency of the thruster with 

trapezoidal impulse is computed as 
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Based on analyses above, the correction capability formula 

in (12) is rewritten as 

 R k I    (37) 

where R is the trajectory correction capability, I is the total 

impulse of the thrusters,   is the total impulse utilization 

efficiency, k is the converting coefficient. 

V.   EXPERIMENTS AND DISCUSSION 

A live firing experiment has been done to investigate the 

correction performance of impulse thrusters and verify the 

effectiveness of the trajectory correction capability model. 

The characters of the rocket has been launched is same to the 

rocket described in the simulations above. The thruster ring 

contains 48 impulse thrusters, and each thruster has an 

impulse of 10.89 Ns. The thruster impulse was modeled as a 

triangular impulse (Fm=1361 N, 1 =2 ms, 2 =14 ms) 

according to its characters, as shown in Fig. 8. The rocket was 

launched at 200 m above sea level toward a target on the 

ground with cross range equal zero at a range of 30 km, and 

the thrusters was designed to correct horizontal impact point 

deviation of the rocket with the firing interval equals 0.3 s. 

The trajectory correction start time was set as 20 s. The 

thruster ignition signal was send ahead with the time *dt   to 

avoid the impulse utilization efficiency loss caused by 

impulse delay, where *  was calculated by (23), and dt  has 

been measured by professional equipment. 
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Fig. 8.  Impulse model 

 

Fig. 9 shows the changing of the rocket spin rate. The 

rocket spin rate gets its max value 17.25 r/s at 3.7 s, then 

reduces gradually and remains smaller than 10 r/s after 20 s. A 

relatively low spin rate leads to a higher impulse utilization 

efficiency.  

Fig. 10 plots the predicted impact point deviation of the 

rocket and impulse thrusters fired flags. The predict algorithm 

of impact point deviation based on perturbation theory has 

high precision, so it was used to calculate the actual correction 

distance of thrusters. It can be known from Fig.10 that the 

horizontal impact point deviation reduces quickly from 

-813.2 m at 20.05 s to -214.9 m at 35.25 s under the effect of 

thrusters, so the actual correction distance is 598.3 m. 

Table I presents the calculation progress of trajectory 

correction capability with the correction capability model. As 

shown in Table I, 48 thrusters were fired during 20.05 s ~ 

35.25 s. The converting coefficient k between the thruster 

impulse and trajectory correction capability was obtained 

through two-dimensional interpolation, which reduces 

gradually as the fired time increases, as shown in Fig. 6.  The 

rocket spin rate reduces gradually from 9.75 r/s to 6.66 r/s 

during the thrusters firing period, corresponding to which the 

impulse utilization efficiency calculated according to (35) 

increases gradually from 0.976 to 0.989. The high impulse 

utilization efficiency benefits from the contributions of 

relatively low rocket spin rate and short impulse duration. The 

cross range correction capability of an individual thruster is 

calculated by its impulse I, converting coefficient k, and 

impulse utilization efficiencyη, according to (37). 
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Fig. 9.  Rocket spin rate vs. flight time 
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Fig. 10.  Horizontal impact point deviation 

 

It can be known from Table I that the individual cross range 

correction capability reduces gradually as the fired time 

increases, although the impulse utilization efficiency 

increases gradually in this period. The reason of this 

phenomena is that the reduce the change of impulse utilization 

efficiency is relatively small compared to the change of 

converting coefficient. Total cross range correction value of 

48 impulse thrusters calculated by the trajectory correction 

capability model is 619.1 m, so the error between the 

trajectory correction value calculated by trajectory correction 

capability model and the actual correction distance is 20.8 m, 

and the ratio between this error and the actual correction 

distance is 3.4%.  

In summary, the trajectory correction capability of impulse 

thrusters can be calculated by the trajectory correction 

capability model through modeling the thruster impulse as a 

rectangular impulse, triangular impulse, or trapezoidal 

impulse, determining the firing time of thrusters, and 

measuring the rocket spin rate. The small error between 

trajectory correction value calculated by the trajectory 

correction capability model and actual correction distance 

indicates that the simulation and formulation are effective for 

engineering design of trajectory correction projectiles with 

impulse thrusters. To get the demanded trajectory correction 

capability, the rocket spin rate or thruster impulse duration 

should be minimized to improve the impulse utilization 

efficiency, while the impulse thrusters should be designed to 

be ignited at time when the converting coefficient is higher, 

and enough impulse thrusters should be deployed according 

to the quantification of the demanded trajectory correction 

capability. 
TABLE I  

CALCULATING OF TRAJECTORY CORRECTION CAPABILITY 

No. 
Fired time 

(s) 

spin rate 

(r/s) 

k 

(m/Ns) 
η 

Correction 

capability 

(m) 

1 20.01 9.75 1.294 0.976 13.75 

2 20.31 9.57 1.291 0.977 13.73 

3 20.62 9.57 1.287 0.977 13.69 

4 20.93 9.56 1.284 0.977 13.66 

5 21.24 9.49 1.281 0.977 13.63 

6 21.55 9.52 1.278 0.977 13.59 

7 21.85 9.46 1.274 0.977 13.56 

8 22.17 9.29 1.271 0.978 13.53 

9 22.49 9.35 1.267 0.978 13.49 

10 22.81 9.30 1.264 0.978 13.46 

11 23.12 9.35 1.261 0.978 13.42 

12 23.43 9.30 1.257 0.978 13.39 

13 23.74 9.22 1.254 0.978 13.36 

14 24.05 8.98 1.251 0.979 13.34 

15 24.37 9.15 1.247 0.979 13.29 

16 24.69 8.90 1.244 0.980 13.27 

17 25.01 8.82 1.240 0.980 13.24 

18 25.32 8.88 1.237 0.980 13.20 

19 25.63 8.89 1.233 0.980 13.16 

20 25.93 8.87 1.229 0.980 13.12 

21 26.25 8.72 1.226 0.981 13.09 

22 26.55 8.70 1.222 0.981 13.05 

23 26.86 8.66 1.218 0.981 13.01 

24 27.17 8.60 1.214 0.981 12.97 

25 27.48 8.52 1.211 0.981 12.94 

26 27.79 8.61 1.207 0.981 12.89 

27 28.10 8.54 1.203 0.981 12.86 

28 28.41 8.49 1.200 0.981 12.82 

29 28.72 8.49 1.196 0.981 12.78 

30 29.03 8.40 1.192 0.982 12.75 

31 29.35 8.41 1.188 0.982 12.71 

32 29.66 8.33 1.185 0.982 12.67 

33 30.35 8.24 1.175 0.982 12.58 

34 30.65 8.07 1.171 0.983 12.54 

35 30.97 7.98 1.166 0.984 12.49 

36 31.28 8.01 1.162 0.983 12.44 

37 31.60 7.89 1.157 0.984 12.40 

38 31.91 7.82 1.152 0.984 12.35 

39 32.22 7.65 1.148 0.985 12.31 

40 32.56 7.65 1.143 0.985 12.25 

41 32.87 7.44 1.138 0.986 12.22 

42 33.21 7.41 1.133 0.986 12.16 

43 33.57 7.27 1.128 0.986 12.11 

44 33.93 7.20 1.122 0.987 12.06 

45 34.29 7.14 1.117 0.987 12.01 

46 34.60 6.89 1.113 0.988 11.97 

47 34.91 6.87 1.108 0.988 11.92 

48 35.35 6.66 1.101 0.989 11.85 
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VI. CONCLUSION 

Trajectory correction capability simulations indicate that 

the trajectory correction capability has a linear relationship 

with the total impulse deployed, steadily increases as the 

impulse is increased, but has little relation with impulse 

shapes, max lateral forces, or impulse durations.  

The actual trajectory correction capability is degraded 

because projectiles spin and thrusters act with a short-time 

delay and a certain duration. The relationship between 

impulse utilization efficiency with impulse duration, 

projectile spin rate and impulse delay is formulated, taking 

rectangular impulse, triangular impulse, trapezoidal impulse 

as examples. A live experiment has been done to investigate 

the correction performance of impulse thrusters and verify the 

effectiveness of the trajectory correction capability mode. 

The experiment result shows that the error between the 

trajectory correction value calculated by trajectory correction 

capability model and actual correction distance is 3.4%, 

which indicates that the simulation and formulation in this 

paper are effective for engineering design of trajectory 

correction projectiles with impulse thrusters. 
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