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Abstract—An all-to-all routing R (or a routing for
short) of a connected graph G of order n is a col-
lection of n(n− 1) elementary paths connecting every
ordered pair of vertices of G. For a given routing R
of G, the vertex-forwarding index ξ(G;R) of G is the
maximum number of paths in R passing through any
vertex of G. The vertex-forwarding index ξ(G) of G
is defined as the minimum ξ(G;R) over all routings R
of G. Similarly, given a routing R of G, we define the
edge-forwarding index π(G;R) of G a routing R as the
maximum number of paths in R passing through any
edge of G. The edge-forwarding index π(G) of G is de-
fined as the minimum π(G;R) over all routings R of G.
The forwarding index corresponds to the maximum
load of the graph. Thus, it is important, for given
graphs, to find routings minimizing these indices.

In this paper, we construct shortest paths whose ex-
pressions are specifically given between any two dis-
tinct vertices and obtain the exact values of vertex-
forwarding indices of 4-regular circulant graphs with
order n(n ≥ 6). Furthermore, based on the relations,
known so far, between vertex-forwarding indices and
edge forwarding indices, some bounds of edge for-
warding indices for this kind of graphs can be pre-
sented immediately.

Keywords: forwarding index, Circulant graph, routing,

distance, disjoint paths

1 Introduction

An interconnection network is often modeled by a con-
nected graph G = (V (G), E(G)), where the vertex set
V (G) corresponds to node set in a network represent com-
munication centers or processors, and the edge set E(G)
represents link set with which to communicate data or
messages between different vertices. For notation not de-
fined here, see [1] for references.

Designers of interconnection network specify a set of
routes for every pair (x, y) of vertices, indicating a fixed
route which carries the data transmitted from the mes-
sage source x to the destination y. The load of any ver-
tex is limited by the capacity of the vertex, for other-
wise it would reduce the efficiency of transmission and
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even cause the fault of the network. Whether or not the
network capacity could be fully used will depend on the
choice of these routes.

Let G be a connected and simple graph of order n. A
routing R of G is a set of n(n − 1) elementary paths
R(x, y) specified for all ordered pairs (x, y) of vertices of
G. if R(x, y) = R(y, x) specified by R, that is to say the
path R(y, x) is the reverse of the path R(x, y) for all x, y ,
then we say that the routing is symmetric. If each of the
paths specified by R is shortest, the routing R is said to
be minimal, denoted by Rm. For any two vertices x and
y, and a vertex z belonging to the path R(x; y) specified
by R, the path R(x; y) is the concatenation of the paths
R(x, z) and R(z, y).

In order to measure the load of a vertex, Chung et al
introduced in [2] the notion of forwarding index, which
has received considerable attention due to its importance
in networks.(see nice survey [10], and references therein).
The forwarding index is one of the fault tolerance param-
eters of a network. Some other interesting studies about
a network can be seen in [5, 6] and so on.

Let the sets of routings and minimum routings in a graph
G be denoted by R(G) and Rm(G) respectively. For a
given R ∈ R(G) and x ∈ V (G), the load of a vertex x
in a given routing R of a graph G , denoted by ξx(G,R),
is defined as the number of paths specified by R pass-
ing through x and admitting x as an inner vertex. The
forwarding index of G with respect to R is the maxi-
mum number of paths of R going through any vertex x
in G and is denoted by

ξ(G,R) = max{ξx(G,R) : x ∈ V (G)}.

The minimum forwarding index over all possible routings
of a graph G, denoted by

ξ(G) = min{ξ(G,R) : R ∈ R(G)}

is called the forwarding index of G.

In [3], Similar concepts for the edge version of a
graph was introduced by Heydemann et al. The
load of an edge e with respect to R, denoted
by πe(G,R), is defined as the number of the
paths specified by R going though it . The
edge forwarding index of G with respect to R is the
maximum number of paths specified by R going through
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any edge of G and is denoted by

π(G,R) = max{πx(G,R) : x ∈ E(G)}.

We call

π(G) = min{π(G,R) : R ∈ Rm(G)}.

the edge forwarding index of G .

For routings of shortest paths, define

ξm(G) = min{ξ(G,Rm) : Rm ∈ Rm(G)}

and

πm(G) = min{π(G,Rm) : Rm ∈ Rm(G)}.

Clearly, ξ(G) ≤ ξm(G) and π(G) ≤ πm(G). The equality,
however, does not always hold and some examples were
given in [3].

The forwarding index problem is NP-complete even if
the diameter of the graph is 2, seen in [9]. In [4], Solé
proved that the vertex forwarding indices of graphs in
a class of quasi-Cayley graphs, a new class of vertex-
transitive graphs, which contains Cayley graphs, achieve
the minimum. However, in general it is difficult to find
the exact value or a good estimate of the forwarding in-
dex of a graph, even for some special classes of graphs
such as circulant graphs. In [13], it established tight
upper and lower bounds of forwarding indices for cir-
culant graphs. But these bounds are difficult to com-
pute generally. Moreover, a uniform routing of short-
est paths may not exist for circulant graphs, just as the
case for Cayley graphs [7]. The circulant graph G is de-
noted by Cn(d1, d2, · · · , dk) or briefly Cn(di), where
0 < d1 < d2 < · · · < dk < (n+1)/2, The sequence (di) is
called a jump sequence and di is called a jump. In [13], for
the circulant digraph G(dn;S) with S = {1, d, · · · , dn−1},
d ≥ 2 and n ≥ 2, Xu et al obtained

ξ(G(dn;S)) =
1

2
(d− 1)dnn− (dn − 1)

and

π(G(dn;S) =
1

2
(d− 1)dn.

In [12], for the circulant graph G = Cn(1, 3d+1, 3d2−1),
where n = 3d2 + 3d+ 1, Thomson and Zhou determined

π(G) =
1

3
d(d+ 1)(2d+ 1), for d ≥ 2.

Generally, computing the forwarding index of a graph is
very difficult. The purpose of this paper is to study the
forwarding indices of circulant graphs with degree 4.

2 Preliminaries

Before proceeding, we collect some known results which
will be useful in the proofs of our main results.

Theorem 2.1. [11] If gcd (n, a) = 1 or gcd (n,b) =
1, then there exists an integer k satisfying Cn(1, k) ∼=
Cn(a, b).

Theorem 2.2. [8] Cn(d1, d2, · · · , dk) is connected if and
only if gcd (d1, d2, · · · , dk, n) = 1.

conjecture 2.3. (Heydemann et al. [3], 1989) In any
vertex-transitive graph G = (V,E), there exists a rout-
ing of shortest paths in which the load of every ver-
tex, and therefore the vertex-forwarding index is equal to∑

y∈v dG(x, y)− (n− 1) for any vertex u of G.

The conjecture is not true for symmetric routings of
shortest paths. But the conjecture is true for Cayley
graphs as stated in the following theorem.

Theorem 2.4. (Heydemann et al. [3], 1989). If G =
(V,E) is a Cayley graph with order n, then, for any vertex
x in V ,

ξ(G) = ξm(G) =
∑
y∈V

dG(x, y)− (n− 1). (2.1)

Heydemann et al. found that the equality 2.1 is not valid
for π(G), and proposed conjectures in [3]. So far, There
are no results on these conjectures and some relationships
between vertex and edge forwarding indices are given as
follows.

Theorem 2.5. (Heydemann et al. [3], 1989). For any
connected graph G of order n, maximum degree ∆,and
minimum degree δ,

(a) 2ξ(G) + 2(n− 1) ≤ ∆π(G);

(b) π(G) ≤ ξ(G) + 2(n− 1);

(c) πm(G) ≤ ξm(G) + 2(n− δ).

All these inequalities are also valid for symmetric rout-
ings and the inequality in (a) is also valid for minimal
routings.

Remark 2.6. (Heydemann et al. [3], 1989) In (a) the
equality holds for Cn,Wn,K1,n the n-cube, the Petersen
graph and its line graph with the given values. In (b) the
equality holds for the complete graph.

Lemma 2.7. For a circulant graph G = Cn(1, d),

1

2
(ξ(G) + (n− 1)) ≤ π(G) ≤ ξ(G) + 2(n− 4)

or

1

2

∑
y∈V

dG(x, y) ≤ π(G) ≤
∑
y∈V

dG(x, y) + n− 7.
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Proof. By theorems 2.1, 2.2, 2.5 and 2.4, clearly.

3 Main results

In the following, we assume that the points of a circu-
lant graph are labeled clockwise by 0, 1, 2, · · · , n− 1,
(corresponding to 0, − n + 1, · · · , − 2, − 1 re-
spectively ) and we refer to point i instead of saying
the point labeled by i. In general, we can show that
a circulant graph is connected by identifying the exis-
tence of a path from 0 to t for each vertex t. That is,
we need a combination of elements of S that sum to
t :

∑η
j=1(αj)(dj) ≡ t(mod n), where (αm) and (dm) re-

spectively denote the step number and the step factor of
the 0t-path. For example, t = (k)(d)+(i)(1) corresponds
to a path (0, d, 2d, · · · , kd, kd+1, kd+2, · · · , kd+i−1, t),
where t = kd+ i is one vertex of a circulant graph G with
order n.

Let G = Cn(1, d) (n ≥ 6) be a circulant graph, then all
the shortest paths from 0 to t for each vertex t can be con-
structed and

∑
t∈v dG(0, t) can be calculated, from which

the forwarding indices can be determined. We firstly give
two notations which will be used in the subsequent lem-
mas and theorems :

(1)Let (n, d) be a fixed pair of positive integers satisfying
n = Kd + n0, where 1 < d ≤ ⌊n

2 ⌋, d ̸= n
2 , 0 ≤ n0 < d,

and K > 2.

(2) For all 0 < t ≤ ⌊n/2⌋, let t = kd+ i, where 0 ≤ i < d,
then 0 ≤ k ≤ ⌊K

2 ⌋, and k + i ≥ 1.

3.1 n = Kd

Fig 1. K is even

Fig 2. K is odd

Lemma 3.1. Let G = Cn(1, d) (d ≥ 2) be a circulant
graph, where n = Kd and K ≥ 4 is even. then∑

t∈V

dG(0, t) =

{
H − K

4 , where d is even;
H, where d is odd.

where H = K
2 (

K
2 d+

d2

2 − 1
2 ).

Proof. On the conditions that K is even and n = Kd, we
divide G into K equal parts of order d. See Fig.1. By
the vertex transitivity of G, to construct shortest paths
between any two vertices, we only need to consider the
shortest paths between vertices 0 and t. For any vertex t
of G, let t = kd+ i and 0 ≤ k ≤ K

2 − 1.

Case 1. kd+ 1 ≤ t ≤ kd+ ⌊d
2⌋.

We construct a 0t-path according the equality t =
(k)(d) + (t− kd)(1). obviously, the path given is a short-
est path between vertices 0 and t, therefore d(0, t) =
k + t− kd.

Case 2. kd+ ⌊d
2⌋+ 1 ≤ t ≤ (k + 1)d.

Similar to case 1, the shortest path can be constructed
by the equality t = (k+1)(d)+ ((k+1)d− t)(−1), so the
distance d(0, t) = k + 1 + (k + 1)d− t.

We then have the following∑
t∈V dG(0, t)

= 2 ∗
(∑K

2 −1

k=0

(∑kd+⌊ d
2 ⌋

t=kd+1(k + t− kd)

+
∑(k+1)d

t=kd+⌊ d
2 ⌋+1

(k + 1 + (k + 1)d− t)
))

− K
2

= 2 ∗
(∑K

2 −1

k=0

(∑⌊ d
2 ⌋

j=1(k + j)

+
∑⌈ d

2 ⌉
j=1(k + 1 + ⌈d

2⌉ − j)
))

− K
2

= dK
2 (

K
2 − 1) +

(
⌊d
2⌋(1 + ⌊d

2⌋
)

+⌈d
2⌉(1 + ⌈d

2⌉))
K
2 − K

2

= dK
2 (

K
2 − 1) + (⌊d

2⌋
2
+ ⌈d

2⌉
2
+ d)K2 − K

2

= K
2 (

K
2 d+ ⌊d

2⌋
2
+ ⌈d

2⌉
2 − 1)

=

{
K2d
4 + Kd2

4 − K
2 , where d is even;

K2d
4 + Kd2

4 − K
4 , where d is odd.

Theorem 3.2. Let G = Cn(1, d) (d ≥ 2) be a circulant
graph, where n = Kd and K ≥ 4 is even. Then

ξ(G) =

{
L+ d−K

4 , where d is even;
L+ d

4 , where d is odd.

where L = 1
4 (K + d− 4)(n− 1).

Proof. By theorem 2.4,

ξ(G) = ξm(G)

= K
2 (

K
2 d+ ⌊d

2⌋
2
+ ⌈d

2⌉
2 − 1)− (n− 1)

= K
2 (

K
2 d+ ⌊d

2⌋
2
+ ⌈d

2⌉
2 − 2d− 1) + 1

=

{
n
4 (K + d− 4)− K

2 + 1, where d is even;
n
4 (K + d− 4)− K

4 + 1, where d is odd.

=

{
L+ d−K

4 , where d is even;
L+ d

4 , where d is odd.

Engineering Letters, 24:1, EL_24_1_09

(Advance online publication: 29 February 2016)

 
______________________________________________________________________________________ 



Lemma 3.3. Let G = Cn(1, d) (d ≥ 2) be a circulant
graph, where n = Kd and K ≥ 3 is odd. Then

∑
t∈V

dG(0, t) =

{
M − K−1

4 , where d is even;
M − 1

4 , where d is odd.

where M = K−1
2 (K−1

2 d+ d2

2 + d− 1
2 ) +

d2

4 .

Proof. We consider two cases. Let t = kd+ i be any one
vertex of G.

Case 1. 0 ≤ k ≤ K−1
2 − 1.

Case 1.1. kd+ 1 ≤ t ≤ kd+ ⌊d
2⌋.

The equality t = kd + (t − kd)(1) determines a shortest
0t-path and the distance d(0, t) = k + t− kd.

Case 1.2. kd+ ⌊d
2⌋+ 1 ≤ t ≤ (k + 1)d.

The equality t = (k+1)d+((k+1)d− t)(−1) determines
a shortest 0t-path and the distance d(0, t) = k+1+ (k+
1)d− t.

Case 2. k = K−1
2 .

Case 2.1. d is odd.(see Fig.3)∑
y∈v dG(x, y)

= 2 ∗
(∑K−1

2 −1

k=0

(∑kd+⌊ d
2 ⌋

t=kd+1(k + t− kd)

+
∑(k+1)d

t=kd+⌊ d
2 ⌋+1

(k + 1 + (k + 1)d)− t
))

+2 ∗
(∑(K−1

2 )d+⌊ d
2 ⌋

t=(K−1
2 )d+1

(K−1
2 + t− K−1

2 d)
)

= dK−1
2 (K−1

2 − 1) + (⌊d
2⌋

2
+ ⌈d

2⌉
2

+d)K−1
2 + (K − 1)⌊d

2⌋+ ⌊d
2⌋(1 + ⌊d

2⌋)
= K−1

2 (K−1
2 d+ ⌊d

2⌋
2
+ ⌈d

2⌉
2

+2⌊d
2⌋) + ⌊d

2⌋(1 + ⌊d
2⌋)

= K−1
2 (K−1

2 d+ d2

2 + d− 1
2 ) +

d2

4 − 1
4 .

(3.1)

Case 2.2. d is even. (see Fig.4)

Based on the discussion in case 2.1, we only need to minus
dG(0,

n
2 ) , where dG(0,

n
2 ) =

K−1
2 + d

2 , from
∑

t∈V dG(0, t)
in equality 3.1. So∑

y∈v dG(x, y)

= 2 ∗
(∑K−1

2 −1

k=0

(∑kd+ d
2

t=kd+1(k + t− kd)

+
∑(k+1)d

t=kd+ d
2+1

(k + 1 + (k + 1)d)− t
))

+2 ∗
(∑(K−1

2 )d+ d
2

t=(K−1
2 )d+1

(K−1
2 + t− K−1

2 d)
)

−(K−1
2 + d

2 )

= K−1
2 (K−1

2 d+ ⌊d
2⌋

2
+ ⌈d

2⌉
2
+ 2⌊d

2⌋)
+⌊d

2⌋(1 + ⌊d
2⌋)− (K−1

2 + d
2 )

= K−1
2 (K−1

2 d+ ⌊d
2⌋

2
+ ⌈d

2⌉
2
+ d− 1) + d2

4

= K−1
2 (K−1

2 d+ d2

2 + d− 1) + d2

4

= K−1
2 (K−1

2 d+ d2

2 + d− 1
2 ) +

d2

4 − K−1
4 .

(3.2)

This completes the proof.

Theorem 3.4. Let G = Cn(1, d) (d ≥ 2) be a circulant
graph, where n = Kd and K ≥ 3 is odd. Then

ξ(G) =

{
L− K−2

4 , where d is even;
L, where d is odd.

Where L = 1
4 (K + d− 4)(n− 1).

Proof. If d is odd, by theorem 2.4 we have

ξ(G)
= 1

4 [(K − 1)2d+ (K − 1)d2 + 2(K − 1)d

−(K − 1)] + d2

4 − 1
4 − n+ 1

= 1
4 [(K − 1)(n− d) + (n− d)d+ 2(n− d)

−(K − 1)] + d2

4 − 1
4 − n+ 1

= 1
4 [Kn− n− n+ d+ nd− d2 + 2(n− d)

−K + 1] + d2

4 − 1
4 − n+ 1

= 1
4 [Kn+ nd− d−K]− n+ 1

= 1
4 [Kn+ nd− 4n]− 1

4 [K + d− 4]
= 1

4 (n− 1)(K + d− 4).

(3.3)

If d is even, compare equalities 3.2, 3.1 and 3.3,
we obtain

ξ(G) = 1
4 (n− 1)(K + d− 4)− K−1

4 + 1
4

= 1
4 (n− 1)(K + d− 4)− K−2

4 .

Fig 3 K is odd and d is odd

Fig 4 K is odd and d is even
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3.2 n = Kd+ n0, where 0 < n0 < d.

Fig 5 K is odd and d is odd

Fig 6 K is odd and d is even

Lemma 3.5. Let G = Cn(1, d) (d ≥ 2) be a circulant
graph, where n = Kd + n0, 0 < n0 < d and K ≥ 4 is
even, then

(1) If n0 is odd,

∑
t∈V

dG(0, t)) =

{
N − 1

4 , where d is even;
N + K−1

4 , where d is odd.

(2) If n0 is even,

∑
t∈V

dG(0, t)) =

{
N, where d is even;
N + K

4 , where d is odd.

where N = K
2 (

K
2 d+

d2

2 + n0 − 1) +
n2
0

4 .

Proof. Let t = kd+i be any a vertex of G. When 0 ≤ k ≤
K
2 − 1, the method of discussion is similar to that of in

lemma 3.1. In this proof, we particularly consider the K
2 -

th part from the vertex K
2 d+1 to the vertex Kd

2 +⌊n0

2 ⌋ =
⌊n
2 ⌋.

When Kd
2 + 1 ≤ t ≤ Kd

2 + ⌊n0

2 ⌋ = ⌊n
2 ⌋a shortest 0t-path

is determined by t = (K2 )(d) + (t − K
2 d)(1) and so the

distance d(0, t) = K
2 + (t− K

2 d).

Case 1. n0 is odd.(see Fig.5)∑
t∈V dG(0, t)

= 2 ∗
(∑K

2 −1

k=0

(∑kd+⌊ d
2 ⌋

t=kd+1(k + t− kd)

+
∑(k+1)d

t=kd+⌊ d
2 ⌋+1

(k + 1 + (k + 1)d)− t
))

+2 ∗
∑K

2 d+⌊n0
2 ⌋

t=K
2 d+1

(K2 + (t− K
2 d))

= dK
2 (

K
2 − 1) + (⌊d

2⌋
2
+ ⌈d

2⌉
2
+ d)K2

+K⌊n0

2 ⌋+ ⌊n0

2 ⌋(1 + ⌊n0

2 ⌋)
= K

2 (
K
2 d+ ⌊d

2⌋
2
+ ⌈d

2⌉
2
+ 2⌊n0

2 ⌋) + ⌊n0

2 ⌋(1 + ⌊n0

2 ⌋)

=

{
K
2 (

K
2 d+

d2

2 + n0 − 1) +
n2
0−1
4 , d is even;

K
2 (

K
2 d+

d2

2 + n0 − 1) +
n2
0−1
4 + K

4 , d is odd.

=

{
K2d
4 + Kd2

4 +K n0

2 +
n2
0

4 − K
2 − 1

4 , d is even;
K2d
4 + Kd2

4 +K n0

2 +
n2
0

4 − K
4 − 1

4 , d is odd.

Case 2. n0 is even.(see Fig.6)

Based on the discussion in case 1, we only need to minus
dG(0,

n
2 ), where dG(0,

n
2 ) =

K
2 + n0

2 , from
∑

t∈V dG(0, t)
above. So∑

t∈V dG(0, t)

= 2 ∗
(∑K

2 −1

k=0

(∑kd+⌊ d
2 ⌋

t=kd+1(k + t− kd)

+
∑(k+1)d

t=kd+⌊ d
2 ⌋+1

(k + 1 + (k + 1)d)− t
))

+2 ∗
∑K

2 d+
n0
2

t=K
2 d+1

(K2 + (t− K
2 d))− (K2 + n0

2 )

= dK
2 (

K
2 − 1) + (⌊d

2⌋
2
+ ⌈d

2⌉
2
+ d)K2

+K⌊n0

2 ⌋+ ⌊n0

2 ⌋(1 + ⌊n0

2 ⌋)− (K2 + n0

2 )

= K
2 (

K
2 d+ ⌊d

2⌋
2
+ ⌈d

2⌉
2

+2⌊n0

2 ⌋) + ⌊n0

2 ⌋(1 + ⌊n0

2 ⌋)− (K2 + n0

2 )

= K
2 (

K
2 d+ ⌊d

2⌋
2
+ ⌈d

2⌉
2
+ n0 − 1) + n0

2

4

=

{
K
2 (

K
2 d+

d2

2 + n0 − 1) +
n2
0

4 , d is even;
K
2 (

K
2 d+

d2

2 + n0 − 1) +
n2
0

4 + K
4 , d is odd.

=

{
K2d
4 + Kd2

4 +K n0

2 +
n2
0

4 − K
2 , d is even;

K2d
4 + Kd2

4 +K n0

2 +
n2
0

4 − K
4 , d is odd.

Theorem 3.6. Let G = Cn(1, d) (d ≥ 2) be a circulant
graph, where n = Kd + n0, 0 < n0 < d and K ≥ 4 is
even, then

(1) If n0 is odd,

ξ(G) =

{
T, where d is even;
T + K

4 , where d is odd.

(2) If n0 is even,

ξ(G) =

{
T + 1

4 , where d is even;
T + K+1

4 , where d is odd.

where T = 1
4 (d+K−4)(n−1)+ 1

4 (K−d+n0+1)(n0−1).

To explain the proofs of the following lemmas and theo-
rems, we give four figures.
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Fig 7. K is odd, n0 is odd and d is even

Fig 8. K is odd, n0 is even and d is odd

Fig 9. K is odd, n0 is odd and d is odd

Fig 10. K is odd n0 is even and d is even

Lemma 3.7. Let G = Cn(1, d) (d ≥ 2) be a circulant
graph, where n = Kd + n0, 0 < n0 < d and K ≥ 3 is
odd, then

(1) If d+ n0 is odd,

∑
t∈V

dG(0, t) =

{
S − K+4

4 ,where d is odd
S − 2K+1

4 ,where d is even.

(2) If d+ n0 is even,

∑
t∈V

dG(0, t) =

{
S − K+1

2 ,where d is even.
S − K+1

4 ,where d is odd.

where S = K−1
2 (K+1

2 d+ d2

2 + n0) +
n0

2

2 + (d−n0

2 )2 + d

Proof. Let t = kd + i be a vertex of G. When 0 ≤
k ≤ K−1

2 − 1, the method we use is similar to those

in lemma 3.1 and 3.3. In the proof, we particularly con-
sider the K−1

2 -th part from vertex K−1
2 d + 1 to vertex

⌊n
2 ⌋ =

K−1
2 d+ ⌊d+n0

2 ⌋.

Case 1. d+ n0 is odd. we consider three subcases:

Subcase 1.1. K−1
2 d+ 1 ≤ t ≤ K−1

2 d+ ⌊n0

2 ⌋.

A shortest 0t path is determined by the equality t =
K−1
2 d+(t− K−1

2 d)(1), and so d(0, t) = K−1
2 + t− K−1

2 d.

Subcase 1.2. K−1
2 d+ ⌊n0

2 ⌋+ 1 ≤ t ≤ K−1
2 d+ n0.

In this case, we construct a shortest 0t-path according to
the following equality t ≡ t−n(modn) = (K−1

2 +1)(−d)+

(n− t− (K−1
2 +1)d)(−1) and so d(0, t) = K−1

2 +1+ n−
t− (K−1

2 + 1)d.

Subcase 1.3. K−1
2 d+n0 +1 ≤ t ≤ ⌊n

2 ⌋ =
K−1
2 d+ ⌊d+n0

2 ⌋
.

A shortest 0t-path can be constructed by the equality
t ≡ t−n(modn) : (K−1

2 +1)(−d)+((K−1
2 +1)d−(n−t))(1)

and so d(0, t) = K−1
2 + 1 + (K−1

2 + 1)d− (n− t).

It is easy to check that the paths constructed are the
shortest ones.

∑
t∈V dG(0, t)

= 2 ∗
(∑K−1

2 −1

k=0

(∑kd+⌊ d
2 ⌋

t=kd+1(k + t− kd)

+
∑(k+1)d

t=kd+⌊ d
2 ⌋+1

(k + 1 + (k + 1)d)− t
))

+2 ∗
∑K−1

2 d+⌊n0
2 ⌋

t=K−1
2 d+1

(K−1
2 + (t− K−1

2 d))

+2 ∗
∑K−1

2 d+n0

t=K−1
2 d+⌊n0

2 ⌋+1
(K−1

2 + 1

+n− t− (K−1
2 + 1)d)

+2 ∗
∑n−1

2

t=K−1
2 d+n0+1

(K−1
2 + 1

+(K−1
2 + 1)d− (n− t))

= dK−1
2 (K−1

2 − 1) + (⌊d
2⌋

2
+ ⌈d

2⌉
2
+ d)K−1

2

+2
∑⌊n0

2 ⌋
j=1 (K−1

2 + j)

+2
∑⌈n0

2 ⌉
j=1 (K−1

2 + 1 + ⌈n0

2 ⌉ − j)

+2
∑⌊ d+n0

2 ⌋−n0

j=1 (K−1
2 + 1 + j)

= K−1
2 (K−1

2 d+ ⌊d
2⌋

2
+ ⌈d

2⌉
2
+ 2⌊d+n0

2 ⌋)
+⌊n0

2 ⌋2 + ⌈n0

2 ⌉2 + n0

+(⌊d+n0

2 ⌋ − n0)(⌊d+n0

2 ⌋ − n0 + 3)

= K−1
2 (K−1

2 d+ ⌊d
2⌋

2
+ ⌈d

2⌉
2
+ d+ n0 − 1)

+⌊n0

2 ⌋2 + ⌈n0

2 ⌉2 + n0 + (d−n0−1
2 )(d−n0+5

2 )

=

{
S − K+4

4 , where d is odd;
S − 2K+1

4 , where d is even.

Case 2. d+ n0 is even.

Based on the discussion in case 1, we only need to
minus dG(0,

n
2 ), where dG(0,

n
2 ) = K+1

2 + d−n0

2 , from∑
t∈V dG(0, t) above. So
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∑
t∈V dG(0, t)

= 2 ∗
(∑K−1

2 −1

k=0

(∑kd+⌊ d
2 ⌋

t=kd+1(k + t− kd)

+
∑(k+1)d

t=kd+⌊ d
2 ⌋+1

(k + 1 + (k + 1)d)− t
))

+2 ∗
∑K−1

2 d+⌊n0
2 ⌋

t=K−1
2 d+1

(K−1
2 + (t− K−1

2 d))

+2 ∗
∑K−1

2 d+n0

t=K−1
2 d+⌊n0

2 ⌋+1
(K−1

2 + 1

+n− t− (K−1
2 + 1)d)

+2 ∗
∑n

2

t=K−1
2 d+n0+1

(K−1
2 + 1 + (K−1

2 + 1)d

−(n− t))− (K+1
2 + d−n0

2 )

= K−1
2 (K−1

2 d+ ⌊d
2⌋

2
+ ⌈d

2⌉
2

+2⌊d+n0

2 ⌋) + ⌊n0

2 ⌋2 + ⌈n0

2 ⌉2 + n0

+(⌊d+n0

2 ⌋ − n0)(⌊d+n0

2 ⌋ − n0 + 3)

−(K+1
2 + d−n0

2 )

=

{
S − K+1

2 , where d is even;
S − K+1

4 , where d is odd.

Theorem 3.8. Let G = Cn(1, d) (d ≥ 2) be a circulant
graph, where n = Kd + n0, 0 < n0 < d and K ≥ 3 is
odd, then

(1) If d+ n0 is odd,

ξ(G) =

{
S − n− K

4 , where d is odd;
S − n− 2K−3

4 , where d is even.

(2) If d+ n0 is even,

ξ(G) =

{
S − n− K−1

2 , where d is even;
S − n− K−3

4 , where d is odd.

where S = K−1
2 (K+1

2 d+ d2

2 + n0) +
n0

2

2 + (d−n0

2 )2 + d.

4 Conclusions

In this paper, the exact values of vertex-forwarding in-
dices of 4-regular circulant graphs with order n(n ≥ 6) are
obtained. Particularly, expressions of the shortest paths
are specifically given between any two distinct vertices.
Moreover, some bounds of edge forwarding indices for
this kind of graphs are also presented. However, the ex-
act values of the edge-forwarding indices of these graphs
remains unknown.

References

[1] J. A. Bondy, and U. S. R. Murty, Graph Theory,
New York, 2008.

[2] F. R. K. Chung, E. G. Jr. Coffman, M. I. Reiman,
and B. Simon, The forwarding index of communica-
tion networks, IEEE Trans. Inform. Theory, vol.33,
no.2, pp. 224-232, 1987.

[3] M. C. Heydemann, J. C. Meyer, and D. Sotteau,
On the-forwarding index of networks, Discrete Appl.
Math., vol.23, no.2, pp. 103-123, 1989.

[4] Patrick Sole, The edge-forwarding index of orbital
regular graphs, Discrete Math., vol. 1, pp. 171-176,
1994.

[5] B. G. Li, X. W. Wang, and W. Zhao, ”Energy Ef-
ficiency and Spectral Efficiency Tradeoff in Cogni-
tive Heterogeneous System with Economic Consid-
eration,” Engineering Letters, vol. 23, no.3, pp215-
221, 2015.

[6] J. Liu and X. Zhang, Cube-connected complete-
graphs, IAENG International Journal of Applied
Mathematics, vol.44, no.3, pp.134-136, 2014.

[7] A. Thomson, Frobenius graphs as interconnection
networks, Ph. D. Thesis, The University of Mel-
bourne,2011.

[8] A. Erik, and Doorn van, Circulants and Their Con-
nectivities, Journal of Graph theory. vol. 8, pp. 487-
499, 1984.

[9] Rachid Saad, Complexity of the Forwarding Index
Problem, Society for Industrial and Applied Math-
ematics vol. 6, no. 3, pp. 418-427, 1993.

[10] J. M. Xu, Min Xu, The Forwarding Indices of Graphs
C A Survey. Opuscula Math., vol. 33, no. 2, pp. 345-
372, 2013.

[11] B Pang, H R Shao, and W Gao, A Measurement-
Based Admission Control Scheme for DiffServ Net-
work: Design and Application, Chinese Journal of
Computers, vol. 26, no. 3, pp. 257-265, 2003.

[12] A. Thomson, S. M. Zhou, Sanming Gossiping and
routing in undirected triple-loop networks, Net-
works, vol. 55, no. 4, pp. 341-349, 2010.

[13] M. Xu, J. M. Xu, and L. Sun, The forwarding index
of the circulant networks, Journal of Mathematics,
vol. 27, pp. 621-629, 2007.

Engineering Letters, 24:1, EL_24_1_09

(Advance online publication: 29 February 2016)

 
______________________________________________________________________________________ 




