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Abstract—Let G = (V,E) be a graph. A set D ⊆ V is a total
restrained dominating set of G, if every vertex in V has at least
one neighbor in D and every vertex in V −D has at least one
neighbor in V − D. The total restrained domination number of
G, denoted by γtr(G), is the minimum cardinality of all total
restrained dominating sets of G. In this paper, we give some
results on total restrained domination number of trees. And
then, we characterize the trees which satisfies γtr(T ) = n − 3
or n− 4, where n is the order of T .

Index Terms—path, tree, diameter, total restrained dominat-
ing set

I. INTRODUCTION

IT is well-known that an interconnection network can be
modeled by a graph with vertices representing sites of

the network and edges representing links between sites of
the network. Therefore various problems in networks can
be studied by graph theoretical methods. Now dominations
have become one of the major areas in graph theory after
more than 20 years’ development. The reason for the steady
and rapid growth of this area may be the diversity of its
applications to both theoretical and real-world problems,
such as facility location problems. Let G = (V,E) be a
graph. For any vertex v ∈ V , the open neighborhood of
v, denoted by N(v), is defined by {u ∈ V |uv ∈ E} and
the closed neighborhood of v denoted by N [v], is defined
by N(v) ∪ {v}. The degree of v, denoted by dG(v), is
the cardinality of N(v). Similarly, the open neighborhood
of a subset S ⊆ V , denoted by N(S), is defined by
∪v∈SN(v) and the closed neighborhood of S denoted by
N [S], is defined by N(S) ∪ S. A path is a non-empty
graph P = (V,E) of the form V = {v0, v1, · · · , vn−1} and
E = {v0v1, v1v2, · · · , vn−2vn−1}, where vi are all distinct.
The vertices v0 and vn−1 are linked by P and are called its
ends, the vertices v1, v2, · · · , vn−2 are the inner vertices of
P . The number of vertices/ edges in a path is its order/ length
and the path of order n is denoted by Pn. If v0 = vn−1, we
call it a cycle and denoted by Cn. Recall that an acyclic graph
is one that contains no cycles. A connected acyclic graph
is called a tree. Acyclic graphs are usually called forests.
Let G be a connected graph, then the distance between
two vertices u and v is defined as the length of a shortest
path from u to v and the diameter of G is the number
diam(G) = max{d(u, v) : u, v ∈ V (G)}. Let V ′ ⊆ V ,
the subgraph of G whose vertex set is V ′ and edge set is
the set of those edges of G that have both ends in V ′ is
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called the subgraph of G induced by V ′ and denoted by
G[V ′]. A set D ⊆ V is a dominating set of G if every
vertex not in D is adjacent to a vertex of D. The domination
number of G, denoted by γ(G) is the minimum cardinality
of a dominating set. The concept of domination in graphs,
with its many variations is now well studied in graph theory.
The book of Chartrand and Lesniak [1] includes a chapter
on domination. A thorough study of domination appears in
[10], [11].

In this paper, we continue the study of a variation of
the domination, namely total restrained domination. A set
D ⊆ V is a total restrained dominating set (denoted by
TRDS) of G if every vertex is adjacent to a vertex in D
and every vertex in V − D is also adjacent to a vertex
in V − D. The total restrained domination number of G,
denoted by γtr(G), is the minimum cardinality of a TRDS.
A TRDS of cardinality γtr(G) is called a γtr(G)-set. Note
that total restrained domination is defined only for graphs
without isolated vertices and each graph without isolated
vertices has a TRDS, since D = V is such a set. The concept
of total restrained domination in graphs was introduced by
Telle and Proskurowski [13], albeit indirectly, as a vertex
partition problem has been studied.

Recently, the total restrained domination and the dom-
ination of tree have been studied by many authors, for
example, in ( [3], [4]-[18], [20]-[23]). Henning and Maritz
[6] investigated upper bounds on total restrained domination
number of a graph. Hattingh et al.[4] gave some lower
bounds of γtr(G) of a tree and characterized the extremal
trees achieving these lower bounds. Further, Hattingh et al.[5]
gave an upper bound for graphs which is not one of several
forbidden graphs and δ ≥ 3. In [19], The distance number of
symmetric Lobseer-like tree was studied. In [23], the bounds
on the vertex-edge dominating number of trees has been
studied. J. Raczek and J. Cyman [14] have characterized
the trees with equal total and total restrained dominating
numbers and gave a lower bound on the total restrained
dominating number of a tree in terms of its order and the
number of leaves. Moreover, in [2], the authors determined
the total restrained domination number for certain classes
of graphs, and characterized those graphs achieving these
bounds. Here, we characterize the trees which satisfies that
γtr(T ) = n− 3 or n− 4. Notation and definitions not given
here can be found in [1].

A. the Main Results
Let Sn denote the star of order n. The empty graph is the

graph without edges. In a tree, a leaf is a vertex of degree
one. It is clear that γtr(G) ≤ n for any connected graph G of
order n. In [2], the authors described the connected graph of
order n which satisfies that γtr(G) = n and γtr(G) = n−2.
Following we continue this work and characterize the trees
which satisfies that γtr(T ) = n− 3 or n− 4. Let S = {v ∈
V (G)|dG(v) = 1 or ∃ u ∈ N(v) and dG(u) = 1}.
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Proposition 1.1: [4] Let n ≥ 4 be a positive integer, then
γtr(Pn) = n− 2⌊n−2

4 ⌋.
Lemma 1.2: [2] Let G be a connected graph of order n ≥

4. Then γtr(G) = n if and only if G−S is an empty graph.
Lemma 1.3: [2] Let G be a connected graph of order n ≥

4 and G−S be a forest, then γtr(G) = n− 2 if and only if
G−S has only one nontrivial component and it is a path on
at most five vertices and only the ends of path are adjacent
to the vertices of S.
Let Pk = v1v2 · · · vk, we denote Sa1,a2,...,ak

be a graph
which obtained from Pk by attach a1 vertices to v1, a2
vertices to v2, · · · , and ak vertices to vk, respectively (see
Fig.1). Clearly, Sa,b is a double star and S1,0,0,···,0,1 is Pk+2.

s s s s
s s s s s s s s

v1 v2 vk−1 vk

a1 a2 ak−1 ak
· · · · · · · · ·

· · ·

· · ·

Sa1,a2,...,ak

Fig.1

s s s s s
s

v1 v2 v3 v4 v5

S2,0,1s
ss s s s s

s
v1 v2 v3 v4 v5

S2,0,2

Fig.2
Theorem 1.4: Let T be a tree of order n ≥ 5. Then

γtr(T ) = n− 3 if and only if T −S has only one nontrivial
component B and it is satisfies one of the following:
(a) : B ∼= S3 and all the vertices of S3 have neighbors in S;
(b) : B ∼= S4 or S2,1 or S2,0,2 (see Fig.2) and only the
leaves of B have neighbors in S;
(c) : B ∼= P4 and exact one inner vertex and all ends of B
have neighbors in S;
(d) : B ∼= P5 = v1v2v3v4v5 and there is at least one vertex
of {v2, v4} and all the ends of B have neighbors in S;
(e) : B ∼= S2,0,1 (see Fig.2) and at most v4 and all the
leaves of B have neighbors in S.
Proof. It is easy to verify that if T−S has only one nontrivial
component B and it satisfies one of the above conditions,
then γtr(T ) = n − 3. Conversely, let T be a tree of order
n ≥ 5 and γtr(T ) = n− 3. By Lemma 2.2, T − S contains
at least one nontrivial component.

Claim 1. T − S contains only one nontrivial component,
say B.

Otherwise, suppose that T − S contains at least two
nontrivial components, say B1 and B2. Let ei = uivi ⊆ Bi

(i = 1, 2). Note that any vertex in T − S is not adjacent
to any leaf of T and NBi(ui) ∩ NBi(vi) = ∅ (i = 1, 2),
we have that V (T ) − {u1, v1, u2, v2} is a TRDS of T and
γ(tr) ≤ n− 4, a contradiction and we complete the proof of
claim 1.

Claim 2. 2 ≤ diam(B) ≤ 4.
If diam(B) = 1, then B ∼= P2. By Lemma 2.3,

γtr(T ) = n − 2, a contradiction. If diam(B) ≥ 5, let P
be one of the longest paths in B of order at least 6, say
P = v1v2 · · · vp (6 ≤ p ≤ |V (B)|). First, we give the
following two observations which will be used repeatedly
in the following proof.

Observations: (1) both v1 and vp are leaves of B since P
is one of the longest pathes in B,
(2) every leaf of B is dominated by S since every vertex v
in B satisfies that dT (v) ≥ 2.
By the observations, both v1 and vp are dominated by S,
we have that V (T ) − {v1, v2, v5, v6} is a TRDS of T and
γ(tr) ≤ n− 4, a contradiction and we complete the proof of
claim 2. We consider the following three cases.

Case 1: diam(B) = 2.
Let P be one of the longest paths in B, say P = v1v2v3.

Clearly, B ∼= S|V (B)| (|V (B)| ≥ 3), where dB(v2) =
|V (B)| − 1. If B ∼= S3 = P and only the ends of P
have neighbors in S, by Lemma 2.3, γtr(T ) = n − 2, a
contradiction. If |V (B)| ≥ 5 or B ∼= S4 and the center
vertex v2 has neighbors in S, then V (T ) − {v1, v2, u, v3}
where u ∈ NB−P (v2) is a TRDS of T and γ(tr) ≤ n − 4,
also a contradiction. Thus, B ∼= S3 and all the vertices of
S3 have neighbors in S or B ∼= S4 and only the leaves of
S4 have neighbors in S.

Case 2: diam(B) = 3.
Let P be one of the longest paths in B, say P =

v1v2 · · · v4. Since diam(B) = 3, we have that B ∼= Sa,b

(a ≥ 1,b ≥ 1) where dB(v2) = a+1 and dB(v3) = b+1. If
B ∼= S1,1 = P . By Lemma 2.3, at least one inner vertices of
P has neighbors in S. Furthermore, if all the inner vertices
of P have neighbors in S, then V (T ) − {v1, v2, v3, v4} is
a TRDS of T and γ(tr) ≤ n − 4, a contradiction. Thus,
there is exact one inner vertex and all the ends of P have
neighbors in S. Following, we may assume that a ≥ 2 or
b ≥ 2. If both a ≥ 2 and b ≥ 2, then V (T )−{v1, v2, v3, v4}
is a TRDS of T and γ(tr) ≤ n − 4, a contradiction. Thus,
B ∼= Sa,1 (a ≥ 2). Let {u2, u3, · · · , ua} be neighbors of v2
in B − P . If a ≥ 3, then V (T )− {v2, u2, u3, · · · , ua, v3} is
a TRDS of size at least n− 4, a contradiction. Thus, a = 2
and B ∼= S2,1. But in this case, if v2 or v3 has neighbors in
B, then V (T ) − {v1, v2, u2, v3} or V (T ) − {v1, v2, v3, v4}
is a TRDS of size at least n− 4, also a contradiction. Thus,
B ∼= S2,1 and only the leaves of S2,1 have neighbors in S.

Case 3: diam(B) = 4.
The same to Case 2, let P be one of the longest paths

in B, say P = v1v2 · · · v5. We say dT (v3) = 2. Otherwise,
V (T )− {v1, v2, v4, v5} is a TRDS of T and γ(tr) ≤ n− 4,
a contradiction. Thus, B ∼= Sa,0,c (a ≥ 1, c ≥ 1) where
dB(v2) = a + 1 and dB(v4) = c + 1. If a = c = 1, then
B ∼= P . By Lemma 2.3, there is at least one vertices of
{v2, v4} has neighbors in S. Following, we may assume that
a ≥ 2 or c ≥ 2. If a ≥ 3 or c ≥ 3, say a ≥ 3. Let
{u2, u3, · · · , ua} be neighbors of v2 in B−P , then V (T )−
{u2, u3, · · · , ua, v2, v3} is a TRDS of size at least n − 4,
a contradiction. Thus, B ∼= S2,0,2 or S2,0,1. If B ∼= S2,0,2

and v2 or v4 have neighbors in S, say v2. Then V (T ) −
{v1, v2, u2, v3} is a TRDS of size n−4, also a contradiction.
Thus, dT (v2) = dT (v4) = 3 and only the leaves of S2,0,2

have neighbors in S. If B ∼= S2,0,1, the same to S2,0,2, we
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have that dT (v2) = 3. Thus, at most v4 and all the leaves of
S2,0,1 have neighbors in S.

We discuss all the cases and complete the proof of the
theorem.

Lemma 1.5: Let T be a tree of order n ≥ 6. If γtr(T ) =
n−4, then T−S contains at most two nontrivial components.
Proof. Let T be a tree of order n ≥ 6 and γtr(T ) = n− 4.
By Lemma 2.2, T − S contains at least one nontrivial com-
ponent. Suppose that T −S contains at least three nontrivial
components, say B1, B2 and B3. Let ei = uivi ⊆ Bi

(i = 1, 2, 3). Since any vertex in T − S is not adjacent
to any leaf of T and NBi(ui) ∩NBi(vi) = ∅, we have that
V (T ) − {u1, v1, u2, v2, u3, v3} is a TRDS of size n − 6, a
contradiction. Thus, T − S contains at most two nontrivial
components and we complete the proof of the lemma.

Theorem 1.6: Let T be a tree of order n ≥ 6 and T − S
contains two nontrivial components, then γtr(T ) = n − 4
if and only if the two nontrivial components of T − S are
paths on at most five vertices and only the ends of them are
adjacent to the vertices of S.
Proof. Let T be a tree of order n ≥ 6 and γtr(T ) = n − 4
and B1, B2 are two nontrivial components of T − S. We
consider the subtrees T [B1 ∪ S] and T [B2 ∪ S].
Claim: γtr(T [Bi ∪ S]) = |V (Bi)|+ |S| − 2 (i = 1, 2).
Otherwise, let D1 and D2 be two γtr−sets of B1 ∪ S and
B2 ∪ S respectively. It is clear that S ⊆ D1 ∩ D2. Thus,
D1 ∪D2 ∪ (V (T )−B1 −B2 − S) is a TRDS of T . If both
i = 1 and 2 satisfies that γtr(G[Bi∪S]) < |V (Bi)|+ |S|−2,
then

γtr(T ) ≤ |D1 ∪D2 ∪ (V (T −B1 −B2 − S)|
≤ |D1 ∪D2|+ |V (T −B1 −B2 − S)|
= |D1|+ |D2| − |S|+ |V (T )| − |V (B1)| −

|V (B2)| − |S|
< |V (B1)|+ |S| − 2 + |V (B2)|+ |S| − 2−

|S|+ |V (T )| − |V (B1)| − |V (B2)| − |S|
= n− 4.

a contradiction. Thus, there is at least one subtree of T [B1∪
S] and T [B2 ∪ S] satisfies that γtr(T [Bi ∪ S]) > |V (Bi)|+
|S| − 2. We may assume that γtr(T [B1 ∪ S]) > |V (B1)|+
|S|−2. By the definition of TRDS, we have that γtr(T [B1∪
S]) = |V (Bi)|+|S|. But in this case, by Lemma 2.3, T [B1∪
S] − S = B1 is an empty graph, a contradiction. Thus, we
have that γtr(T [Bi ∪ S]) = |V (Bi)|+ |S| − 2 (i = 1, 2).

By Claim and Lemma 2.3, B1 and B2 are paths on at
most five vertices and only the ends of them are adjacent to
the vertices of S and we complete the proof of theorem.

s s s s s
s s

v1 v2 v3 v4 v5

S3,0,1

s s s s s s
s

v1 v2 v3 v4 v5 v6

S1,1,0,1

s s s s s
s s

v1 v2 v3 v4 v5

t w

S1,P3,1

Fig.3

Theorem 1.7: Let T be a tree of order n ≥ 6 and T − S
contains only one nontrivial component, say B. Then
γtr(T ) = n− 4 if and only if one of the following holds:
(a) : B ∼= S4 or P4 and all the vertices of B have neighbors
in S;
(b) : B ∈ {S5, S2,2, S3,1, S3,0,3, S1,2,1, S1,2,0,1, S1,1,1,0,1,
S1,0,2,0,1} and only the leaves of B have neighbors in S;
(c) : B ∼= S2,1 and exact one vertex with dB(v) = 3 or
dB(v) = 2 and all the leaves of B have neighbors in S;
(d) : B ∼= S2,0,1 (see Fig.2) and {v2} or {v2, v4} and all
the leaves of B have neighbors in S;
(e) : B ∼= S2,0,2 (see Fig.2) and at least one of vertices
with dB(v) = 3 and all the leaves of B have neighbors in
S;
(f) : B ∼= S3,0,2 and at most the vertex with dB(v) = 3
and all the leaves of B have neighbors in S;
(g) : B ∼= S3,0,1 (see Fig.3) and at most v4 and all the
leaves of B have neighbors in S;
(h) : B ∼= S1,P3,1 (see Fig.3) and at most one vertex of
{v2, v4, t} and all the leaves of B have neighbors in S;
(i) : B ∼= S1,1,1 and at most one vertex which is not a leave
of B and all the leaves of B have neighbors in S;
(j) : B ∼= P5 = v1v2v3 · · · v5 and {v3} or {v2, v3} or
{v3, v4} and all leaves of B have neighbors in S;
(k) : B ∼= S1,1,0,1 (see Fig.3) and at most one vertex of
{v2, v3, v4} and all the leaves of B have neighbors in S;
(l) : B ∼= P6 = v1v2 · · · v6 and {v2, v3} or {v2, v5} or
{v3, v4} or {v4, v5} or exactly one vertex of {v2, v3, v4, v5}
and all the leaves of B have neighbors in S;
(m) : B ∼= S1,0,1,0,1 and at most the vertex with dB(v) = 3
and all the leaves of B have neighbors in S.
(n) : B ∼= P7 = v1v2 · · · v7 and at most {v3, v4} or {v4, v5}
or exact one vertex of {v3, v4, v5} and all the ends B have
neighbors in S;
(o) : B ∼= P8 = v1v2 · · · v8 and at most v4 or v5 and all the
ends of B have neighbors in S;
(p) : B ∼= P9 = v1v2 · · · v9 and at most v5 and all the ends
of B have neighbors in S;

Proof. It is easy to verify that if T satisfies one of the above
conditions, then γtr(T ) = n− 4. Conversely, let T be a tree
of order n ≥ 6 with γtr(T ) = n− 4 and B be the nontrivial
component of T − S.

Claim. 2 ≤diam(B) ≤ 8.
Otherwise, if diam(B) = 1, then B ∼= P2. By Lemma

2.3, γtr(T ) = n − 2, a contradiction. We may assume that
diam(B) ≥ 9. Let P be one of the longest paths in B of
order at least 10, say P = v1v2 · · · vp (10 ≤ p ≤ |V (B)|).
By the observations of Theorem 2.4, we have that V (T ) −
{v1, v2, v5, v6, vp−1, vp} is a TRDS of size n − 6, also a
contradiction and we complete the proof of claim. Next, we
consider the following seven cases.
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Case 1 : diam(B) = 2.
Let P be one of the longest paths in B, say P = v1v2v3.

Clearly, B ∼= S|V (B)| and dB(v2) = |V (B)| − 1. By
Lemma 2.3 and Theorem 2.4, we have that |V (B)| ≥ 4.
If |V (B)| ≥ 6 or |V (B)| = 5 and the center vertex v2 of
B has neighbors in S, then V (T )−{v1, v2, u, w, v3} where
{u,w} ⊆ NB−P (v2) is a TRDS of size n−5, a contradiction.
Thus, B ∼= S5 and only the leaves of S5 have neighbors in
S. If B ∼= S4, by Theorem 2.4, we have that all vertices of
S4 have neighbors in S.

Case 2 :diam(B) = 3.
Let P be one of the longest paths in B, say P =

v1v2 · · · v4. Since diam(B) = 3, we have that B ∼= Sa,b

(a ≥ 1, b ≥ 1), where dB(v2) = a+ 1 and dB(v3) = b+ 1.
If B ∼= P4, by Lemma 2.3 and the Case 2 of Theorem 2.4,
we have that all the vertices of P4 have neighbors in S.
In the following, we may assume that a ≥ 2 or b ≥ 2. If
a ≥ 4 or b ≥ 4, say a ≥ 4. Then V (T ) − {v1, v2, u, w, v3}
where {u,w} ⊆ NB−P (v2) is a TRDS of T and γ(tr) ≤
n − 5, a contradiction. Thus, a ≤ 3 and b ≤ 3. Let
a = 3. If b ≥ 2, then V (T ) − {v1, v2, u, v3, v4} where
u ∈ NB−P (v2) is a TRDS of size n − 5, a contradiction.
Thus, b = 1. Furthermore, if v2 has neighbors in S, then
V (T ) − {v1, v2, u, w, v3} where {u,w} ⊆ NB−P (v2) is a
TRDS of size n−5, a contradiction. If v3 has neighbors in S,
then V (T )−{v1, v2, u, v3, v4} is a TRDS of size n−5, also
a contradiction. Thus, B ∼= S3,1 and only the leaves of B
have neighbors in S. Following, we may assume that a ≤ 2
and b ≤ 2. If B ∼= S2,2 and v2 or v3 has neighbors in S, say
v2. Then V (T )−{v1, v2, u, v3, v4} where u ∈ NB−P (v2) is
a TRDS of size n−5, a contradiction. Thus, only the leaves
of S2,2 have neighbors in S. If B ∼= S2,1, by Theorem 2.4, at
least one vertex of {v2, v3} has neighbors in S. If both v2 and
v3 have neighbors in S, then V (T )−{v1, v2, u, v3, v4} where
u ∈ NB−P (v2) is a TRDS of size n − 5, a contradiction.
Thus, there is exactly one vertex of {v2, v3} and all the leaves
of S2,1 have neighbors in S.

Case 3 : diam(B) = 4.
Let P be one of the longest paths in B, say P =

v1v2 · · · v5. We say that there are at most two vertices of
{v2, v3, v4} have neighbors in T − P5. Otherwise, V (T ) −
{v1, v2, v3, v4, v5} is a TRDS of T and γ(tr) ≤ n − 5, a
contradiction. We consider the following three subcases.

Subcase 3.1. There are two vertices of {v2, v3, v4} have
neighbors in B − P .

If {v2, v3} or {v3, v4} has neighbors in B − P ,
say {v2, v3}. Then V (T ) − {v1, v2, u, v4, v5} where u ∈
NB−P (v2) is a TRDS of size n − 5, a contradiction. We
may assume that {v2, v4} has neighbors in B − P , then
B ∼= Sa,0,c (a ≥ 2, c ≥ 2) where dB(v2) = a + 1 and
dB(v4) = c + 1. Furthermore, If a ≥ 4 or a = 3 and v2
has neighbors in S, then V (T ) − {v1, v2, v3, u, w} where
{u,w} ⊆ NB−P (v2) is a TRDS of T and γ(tr) ≤ n − 5,
a contradiction. The same result to c ≥ 4 or c = 3 and v4
has neighbors in S. Thus, a ≤ 3 and c ≤ 3. Furthermore, if
B ∼= S3,0,3, by the discussion of the above, only the leaves
of S3,0,3 have neighbors in S. If B ∼= S3,0,2, then at most
the vertex v4 and all the leaves of S3,0,2 have neighbors in
S. If B ∼= S2,0,2, by case 3 of Theorem 2.4, we have that
there is at least one vertex with dB(v) = 3 and all the leaves
of S2,0,2 have neighbors in S.

Subcase 3.2. There is only one vertex of {v2, v3, v4} has
neighbors in B − P .

Let v2 or v4 has neighbors in B − P , say v2. Then
B ∼= Sa,0,1 (a ≥ 2) where dB(v2) = a+1 and dB(v4) = 2.
If v3 has neighbors in S, then V (T ) − {v1, v2, u, v4, v5}
where u ∈ NB−P (v2) is a TRDS of T and γ(tr) ≤
n − 5, a contradiction. Thus, dT (v3) = 2. Furthermore,
If a ≥ 4 or a = 3 and v2 has neighbors in S, then
V (T ) − {v1, v2, u, w, v3} where {u,w} ⊆ NB−P (v2) is a
TRDS of size n − 5, also a contradiction. Thus, a < 3 or
a = 3 and dT (v2) = 4. Furthermore, if B ∼= S2,0,1, by Case
3 of Theorem 2.4, v2 or {v2, v4} and all leaves of S2,0,1 have
neighbors in S. Next, let v3 has neighbors in B − P . Since
diam(B) = 4, if there are at least two paths of order 3 attach
to v3 in B−P , say v3t1w1 and v3t2w2 (where it is possible
that t1 = t2). We have that V (T )−{v1, v2, t1, w1, t2, w2} is
a TRDS of size at least n − 5, a contradiction. Thus, there
is at most one path of order 3 attach to v3 in B−P and we
consider the following two subcases.

Subcase 3.2.1. There is only one path of order 3 attach to
v3 in B − P , say P3 = v3tw.

If there is one vertex in S ∪ V (B − P − P3) adjacent
to v3, then V (T ) − {v1, v2, t, w, v4, v5} is a TRDS of T
and γ(tr) ≤ n − 6, a contradiction. Thus, B ∼= S1,P3,1 and
dT (v3) = 3. Furthermore, if there are at least two vertices of
{v2, t, v4} have neighbors in S, say v2 and v4. Then V (T )−
{v1, v2, v3, v4, v5} is a TRDS of size n− 5, a contradiction.
Thus, there is at most one vertex of {v2, t, v4} has neighbors
in S.

Subcase 3.2.2. There is no path of order 3 attach to v3 in
B − P .

It is clear that B ∼= S1,b,1(b ≥ 1). If b ≥ 3 or b = 2 and
v3 has neighbors in S, then V (T )−{v2, v3, u, w, v4} where
{u,w} ⊆ NB−P (v3) is a TRDS of T of and γ(tr) ≤ n− 5,
a contradiction. Thus, b < 2 or b = 2 and dT (v3) = 4.
Furthermore, If B ∼= S1,2,1 and v2 or v4 has neighbors in S,
say v2, then V (T )−{v1, v2, v3, u, v4} where u ∈ NB−P (v3)
is a TRDS of size n − 5, also a contradiction. Thus, B ∼=
S1,2,1 and only the leaves have neighbors in S. If B ∼= S1,1,1

and {v2, v3} or {v3, v4} or {v2, v4} has neighbors in S, then
V (T )−{v1, v2, v3, u, v4} or V (T )−{v2, v3, u, v4, v5} where
u ∈ NB−P (v2) or V (T )− {v1, v2, v3, v4, v5} is a TRDS of
T and γ(tr) ≤ n − 5, a contradiction. Thus, at most one
vertex of {v2, v3, v4} and all leaves of S1,1,1 have neighbors
in S.

Subcase 3.3. B ∼= P5.
By Lemma 2.3, at least one vertex of {v2, v3, v4} has

neighbors in S. If there is only one vertex of {v2, v4} has
neighbors in S, by Theorem 2.4, γtr(T ) = n − 3, a con-
tradiction. If all the vertices of {v2, v3, v4} have neighbors
in S, then V (T ) − {v1, v2, v3, v4, v5} is a TRDS of T and
γ(tr) ≤ n − 5, also a contradiction. Thus, {v3} or {v2, v3}
or {v3, v4} and all the ends of P5 have neighbors in S.

Case 4 : diam(B) = 5.
Let P be one of the longest paths in B, say P =

v1v2v3v4v5v6. If v2 or v5 has neighbors in B − P , say v2.
Then V (T ) − {v1, v2, u, v5, v6} where u ∈ NB−P (v2) is a
TRDS of T and γ(tr) ≤ n−5, a contradiction. If both v3 and
v4 have neighbors in B−P , then V (T )−{v2, w, v3, v5, v6}
where w ∈ NB−P (v3) is a TRDS of T and γ(tr) ≤ n − 5,
also a contradiction. Thus, there is at most one vertex of
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{v3, v4} has neighbors in B − P and we consider the
following two subcases.

Subcase 4.1. There is exactly one vertex of {v3, v4} has
neighbors in B − P .

We may assume that v3 has neighbors in B − P .
Since diam(B) = 5, if there is a path P3 = v3uw
attach to v3 in B, then V (T ) − {v1, v2, u, w, v5, v6} is a
TRDS of T and γ(tr) ≤ n − 6, a contradiction. Thus,
B ∼= S1,b,0,1 (b ≥ 1) where dB(v3) = b + 2. Furthermore,
if b ≥ 3 or b = 2 and v3 has neighbors in S, then
V (T ) − {v2, v3, u, w, v4} where {u,w} ⊆ NB−P (v3) is a
TRDS of size n − 5, a contradiction. Thus, B ∼= S1,1,0,1

or B ∼= S1,2,0,1 and dT (v3) = 4. Let B ∼= S1,1,0,1, if
{v2, v3} or {v2, v4} or {v3, v4} has neighbors in S, then
V (T ) − {v1, v2, v3, u, v4} or V (T ) − {v1, v2, v3, v4, v5} or
V (T )− {v2, v3, u, v4, v5} where u ∈ NB−P (v3) is a TRDS
of size n − 5, a contradiction. If v5 has neighbors in S,
then V (T )− {v1, v2, v4, v5, v6} is a TRDS of size n− 5, a
contradiction. Thus, at most one vertex of {v2, v3, v4} has
neighbors in S. Let B ∼= S1,2,0,1 where dT (v3) = 4 and
{u,w} ⊆ NB−P (v3). By the same discussion to S1,1,0,1,
we have that there is at most one vertex of {v2, v4} has
neighbors in S. Furthermore, if v2 or v4 has neighbors in S,
then V (T )−{v1, v2, v3, u, w} or V (T )−{u,w, v3, v4, v5} is
a TRDS of size n−5, a contradiction. Thus, only the leaves
of S1,2,0,1 have neighbors in S.

Subcase 4.2. There is no vertex of {v2, v3, v4, v5} has
neighbors in B − P .

Clearly, B ∼= P6 = v1v2 · · · v6. If {v2, v4} or {v3, v5} has
neighbors in S, then V (T )− {v1, v2, v3, v5, v6} or V (T )−
{v1, v2, v4, v5, v6} is a TRDS of T and γ(tr) ≤ n − 5, a
contradiction. Thus, there is at most {v2, v3} or {v2, v5} or
{v3, v4} or {v4, v5} or exactly one vertex of {v2, v3, v4, v5}
and all the ends of P6 have neighbors in S.

Case 5: diam(B) = 6.
Let P be one of the longest paths in B, say P =

v1v2v3v4v5v6v7. If v2 or v6 has neighbors in T − P ,
say v2. Then V (T ) − {v1, v2, v3, v6, v7} is a TRDS and
γ(tr) ≤ n − 5, a contradiction. Thus, if both v3 and v5
have neighbors in T −P , then V (T )−{v2, v3, v4, v6, v7} is
a TRDS of size n− 5, also a contradiction. We consider the
following subcases.

Subcase 5.1. {v3, v4} or {v4, v5} has neighbors in B−P .
We may assume that both v3 and v4 have neighbors in

B−P . If v3 or v4 has at least two neighbors in B−P , say
v3. Then V (T ) − {v2, v3, u, v4, v5} where u ∈ NB−P (v3)
is a TRDS of T and γ(tr) ≤ n − 5, a contradiction. Thus,
both v3 and v4 have exactly one neighbor in B − P . Since
diam(B) = 6, if there is one path P3 = v3uw attach to v3 in
B, then V (T )−{v1, v2, u, w, v6, v7} is a TRDS of size n−6,
also a contradiction. By the same discussion to v4, we have
that B ∼= S1,1,1,0,1. Furthermore, if one vertex of {v3, v4, v5}
has neighbors in S, then V (T ) − {v2, v3, u, v4, v5} where
u ∈ NB−P (v3) or V (T ) − {v2, v3, v4, w, v5} where w ∈
NB−P (v4) or V (T )− {v2, v3, v4, v5, v6} is a TRDS of size
n − 5, a contradiction. Thus, B ∼= S1,1,1,0,1 and only the
leaves of S1,1,1,0,1 have neighbors in S.

Subcase 5.2. There is only one vertex of {v3, v4, v5} has
neighbors in B − P .

If v3 or v5 has neighbors in B − P , say v3. Then
V (T )− {v2, v3, u, v6, v7} where u ∈ NB−P (v3) is a TRDS

of size n−5, a contradiction. Thus, at most v4 has neighbors
in B − P . Since diam(B) = 6, if there is a path Pt+1

of length at least 2 attach to v4, say Pt+1 = v4u1, · · · , ut

(3 ≥ t ≥ 2). Then V (T ) − {v1, v2, ut−1, ut, v6, v7} is a
TRDS of T and γ(tr) ≤ n − 6, a contradiction. Thus,
B ∼= S1,0,c,0,1 (c ≥ 1) where dB(v4) = c + 2. If v2
or v6 has neighbors in S, then V (T ) − {v1, v2, v3, v5, v6}
or V (T ) − {v2, v3, v5, v6, v7} is a TRDS of size n − 5,
a contradiction. If v3 or v5 has neighbors in S, then
V (T )−{v1, v2, v4, u, v5} or V (T )−{v3, v4, u, v6, v7} where
u ∈ NB−P (v4) is a TRDS of size n−5, also a contradiction.
Thus, dT (v2) = dT (v3) = dT (v5) = dT (v6) = 2.
Furthermore, If c ≥ 3 or c = 2 and v4 have neighbors in S,
then V (T )−{v3, v4, u, w, v5} where {u,w} ⊆ NB−P (v4) is
a TRDS of size n− 5, a contradiction. Thus, B ∼= S1,0,2,0,1

and only the leaves of S1,0,2,0,1 have neighbors in S or
B ∼= S1,0,1,0,1 and at most v4 and all the leaves of S1,0,1,0,1

have neighbors in S.
Subcase 5.3. B ∼= P7 = v1v2 · · · v7.
By the discussion of the above, it is clear that at most

{v3, v4} or {v4, v5} or exactly one vertex of {v3, v4, v5} and
all the ends of P7 have neighbors in S.

Case 6 : diam(B) = 7.
Let P be one of the longest paths in B of order 8, say

P = v1v2 · · · v8. If v2 or v7 has a neighbor in T −P , say v2,
then V (T )−{v1, v2, v3, v6, v7} is a TRDS of T and γ(tr) ≤
n−5, a contradiction. If v3 or v6 has neighbors in T−P , say
v3, then V (T )−{v2, v3, v4, v7, v8} is a TRDS of size n−5,
also a contradiction. Thus, at most v4 or v5 has neighbors in
T − P . If there is a vertex u ∈ V (B − P ) adjacent to v4 or
v5, then V (T )−{v3, v4, u, v7, v8} where u ∈ NB−P (v4) or
V (T )−{v1, v2, v5, w, v6} where w ∈ NB−P (v5) is a TRDS
of size n − 5, also a contradiction. Thus, B ∼= P8 and at
most v4 or v5 and all the ends of B have neighbors in S.

Case 7 : diam(B) = 8.
Let P be one of the longest paths in B of order 9, say

P = v1v2 · · · v9. The same to Case 6, we have that v2 or
v3 or v4 has no neighbors in T − P . Otherwise, V (T ) −
{v1, v2, v3, v8, v9} or V (T )−{v2, v3, v4, v8, v9} or V (T )−
{v3, v4, v5, v8, v9} is a TRDS of T and γ(tr) ≤ n − 5, a
contradiction. By the symmetric, v6 or v7 or v8 also has no
neighbors in T − P . If there is a vertex u ∈ V (B − P )
adjacent to v5 in B, then V (T )− {v1, v2, v5, u, v8, v9} is a
TRDS of size n−6, also a contradiction. Thus, B ∼= P9 and
at most v5 and all the ends of B have neighbors in S.

We discuss all the cases and complete the proof of the
theorem.

By our result, we can give an algorithm to determine a
tree T of order n with γtr(T ) = n− i where i = 0, 2, 3, 4.

Algorithm 1.8: Input: A tree T of order n with vertex set
V (T ) = {v1, v2, · · · , vn}.
Output: A subset vertex set of T , denote by S and the
cardinality of S, denoted by r.
1 : set S := ∅ and r := 0
2 : for i = 1, 2, · · · , n do
3 : if vi is a leaf or adjacent to a leaf of T then
4 : add vi to S and increment r by 1
5 : end if
6 : end for
7 : return (S, r).
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By the algorithm, for any tree T , we can get a subgraph
T [V −S]. If T [V −S] has at most two nontrivial components,
and satisfies Lemma 2.2 or Lemma 2.3 or Theorem 2.4 or
Theorem 2.6 or Theorem 2.7, then γtr(T ) = n − i where
i = 0, 2, 3, 4. Otherwise, r ≤ γtr(T ) ≤ n− 5.
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