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Abstract— This article describes a common factor model to 

forecast mortality rates. The proposed model is an extension 
Lee-Carter state space (LC-SS) model by incorporating 
multiple common trends through application dynamic factor 
analysis (DFA) to reduce the dimension of the observed 
mortality rates in term of common trends. The original, the 
LC-SS model is formalized the Lee-Carter (LC) model as a 
statistical model accounting for all source of variability. The 
proposed model is actually the LC-SS incorporating DFA and 
being termed as LC-DFA model. The LC-DFA model is 
designed specifically for analyzing short and non-stationary 
mortality series. As in LC-SS, the parameters in the proposed 
LC-DFA model are estimated by maximum likelihood 
estimation (MLE) through an expectation-maximization (EM) 
algorithm. The mortality data of Peninsular Malaysia for years 
1980 to 2009 were used to illustrate the performance of the 
proposed model. The data were split according to gender and 
separate LC-DFA models were each fitted for the males and 
female population. The LC-DFA performance in terms of the 
accuracy of prediction based on in-sample fitting and out-of-
sample forecasts of the LC-DFA was then evaluated by 
comparing with the LC-SS and LC models. The most efficient 
forecasting model was based on lowest values of root mean 
square error (RMSE) and mean absolute percentage error 
(MAPE). The results revealed that the proposed LC-DFA 
model performs the best. 
 

Index Terms—Dynamic factor analysis, Expectation-
maximum algorithm, Lee-Carter model, mortality, state space 
model.  
 

I. INTRODUCTION 
IMENSION reduction techniques such as principal 
component analysis (PCA), factor analysis (FA) or 

correspondence analysis (CA) have been applied by 
researchers to analyze sets of data that contain relatively 
large number of response variables. The main purpose of 
dimension reduction is to simplify the data without losing 
relevant information in the data sets.  This requires that the 
simplified structure explains most of the variability in the 
data.  The basic technique of data reduction in multivariate 
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analysis is PCA. However the PCA technique does not 
account for temporal variation. Dynamic factor analysis 
(DFA) (also known as dynamic factor model-DFM) is a 
dimension-reduction technique that models N observed non-
stationary time series in term of M common trends.  The 
principle of DFA is the same as other dimension reduction 
techniques. However, DFA is designed for time series.  
Although it is possible to apply PCA to time series data it 
does not take account of time in any way.  Even though it 
can connect consecutive points in time with each other, 
interpretation of the results is likely to be difficult [1]. 

In 1992, Lee and Carter proposed a model which used 
PCA technique in modeling and forecasting age-specific 
mortality [2]. The LC model assumes that the log-death 
rates time series shares one common trend that explained by 
the first principal component term which represented by 
mortality index. This first term of principal component can 
be estimated by the singular value decomposition (SVD).  
Basically, the LC model is based on a log-bilinear form for 
age-specific mortality involving two equations. The 
parameters of these two equations are estimated separately 
where the first equation is computed from SVD in order to 
extract the principal component term (the mortality index), 
while, the second equation is modeled the mortality index 
using time series methods.  The strength of the LC method 
is in its simplicity and robustness in the context of linear 
trends in age-specific death rates (ASDR) [3]. The model 
became the leading stochastic model in the actuarial and 
demographic literature and was used as a benchmark model 
in most academic researches and practical applications of 
mortality forecasting [4]-[7].  

The LC method works very well for most of the 
countries, but, not for some countries. Therefore, the LC 
model has undergone various extensions and modifications 
exemplified in the works of [8]-[12]. Most of these 
extensions used PCA in extracting the first component or 
single common trend explained by the mortality index. A 
exception is the work done by [11] that included the 
incorporation of second and higher order terms into the LC 
model to cater for the additional component that are not 
explained by the first component. Apart from this, several 
extended the concept of LC model by considering multiple 
PCA components using dynamic factor model (DFM) in 
forecasting mortality [13], [14]. 

The extension of LC model also involves a reformulation 
of the model as state space model as in [15]-[18]. The main 
reason why a state space formulation of the LC model was 
suggested is due to the fact that errors of the LC equations 
were estimated separately. The first equation is estimated by 
a combination of SVD while the second as a time series 
model. Reference [15] highlighted the fact that the 
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prediction of the LC model only accounts for the errors of 
time series model while ignoring the errors in estimating the 
parameters and the variance of the error term in the first 
equation. In state space formulation, all the parameters in 
the LC model were estimated simultaneously. However, 
most of the existing LC in state space model retained the 
assumption of one common trend of LC except in the work 
done by [16] that considered multiple common trends using 
DFA. DFA model is common factors model formulated in 
state space framework which plays a role in dimension-
reduction technique by modeling N observed non-stationary 
time series in term of M common patterns. These patterns 
may represent common trends, seasonal effects or common 
cycle.  

Most developments of mortality model for forecasting by 
previous researchers concentrate on methods used on long 
data sets has been available in developed countries, with 
only scanty mentions of methods suitable for the shorter 
data set for developing countries. 

Therefore, this study proposed to adopt DFA model with 
multiple common trends to cater the cases of mortality data 
containing large number of response variables pertaining to 
age groups within relatively short length of the time series 
data. This study focuses on the development a DFA model 
with EM algorithm for its parameter estimation adopted 
from [19] and [1] by extending the works done by [17], [18].  

II. LEE-CARTER MODEL 
Let be ݉௫,௧ the mortality rates for a group of ݔ ages in 

year ݐ with ݔ = 1, … … , (ܰ஺௚௘) and ݐ = 1, … … . , (ܶ௒௘௔௥). LC 
model analyzes the linear relationship between the logarithm 
of original ݉௫,௧ and two factors, namely are age ݔ and year 
 The model is represented as .ݐ

 
൫݉௫,௧൯݃݋݈ = ௫ߙ + ௫݇௧ߚ + ௫ߝ ,௧ ,              (1) 
 
where ߙ௫ is the age pattern of log mortality rates averaged 
across year; ߚ௫ is the first principal component reflecting 
relative change in the ݈݃݋൫݉௫,௧൯ at each age; ݇௧ is the first 
set of principal score by year ݐ representing  mortality index 
that measures the general level of the ݈݃݋൫݉௫,௧൯ and ߝ௫,௧  is 
the error term, assumed homoskedastic. The model was 
estimated using SVD with two constrains to ensure it is 
identifiable. The two constrains are ∑ ݇௧ = 0்

௧ୀଵ   and 
∑ ௫ߚ = 1.ே
௫ୀଵ  In addition, the LC method adjusts ݇௧ by 

refitting it to the total number of deaths. The purpose of this 
adjustment is to give more weight to high rates [2]. The 
adjustment is as follows: 

 
݀௧ = ∑ ො௫ߙ)	௫,௧exp݌ൣ + መ௫ߚ ෨݇௧൧஺

௫ୀଵ ,            
 

where ݀௧  is the number of deaths for a group of ages ݌ ,ݔ௫,௧ 
is the average number of people living for a group of ݔ ages 
in year ݐ and ෨݇௧ is the adjusted estimated mortality index.   
The adjusted estimated ݇௧ is then extrapolated using 
autoregressive integrated moving average (ARIMA) method 
[20],[21], specifically, ARIMA (0,1,0) as in the original 
paper of [2].  

The ARIMA (0,1,0) which represent a random walk with 
drift model is expressed as follow, 

 
݇௧ = ݇௧ିଵ + ߠ + ௧ݑ ݐ															 = 1, … … ,ܶ,         (2) 
 
where ߠ is a drift parameter representing the constant annual 
change in the series of ݇௧ and ݑ௧ is the error term. The 
procedures of the LC method are summarizing as follow. 
1) Estimate ߙ௫, ߚ௫ and ݇௧ using historical age specific 

mortality rates. 
2) Adjust the estimated ݇௧ to ensure equality between the 

observed and estimated number of deaths in a certain 
period.  

3) Extrapolate the series of adjusted ݇௧ using ARIMA.  
4) Forecast log ASDR using extrapolated adjusted ݇௧ with 

fixed values of estimated ߙ௫ and ߚ௫. Here, the forecasted 
values of adjusted ݇௧ and the estimated ߙ௫ and ߚ௫ are 
substituted into (1), then convey back the estimated 
 to the original scale in order to get forecast (௫,௧݉)݃݋݈
value for the ASDR.  Thus, the ℎ-step forecast of 
݉௫,்ା௛ 	is: 

 
 ෝ݉௫,்ାଵ = exp൫ߙො௫ + መ௫ߚ ෨்݇ା௛൯.           

III. LEE-CARTER AS COMMON FACTOR MODEL 

A. Lee-Carter State Space Model  
In order to improve the quality of the forecast, the LC 

model was set up in a standard class of stochastic model 
based on the concept of common factor model.  Previously, 
the LC model was set up as a state space model (SSM) as in 
[15-18]. The model contains ܰ observations for ܰ age 
groups and a single state equation that explains the 
dynamics of the unobservable variable. Let ࢓௧ be the vector 
of ܰ log ASDR for year ݐ, that is ࢓௧ = (݉ଵ௧ ,݉ଶ௧ , … ,݉ே௧)′ 
where ݉௜௧  is the value of the ith ASDR at time ݐ (	݅ =
1, … ,ܰ and ݐ = 1, … ,ܶ). Thus, the LC model as a SSM is 
represented by   

 
௧࢓ = ࢻ + ௧݇ࢼ +  (ࡾ,૙)ܸܰܯ~௧ࢿ      ௧ࢿ
݇௧ = ݇௧ିଵ + ߠ + ,௧~ܰ(0ݑ          ௧ݑ  (3)                 (ݍ

 
where ࢻ = ,ଶߙ,ଵߙ) … ࢼ ,′(ேߙ, = ,ଶߚ,ଵߚ) …  ே)′ andߚ,
௧ࢿ = ଵ௧ߝ) , ଶ௧ߝ , … ,  ௧ are error terms that areݑ ே௧)′ andߝ
assumed to be independent. A univariate random walk with 
drift model is assumed for the state vector. The LC in SSM 
(hereafter LC-SS model) model is the simplest common 
factor model which contains only one common trend.  This 
model assumes all the age groups follow the same pattern by 
one common trend. It also assumes the error for the state ݑ௧ 
is independent, identically and normally distributed, with 
zero mean and variance ݍ. The LC-SS model for the log 
ASDR provides a joint distribution for the ܰ age groups at 
any given time and allows us to estimate all the parameters 
simultaneously.  It assumes that the error is independent 
across time where ࢿ௧ are independent identically and 
normally distributed with ܰ × 1	variance vector ࡾ.  The 
errors ࢿ௧ and ݑ௧ are uncorrelated. 
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B. Extended Lee-Carter State Space Model into Dynamic 
Factor Analysis Model 

The LC-SS model (3) with one common trend has been 
further extended with multiple common trends. The LC-SS 
model with multiple common trends is similar to common 
trend model or also known as DFA model. The LC-SS 
model is the simplest DFA model which contains only one 
common trend. The model with one common trend assumes 
that all the age groups follow the same pattern. The 
proposed model here is taking account of the dynamic 
structure of mortality data by extending the LC-SS using 
DFA model which is also based on state space formulation. 
In this case, the LC-SS model is considered as a special case 
of DFA model with the number of common trends being 1, 
i.e. ܯ = 1. The mathematical representation for this 
extended LC-SS through DFA model (hereafter LC-DFA 
model) with M commons trends together with a level 
parameter and a noise component is  

 
݉௫௧ = ௫ଵ݇ଵ௧ߚ + ௫ଶ݇ଶ௧ߚ +⋯+ ௫ெ݇ெ௧ߚ + ௫ߙ + ௫௧ߝ ,      (4) 
 
where ߝ௫௧~(ܴ,0)ܸܰܯ, ݉௫௧  is the value of ݔth log ASDR of 
the 17 age group series at time ݐ,  ௝݇௧ is the jth common 
trend, ߚ௫௜  is the factor loading, ߙ௫ constant level parameter 
and ߝ௫௧  is noise.  In matrix notation, the model is as  
 
࢚࢓ = ࢑࢚ࢼ + +ࢻ  (5)         , (ࡾ,0)ܸܰܯ~࢚ࢿ where ࢚ࢿ
 
where ࢚࢓ is a ܰ × 1 vector containing the values of the 17 
logged death rates series for at time ࢑࢚ ,ݐ represent the 
values of ܯ common trends at time ࢻ  ,ݐ is a ܰ × 1 vector 
of constant level parameter that allow each linear 
combination of common trends to move up or down, and ࢚ࢿ 
is a ܰ × 1 noise component which is assumed to be 
normally distributed with mean 0 and covariance matrix ࡾ. 
The ܰ × 1 vector ࢼ contains the values of factor loading 
which determines the linear combinations of common 
trends. The factor loading identifies which common trends 
are important to a particular age groups and which set of age 
groups are related to the same common trend.  The trends 
represent the underlying common patterns over time.   

The common trend is modeled as a multivariate random 
walk with drift, i.e., 

 
࢑࢚ = +ࢉ ࢑࢚ି૚ + ࢛࢚                  (6) 
 
where ࢛࢚~ࢉ ,(ࡽ,0)ܸܰܯ is a drift parameter and  ࢛࢚ is the 
error vector that assumed to be normally distributed with 
mean 0 and diagonal covariance matrix ࡽ. The error ࢛࢚ is 
independent of  ࢚ࢿ. Hence, the jth trend at time ݐ is equal to 
the jth trend at time (ݐ − 1) plus a contribution of the noise 
component.  If the diagonal element of ࡽ is relatively small, 
then the contribution of the error component is likely to be 
small for all ݐ and the jth trend will be a small curve.  If it is 
large, then the jth trend will show more variation.  Hence the 
trends are smoothing functions over time and are 
independent of each other. To complete the LC-DFA model, 
the initial condition of the state is assumed to be normally 
distributed with mean ࢇ૙		and variance ࡼ૙ such that 
࢑଴~ܸܰܯ(ࢇ૙,ࡼ૙). 

C. Parameter Estimation for LC-DFA Model 
In this study, the LC-DFA model in (5) takes account of 

the dynamic structure of mortality data using a model based 
on a SSM formulation with the unknown parameters 
denoted as ࢾ =  These parameters .{଴ࡼ	and	଴ࢇ,ࣂ,ۿ,ࡾ,ࢼ,ࢻ}
are estimated using MLE under the assumption that the 
initial state is normal that is ݇଴~ܸܰܯ(ܽ଴,ࡼ଴). The joint 
log-likelihood function of the observations ࢓ଵ,࢓ଶ, … . .  ்࢓,
and the trend component ࢑଴,࢑ଵ, … . . ,࢑் are given as 
follows: 

 
log ܮ ,ଶ࢓,ଵ࢓) … . . ்࢓, , 	࢑଴,࢑ଵ, … . . ,࢑்) =	 

−
1
2 log|ࡼ૙| 	−

1
2

(	࢑଴ − ࢑଴)	૙ି૚ࡼ૙)ᇱࢇ − (૙ࢇ −
T
2 log|ࡽ| 

−
1
2
෍(	࢑௧ − 	࢑௧ିଵ − ᇱ(ࣂ
୘

୲ୀଵ

࢑௧	)૚ିࡽ − 	࢑௧ିଵ −  (ࣂ

−
T
2 log|ࡾ| + constant 

−
1
2
෍(	࢓௧ − ࢑௧ࢼ	 ᇱ(ࢻ−
୘

୲ୀଵ

௧࢓)	૚ିࡾ − ࢑௧ࢼ	  	(ࢻ−

 
This likelihood function is maximized numerically using 

the method of numerical maximizing, the EM algorithm as 
in [17] and [18] which originally adopted from [1], [19]. 
The EM algorithm is an iterative method for finding the 
MLEs of all parameters in (5) and (6). This is done by 
successively maximizing the conditional expectation of the 
likelihood function. The EM algorithm involves procedure 
with expectation step (E-step) and maximization step (M-
step). Starting with an initial set of parameter that denoted 
 ෡ଶ is obtained by finding theࢾ ෡ଵ, and updated parameter setࢾ
 ෡ଶ which maximizes the expected value of the likelihoodࢾ
over the distribution of the state condition on ࢾ෡ଵ. Then, 
using ࢾ෡ଶ, an updated parameter set ࢾ෡ଷ is calculated.  These 
steps are repeated until the expected log-likelihood stops 
increasing. Then, the varimax rotation is applied to the 
factor loading after which an inverse factor rotation is 
applied to the common trends and the corresponding 
covariance matrix is modified. The overall procedure has 
been regarded as simply alternating between the Kalman 
filtering (KF) and smoothing (KS) recursions. The following 
are the steps involved in maximizing the likelihood via EM 
algorithm. It was maximized using the KF [22] and KS [23]. 
The EM algorithm involves the following steps and detail 
can be found in [24], [25]. 
1) Set an initial estimates of parameters, 

on iteration j, (j = 0,1,2,…..): 
2) Compute the incomplete-data likelihood and perform 

the E-Step. Based on initial parameters ࢐ࢾ, the expected 
values of ݇௧ conditioned on all the observed data ݉ଵ

் 
are calculated. 

3) Perform the M-Step.  A new set ࢐ࢾା૚ was computed by 
finding the parameters that maximize the expected log-
likelihood function with respect to ࢾ.  
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4) Repeat step 2 and 3 for convergence. New expectations 
are computed using	࢐ࢾ , then a new set of 
parameters	࢐ࢾା૚ is generated. This process is continued 
until the log likelihood stops increasing at a specified 
tolerance level. 

5) Apply a varimax rotation to the factor loadings and 
apply an inverse factor rotation to the common trends 
and modify the corresponding covariance matrix. 

 
Here, a number of models have been estimated with 

different number of common trend with a diagonal and non-
diagonal error covariance matrix R. To decide which model 
has the best fit, corrected Akaike’s information criterion 
(AICc) is was applied.  The DFA model with the smallest 
AICc value is chosen.  

D. Kalman Filter and Smoother 
The overall procedures involved in EM may be regarded 

as simply alternating between the KF and KS recursions. 
LC-DFA forecasts the observables using KF recursion based 
on the MLEs that were obtained from the recursive 
procedure. The unknown parameters in the model have been 
estimated using KF algorithm that solves for the expected 
value of the hidden state (࢑࢚) at time t conditioned on the 
observed data up to time t. The KF gives the optimal (lowest 
mean square error) estimates of the unobserved ࢑࢚ based on 
the observed data up to time t.  While, the KS (solves the 
expected value of the hidden state conditioned on all the 
data.  The estimators from the KF and KS yielded the 
maximum-likelihood estimates.  

Let ࢑௧|௦ = ௧|௦ࡼ and (௦࢓|࢑௧)ܧ = ࢑௧)}ܧ − ࢑௧|௦)൫࢑௧ −
࢑௧|௦)ᇱ}		. The KF algorithm for LC-DFA model in (5) is 
started with initial conditions ࢑଴|଴ and ࡼ଴|଴, for ݐ = 1, … . ,ܶ 
that used together with the state equation to compute 

 
࢑௧|௧ିଵ = ࢑௧ିଵ|௧ିଵ 
௧|௧ିଵࡼ = ௧ିଵ|௧ିଵࡼ  .ࡽ+
 
Then, having observed the mortality data ࢓௧, the 
predictions ࢑௧|௧ିଵ and ࡼ௧|௧ିଵ have been updated (correct) as 
 
࢑௧|௧ = ࢑௧|௧ିଵ + ௧࢓)௧࡯ −         (࢑௧࢚ࢼ
௧|௧ࡼ = ܫ] −     ,௧|௧ିଵࡼ[௧ࢼ௧࡯
             
where ࡯௧ = ᇱ࢚ࢼ௧|௧ିଵࡼ࢚ࢼ]ᇱ࢚ࢼ௧|௧ିଵࡼ +  ૚ is called theି[ࡾ
Kalman gain, while the algorithm of the KS with initial 
conditions ࢑்|் and ்ࡼ|்that are obtained via KF for 
ݐ = ܶ,ܶ − 1, … . ,1, 
 
࢑௧ିଵ|் = ࢑௧ିଵ|௧ିଵ + ்|௧ିଵ൫࢑௧ࡶ − ࢑௧|௧ିଵ൯             
ࢀ|૚ି࢚ࡼ = ௧ିଵ|௧ିଵࡼ − ்|௧ࡼ)௧ିଵࡶ ′௧ିଵࡶ(௧|௧ିଵࡼ	− 				  
 
where ࡶ௧ିଵ = ௧|௧ିଵࡼᇱࡳ௧ିଵ|௧ିଵࡼ

ିଵ. 
 
 
 
 
 
 

E. Forecasting with Lee-Carter State Space 
LC-SS model forecasts as a standard state space model 

based on the MLEs obtained from the recursive procedure. 
In particular, the final state predictor  ்݇|்  implied by the 
MLEs together with the observation and state equation 
construct ்࢓ା௛|் for ℎ = 1,2, ….		according to 

 
்|ା௛்࢓ = +ࢻ                           .்|௛࢑்ࢼ

IV. APPLICATION 
Data set for Peninsular Malaysia’s male and female all-

cause mortality was used to demonstrate the use LC-DFA 
model in forecasting mortality specifically for the case of 
mortality with short time series. The data were provided by 
the Department of Statistics, Malaysia (DOSM) and consist 
of annual number of deaths and populations for 17 age 
groups for years 1980 to 2009. The age groups are 0 - 4, 5 - 
9, ..., 75 - 79, 80+. Deaths and population with unknown age 
groups are not included in the analysis. Since, mortality was 
measured by age-specific death rates (ASDR), then the 
ASDR in a single calendar year were calculated based on 

݉௫,௧ = ൬ௗೣ,೟
௣ೣ,೟

൰ where ݀௫,௧  is the number of deaths for a group 

of ݔ ages in year ݐ and ݌௫,௧ is the observed population for a 
group of ݔ ages in year ݐ.	 The observed population used the 
mid-year population for a group of ݔ ages. To illustrate the 
methodology and to assess the performance of the models, 
out-of-sample for the last four years of the data was 
performed. That is, the data from years 1980 to 2005 were 
used to fit the models and then forecasts were made for 
years 2006 to 2009. The forecasts values were then 
compared to the observed values. 

Time plots of the ASDR over time for male population 
and female population for year 1980 to 2009 are presented 
as Figure 1 and Fig. 2 respectively. The fluctuations in the 
ASDR over this period reflect the fact that mortality has 
decreased considerably in almost all age groups during the 
past 30 years and is much lower for females than for males. 
The decline in the female ASDR is steadier than those of the 
males. The males ASDR appears much noisier than for 
females. These data were then transformed to the logarithm 
(natural logarithm) because of the exponential nature in 
ASDR trend. In addition, it is necessary to transform the raw 
data by taking logarithms in order to stabilize the high 
variance associated with high age-specific rates.  

In this study, the ASDR were fitted and forecasted using 
the original LC, LC-SS model with single common trend 
and LC-SS model with multiple common trends (LC-DFA). 
In estimating the LC-SS and LC-DFA, the KF with initial 
mean 0 and variance 5 for initial setting of the state vector 
࢑଴ was used; following [17, 18]. The discussion of the 
results first describes the LC-DFA in estimating the 
underlying common trends in Malaysia’s ASDR series. A 
total of 17 ASDR series by age group are modeled as a 
constant plus a linear combination of M common trends and 
noise term which is assumed to be normally distributed with 
mean 0 and two different assumptions on covariance matrix 
R which equal variance and unequal variance assumes. 
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Fig. 1.  Malaysian males ASDR trends. 

 
Fig. 2. Malaysian females ASDR trends

Two different assumptions on covariance matrix R were 
used. They are diagonal and equal covariance (equal 
variance) assumed for each age groups that were denoted as 
Model A1-M – A16-M for males and Model A1-F – A16-F 
for female, while, model with diagonal and unequal 
covariance (unequal variance) assumed for each age groups 
were denoted as Model B1-M – B16-M for males and B1-F 
– B16-F for females respectively. With different M values 
used, a total of 16 models were estimated for each of the two 
different assumptions on the variance. 

Model selection results for all 16 possible models for the 
two error variance assumed for both males and females are 
shown in Table I and Table II. The results indicate that 
Model B5-M with M = 5 common trends with diagonal and 
unequal model variances was the best model for males and 
Model B3-F with M = 3 common trends with diagonal and 
unequal model variances was the best model for females. 
These best models were based on the lowest value of 
corrected Akaike information criteria (AICc).  

 

The benefits of using the LC-DFA can be seen one 
compares the results with those from related mortality 
model; the LC model as in (1).  Referring to Table I and 
Table II, Model A1-M and A1-F respectively is LC-DFA 
with M = 1 (LC-SS) with covariance matrix of observation 
error R is diagonal and equal is equivalent with the 
assumption of original LC model [6], [7]. In the LC-DFA, 
the DFA model is used in extracting the number of common 
trends and model parameters have been estimated within 
state space framework with EM algorithm. However, the 
original LC model used PCA in extracting one common 
factor and used ordinary least square (OLS) via SVD in 
estimating model parameters. Comparing the AICc values 
(see Table I and Table II) between A1-M (AICc = 1021.167) 
and B5-M (AICc = 600.419) for males and A1-F (AICc = 
617.7207) and B3-F (AICc = 432.3728) for females 
respectively, clearly shows that LC-DFA models with 
multiple common trends (5 common trends for males and 3 
common trends for females) are the best models, i.e., has 
lower AICc. 
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TABLE I 
DYNAMIC FACTOR SELECTION RESULTS FOR EQUAL VARIANCE  

M 
Males Females 

Model AICc Model AICc 
1 A1-M 1021.167 A1-F 617.7207 
2 A2-M 855.6871 A2-F 521.9101 
3 A3-M 771.8541 A3-F 457.3038 
4 A4-M 718.9853 A4-F 452.4413 
5 A5-M 674.2541 A5-F 464.1094 
6 A6-M 630.4468 A6-F 469.9247 
7 A7-M 619.2778 A7-F 483.8946 
8 A8-M 649.956 A8-F 504.6387 
9 A9-M 681.4692 A9-F 530.6317 
10 A10-M 719.6707 A10-F 558.5977 
11 A11-M 763.9309 A11-F 590.047 
12 A12-M 782.5936 A12-F 625.762 
13 A13-M 807.1731 A13-F 643.1001 
14 A14-M 826.8509 A14-F 663.3278 
15 A15-M 842.2377 A15-F 678.8856 
16 A16-M 852.7498 A16-F 689.4343 

 
TABLE II 

DYNAMIC FACTOR SELECTION RESULTS FOR UNEQUAL VARIANCE 

M 
Males Females 

Model AICc Model AICc 
1 B1-M 881.6153 B1-F 445.8471 
2 B2-M 747.1274 B2-F 446.595 
3 B3-M 650.5703 B3-F 432.3728 
4 B4-M 630.2677 B4-F 455.398 
5 B5-M 600.419 B5-F 454.2373 
6 B6-M 603.7697 B6-F 490.1099 
7 B7-M 635.5987 B7-F 515.9922 
8 B8-M 677.0028 B8-F 549.9217 
9 B9-M 716.4836 B9-F 587.9814 
10 B10-M 755.8986 B10-F 630.7168 
11 B11-M 798.5131 B11-F 666.0875 
12 B12-M 826.2154 B12-F 707.9504 
13 B13-M 852.4364 B13-F 735.1113 
14 B14-M 580.82 B14-F 759.1648 
15 B15-M 898.531 B15-F 776.7707 
16 B16-M 911.2616 B16-F 787.0268 

 
As seen in Table I, Model A1-M is the worst-performing 

model with the largest AICc compared to other models in 
the case of males ASDR. However, for females, Model A1-
F is not comparatively worse than other models.  

The models were then evaluated based on the goodness of 
fit for in-sample fitting and out-sample forecast of the 
ASDR. Two different error measures were used; the root 
mean square error (RMSE) and mean absolute percentage 
error (MAPE). The evaluations of these models were carried 
out for each age group and overall performance for males 
and females respectively. In evaluating the performance in 
each group, these measures of accuracy were averaged over 
years, whereas, for overall performance, the measures were 
averaged over different ages and years. 

Summary of the results of the goodness of fit based on in-
sample fitting respectively for both males and females are 
presented in Table III and IV. It is obvious that the value of 
RMSE and MAPE for each age group for both males and 
females exhibit similar patterns. Among males, both 
measures indicate that the error for the LC-DFA model is 
smallest than the LC-SS and LC models in all the age 
groups. In the case of females, the LC-DFA most performed 
for almost all the age groups except for 10-14 where the 
MAPE value shows the LC is well fitted than LC-DFA and 
LC-SS and for age group 70-74 both measures show that the 
LC is most performed. 

TABLE III 
IN-SAMPLE EVALUATION FOR MALES 

Age 
LC LC-SS LC-DFA 

RMSE MAPE RMSE MAPE RMSE MAPE 
0-4 0.00059 14.279 0.00031 6.680 0.00009 1.944 
5-9 0.00005 9.019 0.00004 6.752 0.00002 3.301 

10-14 0.00002 3.459 0.00005 6.083 0.00002 3.181 
15-19 0.00018 10.593 0.00016 9.567 0.00004 2.507 
20-24 0.00017 7.878 0.00018 8.267 0.00003 1.177 
25-29 0.00016 7.323 0.00015 6.620 0.00006 2.369 
30-34 0.00023 7.969 0.00016 5.835 0.00005 1.724 
35-39 0.00031 9.129 0.00022 6.598 0.00004 1.388 
40-44 0.00028 6.429 0.00028 6.284 0.00010 2.232 
45-49 0.00029 4.170 0.00030 4.412 0.00015 2.302 
50-54 0.00044 4.066 0.00038 3.277 0.00017 1.460 
55-59 0.00062 3.478 0.00060 3.111 0.00022 1.240 
60-64 0.00080 2.584 0.00119 3.751 0.00053 1.739 
65-69 0.00163 3.744 0.00117 2.577 0.00096 2.062 
70-74 0.00267 3.719 0.00273 3.572 0.00140 1.955 
75-79 0.00611 6.040 0.00706 6.940 0.00013 0.130 
80+ 0.00981 5.272 0.00864 4.693 0.00703 4.147 

Overall 0.00292 6.421 0.00282 5.590 0.00176 2.050 
 

TABLE IV 
 IN-SAMPLE EVALUATION FOR FEMALES 

Age 
LC LC-SS LC-DFA 

RMSE MAPE RMSE MAPE RMSE MAPE 
0-4 0.00032 9.008 0.00021 4.556 0.00016 3.736 
5-9 0.00004 9.362 0.00003 6.228 0.00002 5.012 

10-14 0.00003 7.053 0.00004 7.003 0.00003 6.435 
15-19 0.00003 4.707 0.00002 3.351 0.00002 2.908 
20-24 0.00005 6.207 0.00003 3.460 0.00003 3.377 
25-29 0.00007 6.119 0.00004 4.016 0.00003 2.833 
30-34 0.00008 6.58 0.00006 4.062 0.00006 3.725 
35-39 0.00009 5.122 0.00006 3.462 0.00004 2.345 
40-44 0.00012 4.837 0.00009 3.166 0.00007 2.561 
45-49 0.00018 4.485 0.00014 3.603 0.00013 3.356 
50-54 0.00024 3.876 0.00023 3.307 0.00019 2.679 
55-59 0.00035 3.226 0.00028 2.665 0.00024 2.224 
60-64 0.00066 3.402 0.00072 3.373 0.00032 1.642 
65-69 0.00133 3.656 0.00123 3.480 0.00020 0.614 
70-74 0.00209 3.546 0.00240 4.229 0.00227 4.053 
75-79 0.00728 8.992 0.00723 8.945 0.00439 5.302 
80+ 0.00980 6.043 0.00781 4.928 0.00665 4.594 

Overall 
ll 

0.00303 5.66 0.00267 4.343 0.00201 3.376 
 
Generally, based on this comparison, it can be concluded 

that the proposed LC-DFA is preferred than the LC-SS and 
LC in almost all of the age groups in fitting historical data, 
while, the performance of the LC-SS and LC models are 
almost identical. However, there is no clear pattern of over 
or underestimation from these three models. This indicates 
that the estimated ASDR produced by all models vary. 

Overall results show that the LC-DFA is most performed 
than the LC-SS and the LC for both males and females with 
having smallest values in both measures. Additionally, these 
findings also revealed that in estimating the LC model, the 
state space framework through EM algorithm is performed 
better than classical LC model. This is based upon the 
observation, the overall performance of LC-SS and LC-DFA 
that performed well than original LC.  

However, commonly, in time series forecasting, the 
performance of in-sample fit is different from the out-of-
sample fit. The good forecasting model is the one that 
performs well in out-of-sample. Table V and VI present out 
sample evaluation for males and females respectively.  
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TABLE V 
 OUT-SAMPLE EVALUATION FOR MALES  

Age 
LC LC-SS LC-DFA 

RMSE MAPE RMSE MAPE RMSE MAPE 
0-4 0.00096 51.480 0.00040 19.114 0.00033 14.387 
5-9 0.00008 27.167 0.00002 6.213 0.00002 6.614 

10-14 0.00006 13.448 0.00003 7.077 0.00003 6.421 
15-19 0.00040 37.581 0.00037 34.984 0.00008 6.367 
20-24 0.00039 29.488 0.00044 32.903 0.00012 8.876 
25-29 0.00048 31.761 0.00046 30.725 0.00025 15.399 
30-34 0.00052 23.814 0.00034 15.390 0.00012 5.370 
35-39 0.00048 17.273 0.00028 9.966 0.00004 1.192 
40-44 0.00008 1.7000 0.00013 3.248 0.00018 4.716 
45-49 0.00069 12.452 0.00035 5.774 0.00021 2.664 
50-54 0.00143 16.524 0.00066 6.624 0.00071 7.249 
55-59 0.00105 7.102 0.00058 4.001 0.00052 3.978 
60-64 0.00145 6.879 0.00105 4.870 0.00047 1.941 
65-69 0.00072 1.691 0.00183 5.682 0.00234 7.341 
70-74 0.00655 12.843 0.00143 2.465 0.00356 6.642 
75-79 0.00397 5.386 0.00807 11.082 0.00232 3.012 
80+ 0.03026 25.486 0.02784 23.423 0.01438 11.851 

Overall 0.00760 18.946 0.00707 13.149 0.00369 6.707 
 

TABLE VI 
 OUT-SAMPLE EVALUATION FOR FEMALES  

Age 
LC LC-SS LC-DFA 

RMSE MAPE RMSE MAPE RMSE MAPE 
0-4 0.00060 37.837 0.00031 16.275 0.00026 13.943 
5-9 0.00005 22.331 0.00001 4.368 0.00001 4.296 

10-14 0.00002 6.795 0.00002 8.907 0.00001 3.169 
15-19 0.00003 8.620 0.00001 2.485 0.00001 2.851 
20-24 0.00005 10.200 0.00003 4.905 0.00004 6.946 
25-29 0.00007 12.853 0.00002 3.922 0.00003 4.980 
30-34 0.00016 21.331 0.00007 8.856 0.00005 5.838 
35-39 0.00015 13.307 0.00006 4.880 0.00006 5.289 
40-44 0.000251 14.879 0.00009 5.350 0.00005 2.832 
45-49 0.00031 10.720 0.00012 3.724 0.00006 2.124 
50-54 0.00050 10.443 0.00017 2.633 0.00022 3.924 
55-59 0.00041 5.240 0.00018 2.092 0.00013 1.493 
60-64 0.00047 3.852 0.00071 5.954 0.00034 2.725 
65-69 0.00120 5.795 0.00236 11.381 0.00147 7.104 
70-74 0.00137 3.030 0.00217 5.129 0.00238 5.769 
75-79 0.00820 12.940 0.00775 12.228 0.00142 1.754 
80+ 0.02276 18.835 0.01737 14.262 0.01540 12.591 

Overall 0.00622 12.883 0.00468 6.9030 0.00381 5.155 
 
Similar results are observed in out-sample prediction where 
both error measures for overall performance of the LC-DFA 
are smallest than the LC-SS and LC in which the LC-DFA 
performed better than the LC-SS and original LC for both 
males and females. However, the performance of the models 
for each of the age groups for both males and females, 
different evident is found especially for male population. 
Majority of the age groups show smaller values of RMSE 
for the LC-SS model compared to the LC-DFA. However, if 
we refer to MAPE values, the LC-DFA is still more 
dominant than LC-SS for almost all the age groups. Among 
females, both values of RMSE and MAPE show the LC-
DFA is most performed for almost all the age groups when 
compared to both LC-SS and LC models. 

V. CONCLUSION 
This article explores the state space representation of the 

LC model in modeling and forecasting mortality rates. We 
extended LC model in state space representation called it 
LC-SS model by considering multiple state equation that 
explains the dynamics of the unobservable common trends 
through DFA, known as LC-DFA. As extension of the LC-
SS in [17], the LC-DFA is also fitted with unequal variance 

assume for the each age group. This extension model 
considered because the observed ASDR data shows that 
some age groups have more variability than others. Since 
the aim of this paper is to introduce an alternative approach 
to modeling and forecasting mortality rates, we did not 
compare the proposed approach with other alternative 
methods. Here, the performance of the LC-DFA model was 
compared with the LC-SS model and LC model only. 
Evaluations were carried out using both in-sample and out-
sample fit. Based on empirical results using Malaysian 
ASDR, as an overall performance, it is concluded that the 
LC-DFA model fits reasonably well for males and females 
in both evaluations with smallest errors measures compared 
to the both LC-SS and original LC model. Even though for 
certain age groups, the LC-SS model produced predicted 
ASDR with lower error, it was found that the LC-DFA 
model outperforms LC-SS and LC models for almost all age 
groups.  Hence, based on empirical results, for fitting the 
current data set, we conclude that the performance of the 
LC-DFA model is the best model. We further conclude that 
the LC model in state space framework using EM algorithm 
is able to provide better estimates compared to the classical 
LC model. Further work in evaluating the performance of 
the LC-DFA model in forecasting mortality using life 
expectancy and other mortality indicators is currently under 
study. 
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