
 

   

 

Abstract—In this paper we discuss the existence of a critical 

exponent of Fujita type for the Cauchy problems with a 

nonlinear fractional equation  
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where     ,0,1 0,2    and  the Cauchy problem with 

a nonlinear parabolic fractional system 
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with  0 , 1   and  0 , 2.    

     Index Terms—Fractional derivatives, test-function, 

critical exponent. 

I. INTRODUCTION 

RACTIONAL  calculus is a mathematical analysis field 

where notions of integrals and derivatives of arbitrary 

order are used or applied. Establishment of sufficient and 

necessary conditions for local and global existence of 

solutions of fractional derivatives equations is a subject of 

topicality and it is the interest of many authors, so it was 

found so much in literature. See for example [2], [3], [4], 

[5],  [8],  [9],  [12],  [13],  [15] and  [20]. 

 

In this paper we follow idea treated in reference cited 

above by adding a function   ,f x t  to the term which 

wefind habitually in the second term in a standard form as 
p

u  or    ,
p

h x t u  and discuss the influence (the impact) 

of the last added function on conditions leading to a 

nonlinear evolution parabolic equations and systems with 

spatio-temporal fractional derivatives. 
      In fact, in his pioneering paper [3], Fujita considered the 

following Cauchy problem 
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where  0 .p  If  2
c

p N  (c for critical), he proved that:  

(I) If  0 p p  and   0
0a x  for some  0.x  then any 

solution to this Cauchy problem blow-up in a finite time. 

(II) If  ,cp p  then there exist solutions on Q as well as 

solutions which exist on   0,
N

T  for some finite ,T  

but not on .Q  (For this p, not all solutions are global, inde- 

ed if   
2

0 0

1 1
0

2 1
N N

u dx u dx
p

 


   ), the solution 

cannot be global [11]. 

      The critical case  ,
c

p p  was decided later by Hayaka-  

wa  [7] for  1,2N   and by Kobayashi, Sirao and Tanaka 

[22] for  3.N     

        Later on Nagasawa and Sirao [12], Sujitani [20] and 

Guedda and Kirane [4] considered the problem 
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  Nagasawa and Sirao have taken  ( , ) ( ),c x t c x  Sujitani  

( , ) 1,c x t   while Guedda and Kirane [4] studied the case  

( , ) ( ).c x t c t  The method   of proof in [12] is 

probabilistic while in [4] and [19], the approach analytic in a 

more recent paper, Guedda and Kirane [5] extended the 

previous results to the equation: 
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t
u u h x t u x t Q

 
      

where         ( , )h x t O t x


  for  large  .x   

    Finally, Kirane and Qafsaoui  [8] treated the more general 

equation: 
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  which covers in particular the equation considered by S.Q. 

Zhang  [21] 
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   To ensure that the problem (1) is well posed, the fractional 

derivative has been interpreted in the Caputo sense [14] 

(also cf. [16] for a justification of the choice of Caputo 

derivatives for a nonlinear ordinary differential equation 

with fractional derivatives). 

    Our theorems are reduced to the assertion on the nonexis- 

tence of solutions. If an existence result of solutions to the 

Cauchy problem holds, then the nonexistence of solutions 

means that every nonnegative solution blow-up in finite 

time. 

    To have an idea about its posed problems, one is referred 

to the important contributions [1], [6], [10], [12], [16], [18], 

[21]. 

     Results that we obtain for the following equations and 

systems can be considered as extension of results founded in 

the previous referenced paper. 

Part one concern with the following Cauchy problem       
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  Where 
0 t

D


 denotes the time-derivatives of arbitrary or

 0,1   in the sense of Caputo see [14],   
2

  where 

 0, 2 ,   is the 
2


-fractional power of the Laplacian    

defined by         
2 1

( , ) , ,v x t v x t
 

 


      

where    denotes the Fourier transform and 
1

  its inverse. 

   0, , ,
N p

T loc T
Q T L Q dxdt   Is the space of functions 

v :
T

Q   such that ,
p

K
v dxdt   for all compact K in 

.
T

Q   

  Remark 1: When 1, 1,    the problem (1) is reduced 

to the classical heat one. 

     In part two, attention is paid to the evolution system in 

order to extend result of one equation to a coupled system 

which that looks like a reaction-diffusion one 
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 Remark 2: Well position of the problem (1) and (2) is ensured if 

the fractional derivative has been considered in the Caputo sense 

[14] (also cf. [19] for a justification of the choice of Caputo 

derivatives for a nonlinear ordinary differential equation with 

fractional derivatives). 

Remark 3: Nonexistence of solutions means that every 

nonnegative solution blows-up in finite time.  

                        II.    PRELIMINARIES 

       Some definitions of fractional derivatives needed for 

further work are given follows: 

Definition 1: Left and right Riemann-Liouville derivatives 

for  1
0, ,L T  are defined respectively as follows  
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the symbol   is the usual Euler gamma  function. . 

     The Caputo derivative is given by 
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   This lead to a relation between Caputo and Riemann-

Liouville derivative   and it is written as 

                  D  0 0
( ) ( ) (0) .

t t
t D t

 
      

Also integration by parts gives: 
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t t T
f t D g t dt D f t g t dt

 
    

 Now we present some definitions concerning weak formulations 

to problems (1) and (2). 

Definition 2: If we denote by 
T

Q  a set such that

 0, ,
N

T
Q T   a function  1

loc T
u L Q  is a local 

weak solution to problem (1) defined on  ,0 ,
T

Q T   

if   p

loc T
u L Q  and
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Definition 3: Also we can define weak formulation for a system 

(2) on 
T

Q  such that  0,
N

T
Q T   as 
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In the two definitions cited in the above we define a test function  

 2,1

,x t T
C Q  such that   , 0,x t   and we suppose that 

integrals to be convergent. 

Remark 4: If  ,T    the solutions of problems (1) and 

(2) are said to be global. 

 

III.    AIM AND RESULTS 

Now we can announce our first result as. 

Theorem 1: Let  1,N  1 m p  and

 , 0.
TQ

f x t dxdt   If: 
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c

mN
p p

N

 

  


 

 
  

 then the problem (1) does not admit nontrivial global weak 

solution.    

       Proof: Contradiction is the game on which is based the   

demonstration of the theorem 1. 

Suppose that u is nontrivial nonnegative solution which exi- 

sts globally in time. That is u exists in  0,T


 for any arbi- 

trary  0.T


 Let T and R be two real numbers such that  
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In order to estimate the right-handed side of the relation (3) 

on 2 ,
TR

Q  we use Young inequality and then we find for the 

conjugate exponents p m and  ,p p m   
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Similarly 
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For   enough small, (3), (6) and (7) gives: 

 

    

2 2

2

2

2

2

.

TR TR

TR

TR

p

Q Q

p p m
m p m

Q

p
p p

t TRQ

f dxdt u dxdt

C dxdt

D dxdt

 











 

  

 


 






 











 





               (8)  
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, , ,x t Ry R y


        

with  the variables change 
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In inequality (8), we  estimate the first term of the left side, i.e.    
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Similarly calculus gives 
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 Now, passing to the second term in the left side of inequality 

(8),  i.e.  
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and from definition of fractional derivatives, we obtain  

 
 

 

 

2

2

1
.

1

TR

t TR t

d
D d

dt t









 
 

 



  

                     (10) 

Engineering Letters, 24:2, EL_24_2_05

(Advance online publication: 18 May 2016)

 
______________________________________________________________________________________ 



 

Make the following variables change 
2

,uR


   then  

2 .d R du


    Substitution of the last changes in (10) gives: 
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Equate the two powers of R  in (9) and (11) we find 
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Substitute (9) and (11) in (8) it come 
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Remark that from the last expression come the valid critical 

exponent for the equation (1), which is 
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For the last value we can distinguish two cases 

First case: 
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By Holder inequality, we arrive to the next expression 
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Under another form of writing, the last expression become 
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Apply in second time Holder inequality, we get 
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by substitution of (15) and (16) in (14) it come 
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Applying (13) to the last expression and let  R   we 
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this is a contradiction with hypothesis  0,
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f
  and this 

ends the proof                                                                                             ∎ 
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                  IV.    SYSTEM OF FRACTIONAL EQUATIONS 
 

    In this section we are interested by solving problem (2) 

concerning system which containing parabolic fractional equations 

as 
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Then the system (2) does not admit local nontrivial weak solution.   

 Proof:  We proceed always by contradiction. Put   
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Using inequalities (17) and (18) we can write 
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 Similarly with using (20) we obtain the second critical value for 

the second equation of (2) 
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