
 

 
Abstract—In this article, the population reliability modeling 

and individual residual life prediction are discussed. Firstly, 
three kinds of different Wiener process models are used to 
characterize the degradation data, and the unknown 
parameters are estimated by using the Markov Chain Monte 
Carlo (MCMC) method. Secondly, under those degradation 
models, the individual residual life prediction method is also 
obtained on the basis of current degradation quantity. Finally, a 
fatigue cracks data example is given to illustrate the usefulness 
and validity of the proposed model and method. Numerical 
results show that the random effect model is well fitted with the 
actual degradation data, and this model has smallest prediction 
error. Meanwhile the prediction accuracy is acceptable, and 
this prediction method provides a foundation for maintenance 
decision. 
 

Index Terms—Wiener process, residual life, current 
degradation quantity, Markov chain Monte Carlo 
 
 

I. INTRODUCTION 

UE to the advances in material science and 
manufacture technology, the lifetime of modern 

product has been becoming longer and longer, usually it is 
difficult to obtain enough failure data during research and 
development period[1]. In this situation, degradation data can 
be used as an alternate resource for reliability analysis. In the 
last decades, degradation data have played a more important 
role in reliability assessment than ever before [2]. 

As we know that degradation (e.g. wear, erosion and 
fatigue) is a common phenomenon for electro-mechanical 
system and its components. Degradation can be 
mathematically described with a continuous process in terms 
of time. In Ref. [3], three kinds of method for degradation 
data analysis are proposed, i.e. linear regression method, 
degradation path method, and stochastic process method. 
One highlight of stochastic process model is that the lifetime 
can be defined as the first hitting time when the degradation 
process reaches a failure threshold. And stochastic process 
can flexibly describe the failure mechanism and 
characteristics of operating environment, it has been widely 
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used to model the degradation path, including Gamma 
process [4], Wiener process [5,7,8,9,10], and Markov process [6], 
et al.  

Among those stochastic processes, Wiener process is most 
widely used. For example, LEE et al [5] and TANG et al [8] 
used Wiener process model to describe the degradation of 
light emitting diode; SU and ZHANG [7] used it to deal with 
degradation data of laser device. 

In reliability study, beyond evaluating products’ 
reliability, how to obtain the residual lifetime of a product is 
also of great interest. In Ref. [9], REN et al used fixed effect 
Wiener process to estimate residual life of an aircraft engine, 
and the prediction accuracy is given. 

However, the above studies consider only the fixed effect 
Wiener process. In this paper, the mixed effect and random 
effect Wiener process models are proposed, then the 
reliability assessment and individual residual life can be 
obtained. Considering Markov chain Monte Carlo (MCMC) 
method is convenient and efficient to sample from complex 
distribution, MCMC method is used to estimate the unknown 
parameters [15]. 

The rest of the paper is organized as follows. In Section 2, 
the different degradation models are introduced. Then, the 
residual life prediction methods are presented in Sections 3. 
In Section 4, the parameters estimation method based on the 
MCMC is presented. A numerical example with fatigue 
cracks data is given in Section 5. Finally, some conclusions 
are made in Section 6. 

II. POPULATION DEGRADATION MODEL BASED ON WIENER 

PROCESS 

Due to the good mathematical properties and physical 
interpretations of Wiener process, it has been taken to 
describe the performance degradation of products. A well 
adopted form of Wiener process  ( ), 0X t t   can be 

expressed as M1 
                         ( ) ( )X t t B t                                   (1) 

where μ and σ are drift and diffusion parameters, 
respectively; B(t) is a standard Brownian motion which is 
used to describe time-correlated structure.  

Let   be the threshold value of the product. It is assumed 

that the degradation path is described by the model M1. Given 
the threshold value ξ, the product’s lifetime T is defined as 
                             inf{ | ( ) }T t X t                                (2) 

and it is known that T follows inverse Gaussian distribution 
with probability distribution function (PDF) 

Reliability Assessment and Residual Life 
Prediction Method based on Wiener Process and 

Current Degradation Quantity 
Huibing Hao, Chunping Li 

D

Engineering Letters, 24:2, EL_24_2_08

(Advance online publication: 18 May 2016)

 
______________________________________________________________________________________ 



 

2

22 3

( )
( | , ) exp

22
T

t
f t

tt

   


 
  

 
 

                     
2 2

3

( )
exp

2 2

t

t t

    


 
  

 
                 (3) 

Then, basis on the PDF of lifetime T, we can obtain the 
reliability at time t as follow 
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where Ф(·) is the cumulative distribution function (CDF) of  
standard normal distribution. 

In most cases, each sample unit usually experiences 
different sources of variations during their operation. Thus, it 
is more appropriate to incorporate unit to unit variability in 
the degradation process, and the mixed effect model can 
describe the unit variability. A conventional mixed effect 
Wiener process model can be expressed as M2 
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Assume that the degradation path of product is described 
by the model M2. Considering that the drift parameter μ is 
random variable, by using the total law of probability, the 
PDF of the lifetime T can be reconstructed in model M2 as 
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where ( )   is distribution function of the standard normal 

distribution. 
Then, the reliability at time t can be expressed as 
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Up to now, some paper have considered mixed effect 
Wiener process model and their applications (see in [4], [10], 
[11] and [12]). But in those studies, only the drift parameter μ 
is considered to be random variable. 

In this paper, a random effect Wiener process is used to 
characterize the degradation data, where μ and σ of this model 
are regarded as random variables. A random effect Wiener 
process model can be expressed as M3 
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where β, α, θ and λ are unknown parameters; G(·) and N(·,

· ) are gamma distribution and normal distribution, 

respectively. It is noted that model M3 can be used to describe 
both the variation from unit to unit and time correlated 
structure. 

Similarly to the above, when μ and σ are random variables, 
by using the total law of probability, the PDF of lifetime T in 
model M3 is given by 
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and the reliability at time t can be expressed as 
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III. INDIVIDUAL RESIDUAL LIFE PREDICTION BASED ON 

CURRENT PERFORMANCE DEGRADATION 

As we known, Equations (4)、(7) and (10) provide a basis 
method for product reliability evaluation, and they can 
characterize the average survival rate of the population. 
Instead of the average population’s characteristics, the 
residual life prediction of individual product has important 
practical applications, such as planning of maintenance 
activities, supply chain management, replenishment of 
inventory system, et al. In this section, the residual life 
prediction method based on current performance degradation 
is given by using the different Wiener process model. 

Firstly, we focus on the residual life prediction method 
under the degradation model M1. According to the 
independent increment property of the Wiener process, given 
μ and σ, we can get the following 
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Given prediction reliability level p (0<p<1) and 
performance degradation X(tk)=x based on current time tk, we 
can obtain the continuous operation time L= t-tk of the 
operated until as: 
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where Z1-p  can be obtained through checking Normal 
distribution probability table. 

Secondly, we focus on the residual life prediction method 
under the degradation model M2. From the Equation (11), 
given μ and σ, we know that the PDF of X(t) follows as 

                     
2

22

1 ( )
( ) exp

22

x t
f x

tt




 
  

 
               (15) 

Considering that the drift parameter μ is random variable, 
by using the total law of probability, the PDF of Y(t) can be 
reconstructed in model M2 as 
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Then, we know that the PDF of Y(t) follows as 
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Given prediction reliability level p (0<p<1) and 
performance degradation Y(tk)=x based on current time tk, we 
can obtain the continuous operation time L = t-tk of the 
operated until as: 
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where Z1-p  can be obtained through checking Normal 
distribution probability table. 

Finally, we focus on the residual life prediction method 
under the degradation model M3. If the drift parameter μ and 
the diffusion coefficient σ are random variables, by using the 
similarly method, the PDF of Z(t) can be reconstructed in 
model M3 as 
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with degrees of freedom 2β. That is to say 

                     2
2( ) ~ ( ) ( )Z t T t t t                    (22) 

where T2β is the T distribution function with degrees of 
freedom 2β. 

Similarly, supposing that a product has operated until time 
tk without failure, and Z(tk) is the corresponding degradation 
quantity at time tk, the conditional reliability can be 
formulated as 
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Given prediction reliability level p (0<p<1) and 
performance degradation Z(tk)=x based on current time tk, we 
can obtain the continuous operation time L = t-tk of the 
operated until as: 
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where M1-p  can be obtained through checking T distribution 
probability table. The residual life L can be obtained by 
resolving the above equation. 

IV. PARAMETERS ESTIMATION VIA BAYESIAN MCMC 

METHOD 

Bayesian inference is an efficient approach to evaluate the 
unknown parameters of a given model. When it is difficult to 
obtain the analytical posterior distribution, MCMC method 
can be used. It can generate samples from the posterior 
distribution, and these samples can also be used to estimate 
the desired features of the posterior distribution. 

Suppose the degradation path of product is governed by 
M3. To achieve parameters estimation, we assume that n units 
are tested, and Xi(tij) denotes the cumulative degradation 
values of product i at time tij, for i = 1,2,, n; j = 0,1,2,, m. 
    Let 
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From Equation (26), we know that the model not only has 
four parameters, but is also very complicated from a 
computational viewpoint. For this reason, the MCMC with 
the Gibbs sampling techniques is employed in this study to 
estimate model parameters. Let ( | ,Z)j j    denote the full 

conditional posterior distribution of j , where 

1 1 1( , , , , , )j j j n          and Z is the observed data. 

The algorithm of parameters estimation via the Gibbs 
sampling can be summarized as follow: 

Step 1: Initialize (0) (0) (0) (0)
1 2( , , , )k     ; 

Step 2: Set 1t  ; 

Step 3: Generate ( )
1

t  from conditional distribution 
*
1 1 2 3( | , , , , Z)k     ; 

Step 4: Generate ( )
2

t  from conditional distribution 
*
2 2 1 3( | , , , , Z)k     ; 

Step 5: Generate ( )t
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1 1 1( | , , , , , , Z)j j j j k        ; 

Step 6: Generate ( )t
k  from conditional distribution 

*
1 2 1( | , , , , Z)k k k      ; 

Step 7: Set 1t t  , and repeat Steps 3-6, 11, 2, ,t N  ; 

Step 8: Estimate the desired features based on simulation 

samples of 1( )(1) (2), , , N   . 

Using the Bayesian software package WinBUGS (see in 
Ref. [15]) and carrying out the Gibbs sampling, the estimator 
of the model parameters can be obtained.  

 

V. NUMERICAL EXAMPLE 

In this section, a numerical example about fatigue cracks 
data is given to demonstrate the validity of the proposed 
model and method. The fatigue crack dataset is presented in 
Ref. [1], and 21 degradation samples are collected. The 
observed measurement variable is the crack length over time, 
and all samples are measured every 0.01million cycles. The 
product is defined to be failed if the length of crack crosses 
1.6 inch, and the testing stopped at 0.10 million cycles. 

In the original degradation data, the degradation path of 
each sample over time is nonlinear function. Here, a proper 
transformation as y=(x-0.9)/x is adopted to make it 
approximately linear. The transformed crack length data are 
listed in Table I and part of samples are depicted in Fig.1. 

Based on this transformation method, the failure threshold 
value becomes 0.4375 inch. 
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Fig. 1. The development of crack sizes over time. 

 

A.  Population reliability assessment 

Based on the above data, we can estimate the reliability 
with Equations (4), (7) and (10) of different degradation 
models M1, M2 and M3 , respectively. In order to judge which 
model is more flexible, now we compare the results obtained 
with the above three models. 

By using MCMC method, the estimation of the unknown 
parameters in those models can be obtained as follows: 

ˆ 3.377  , ˆ 0.08746   

and 

ˆ 3.377  , 0.649  , 0.062   

and 

ˆ 0.5293  , ˆ 143.1  , ˆ 122.2  , ˆ 3.378   

TABLE I 
THE CRACK LENGTH DATA (INCHES) 

 
 Crack length 

0 0.01 0.02 … 0.08 0.09 0.10 

1 0 0.052632 0.100000 … 0.391892 0.451220  

2 0 0.042553 0.081633 … 0.343066 0.387755 0.437500

3 0 0.042553 0.081633 … 0.333333 0.383562 0.430380

4 0 0.042553 0.081633 … 0.328358 0.370629 0.419355

5 0 0.042553 0.081633 … 0.328358 0.370629 0.419355

6 0 0.042553 0.081633 … 0.323308 0.361702 0.403974

7 0 0.042553 0.081633 … 0.318182 0.361702 0.407895

8 0 0.042553 0.081633 … 0.307692 0.352518 0.395973

9 0 0.021739 0.072165 … 0.296875 0.338235 0.375000

10 0 0.021739 0.062500 … 0.285714 0.328358 0.366197

11 0 0.032258 0.062500 … 0.274194 0.312977 0.352518

12 0 0.032258 0.072165 … 0.262295 0.302326 0.343066

13 0 0.021739 0.072165 … 0.250000 0.285714 0.312977

14 0 0.032258 0.062500 … 0.250000 0.285714 0.307692

15 0 0.021739 0.062500 … 0.256198 0.291339 0.323308

16 0 0.021739 0.052632 … 0.224138 0.262295 0.285714

17 0 0.032258 0.062500 … 0.224138 0.250000 0.274194

18 0 0.021739 0.042553 … 0.210526 0.243697 0.268293

19 0 0.021739 0.042553 … 0.196429 0.224138 0.250000

20 0 0.021739 0.042553 … 0.196429 0.224138 0.243697

21 0 0.021739 0.042553 … 0.189189 0.210526 0.237288
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Correspondingly, we establish the reliability curves with 
three models respectively, as shown in Fig. 2. From Fig. 2, it 
can be found that reliability of the fatigue crack under model 
M1 is not falling before the 0.10 million cycles. In fact, when 
the running time arrived at 0.10 million cycles, some units 
have failed, and the other units are also gradually close to fail, 
thus we can conclude that degradation assessment with M1 is 
not so consistent with actual degradation data. On the 
contrary, the reliability curve under the model M2 and model 
M3 can well reflect the actual degradation situation of 
products. 
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Fig.2 The reliability curve of three degradation models 

 

B. Individual residual life prediction 

Set the threshold ξ=0.4375, from Table 1, we can find that 
there are two units (i.e. unit 1 and unit 2) failed, and the 
corresponding failure times are 0.01, 0.02, 0.03, 0.04, 0.05, 
0.06, 0.07, 0.08, 0.09 million cycles respectively. Given 
prediction reliability level p=0.95, we can obtain the residual 
life of product. In order to verify the superiority of the 
proposed model, we conduct some comparative studies by 
comparing the results obtained with model M1, M2 , M3 and 
the true residual life, the corresponding result are shown as in 
Table � and Table �. 

From the Table 3 and Table 4, we can find that the mean 
error of unit 1 is 0.209, 0.074 and 0.069 in the different 
degradation models M1, M2 and M3. The mean error of unit 2 
is 0.1236, 0.0112 and 0.0102 in the different degradation 
models M1, M2 and M3. Obviously, random effect model M3 
has smallest prediction error in the above three degradation 
models. 
 

VI. CONCLUSION 

In this paper, three different Wiener process models are 
proposed to characterize the degradation path; the 
corresponding reliability assessment model and residual life 
prediction method are established. A case study of the 
fatigue crack data is given to validate the effectiveness of the 

proposed model and method. Main conclusions of this study 
are summarized below: 

(1) Random effect Wiener process is well fitted to describe 
degradation. 

(2) Since the likelihood function is so complicated, instead 
of directly maximizing the likelihood function, MCMC 
method can be used to estimate the unknown parameters. 

(3) The residual life prediction method based on current 
performance degradation is obtained with the proposed 
model. Compared with fixed effect model M1, the random 
effect model M3 has smallest prediction error. 

In this paper, we consider only the case when the 
performance degradation is governed by random effect 
Wiener process. In practice, it is also possible that the 
degradation paths of the product follow gamma process, 
Markov process, or other stochastic process.  

 

TABLE � 
RESULT COMPARE OF UNIT 1 

TV1 
0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 

PV1 0.115 0.101 0.087 0.076 0.061 0.048 0.035 0.024 0.0094 

RE1 0.278 0.256 0.243 0.267 0.218 0.2 0.167 0.2 0.06 

ME1 0.209 

PV2 0.097 0.086 0.075 0.065 0.053 0.043 0.032 0.022 0.0094 

RE2 0.078 0.075 0.071 0.083 0.060 0.075 0.067 0.1 0.06 

ME2 0.074 

PV3 0.097 0.085 0.074 0.065 0.0528 0.0423 0.0317 0.022 0.0093 

RE3 0.078 0.063 0.057 0.083 0.056 0.057 0.0567 0.1 0.07 

ME3 0.069 

TV= True value of RL, ME1= mean error under M1, RE1=relative error under M1, PV1= predict 
value under M1, ME2= mean error under M2, RE2=relative error under M2, PV3= predict value 
under M3 ME3= mean error under M3, RE3=relative error under M3, PV3= predict value under 
M3,RE=|PV-TV|/TV, ME is the arithmetic mean of RE. 
 

TABLE Ⅱ 
RESULT COMPARE OF UNIT 2 

TV 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 

PV1 0.115 0.103 0.092 0.08 0.069 0.057 0.045 0.034 0.022 0.01 

RE1 0.15 0.144 0.15 0.143 0.15 0.14 0.125 0.133 0.1 0 

ME1 0.1236 

PV2 0.097 0.088 0.079 0.069 0.06 0.05 0.04 0.03 0.02 0.01 

RE2 0.030 0.022 0.013 0.014 0 0 0 0.033 0 0 

ME2 0.0112 

PV3 0.097 0.087 0.078 0.069 0.06 0.05 0.04 0.03 0.02 0.01 

RE3 0.030 0.033 0.025 0.014 0 0 0 0 0 0 

ME3 0.0102 

TV= True value of RL, ME1= mean error under M1, RE1=relative error under M1, PV1= 
predict value under M1, ME2= mean error under M2, RE2=relative error under M2, PV3= 
predict value under M3 ME3= mean error under M3, RE3=relative error under M3, PV3= 
predict value under M3,RE=|PV-TV|/TV, ME is the arithmetic mean of RE. 
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