
 

 

 

Abstract—In these days, the online monitoring information 

which includes usage history, system conditions, and 

environmental conditions is reported. On statistical modeling, 

these variables from the online monitoring are primary 

candidates for covariates which affect the failure mechanism. 

There is some literature on modeling by the cumulative exposure 

model for a products lifetime distribution with covariate effects. 

Some existing literatures require an already known parametric 

baseline distribution of the cumulative exposure. However such 

knowledge may be difficult to acquire in advance in some cases. 

When an incorrect baseline distribution is assumed, it is called 

misspecification. A previous study proposed the strategy which 

use a likelihood function under a log-normal distribution to 

estimate parameters which represent covariate effects when the 

truly underlying baseline distribution is either a Weibull 

distribution or a log-normal distribution. In this time, this paper 

widens the range of application of the strategy using the 

likelihood function under a log-normal distribution to estimate 

parameters of covariate effects. On that account, the simulation 

study and the discussion for the bias of estimation are shown 

under a normal condition. 

 
Index Terms—Log-normal distribution, Gamma distribution, 

Birnbaum-Saunders distribution, Cumulative exposure, 

Misspecification 

 

I. INTRODUCTION 

NLINE monitoring using the Internet has become a 

common tool for keeping products reliably. This 

information includes usage history and environmental 

conditions. In the statistical modeling of failure mechanisms, 

the variables contained in this information are primary 

candidates for covariates that affect a failure mechanism.  

Information on covariates can be used to improve a reliability 

analysis. For example, in the analysis of the lifetime 

distribution of a truck engine, the lifetime is usually estimated 

on the basis of the distance traveled (mileage) before 

catastrophic failure. However, other variables observed by 

each truck, such as an average slope of the routes traveled and  
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an average weight of the loads carried, affect the load on the 

engine. Thus, the load on the engine can differ even though 

the mileage is the same. Therefore, the mileage is not always 

sufficient information for optimizing inspection and 

maintenance times. 

II. PREVIOUS STUDIES AND MY PROPOSAL 

A. Previous Studies 

In [1] and [2], the utilization of dynamic covariate to 

predict field-failure is presented. They used the cumulative 

exposure (CE) model to describe an effect of a dynamic 

covariate on the failure-time distribution. Reference [3] and 

[4] described the CE model in the context of life tests to 

incorporate time-varying covariates into failure-time models. 

The CE model is also known as the cumulative damage (CD) 

model, in [5]. Besides, reference [6] called the CE model a 

“proportional quantities (PQ) model” or a “scale accelerated 

failure-time (SAFT) model.” Furthermore, it is remarked that 

the CE model can be considered as a limit of the step-stress 

model when the length of each step interval goes to zero, in 

[4].  

Given the entire covariate history, the cumulative exposure 

u by time t defined as 
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Here, β is a vector of covariate parameters (acceleration 

coefficients) and z(t) is a covariate vector acquired at 

continuous time point t, and tr represents transposed. The 

value of the covariates are either discrete or continuous. 
Equation (1) represents a nonlinear transformation of t to 

quantity u, which incorporates dynamic covariate information 

of individual user’s products with the conventional lifetime 

analysis. 

Let T be the failure time of the unit and β* 
be the true value 

of β. The unit fails at time T when the amount of cumulative 

exposure reaches a random threshold U(β*). Thus, the 

relationship between the cumulative exposure U(β*) and the 

failure time T is 
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The cumulative exposure threshold U(β*) has the baseline 

cumulative distribution function (cdf) F0(U) with distribution 

parameter θ0. Equation (2) represents an accumulation of 

damage. Thus, in this model, if the product is heavily used or 

used in a harsh environment, the product fails sooner. 

For this approach based on the CE model, the baseline 

distribution F0(U) is needed to identify in advance. In [1], a 

Weibull distribution is used for the CE of actual products and 

it is said that engineering knowledge based on laboratory tests, 

previous experience with similar failure modes, or knowledge 

of the physics of failure can also provide useful information to 

identify the baseline distribution. As a special case, the 

baseline distribution is the same as the distribution of the 

product failure time T, when it is used under a constant 

covariates. However consumer products are used under 

various environment and the CE value U(β*) cannot be 

observed. There is a research about a statistical test to identify 

the baseline distribution in the context of accelerated failure 

time models, in [7]. On the other hand, some study focus on 

the estimation bias of β under misspecification for the 

baseline distribution F0(U). [8] proposed a strategy and its 

validity to use a likelihood function under a log-normal 

distribution to estimate the covariate effects parameter β 

when the underlying distribution for F0(U) is assumed a 

Weibull distribution or a log-normal distribution. With this 

approach, a model can be built that incorporates covariates 

even if a Weibull baseline distribution is misspecified as a 

log-normal one.  

B. My Proposal 

For the estimation of β under misspecification, this 

research widen the scope of the type of distribution from [8]. 

In this research, two-parameter gamma distribution and 

Birnbaum-Saunders (Fatigue Life) distribution are considered. 

This paper proposes a strategy and its validity to use a 

likelihood function under a log-normal distribution to 

estimate the covariate effects parameter β when the 

underlying distribution for F0(U) which is assumed a gamma 

distribution and a Birnbaum-Saunders (Fatigue Life) 

distribution. With this approach, a model can be built that 

incorporates covariates even if a gamma and 

Birnbaum-Saunders baseline distribution is misspecified as a 

log-normal one. This study makes the lifetime prediction for 

individual user’s products using the observed covariates easy 

to use. 

The gamma distribution is commonly used in reliability 

analysis for cases where partial failures can exist, i.e., when a 

given number of partial failures must occur before an item 

fails (e.g., redundant systems). For example, the gamma 

distribution can describe the time for an electrical component 

to fail. The general formula for the probability density 

function of the gamma distribution without reference to the 

location parameter is 
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where m is the shape parameter, η is the scale parameter, and 

Γ is the gamma function. 

The Birnbaum-Saunders distribution is also 

commonly known as the fatigue life distribution. The 

assumption of the Birnbaum-Saunders distribution is 

consistent with a deterministic model from materials physics 

known as Miner's rule. Miner’s rule is one of the most widely 

used cumulative damage models for failures caused by fatigue. 

When the physics of failure suggests Miner's rule applies, the 

Birnbaum-Saunders model is a reasonable choice for a 

lifetime distribution model. The formula for the probability 

density function and cumulative distribution function of the 

Birnbaum-Saunders distribution without reference to the 

location parameter are 

 

,0,,
2

)( 












 













 
 







m
mmx

xf
x

x
x

x

BS

  

and  
,0,,)( 













 
 




m
m

xF
x

x

BS

  

 

where m is the shape parameter, η is the scale parameter, φ is 

the probability density function of the standard normal 

distribution, and Φ is the cumulative distribution function of 

the standard normal distribution. 

III. ANALYTICAL STUDY USING LIKELIHOOD FUNCTION 

A. Covariate 

Here we deal with the case in which a target covariate is 

observed at time tj
o (j=1,…,J) for a discrete interval (Fig. 1). 

The covariate value is assumed to be constant between each 

pair of tj
o.  

 

 
Fig. 1.  Covariate observed at discrete intervals (J=4) 

 

The symbols here used are defined as follows. 

 

T Lifetime 

tj
o Covariate acquisition points ( j=1,…,J ) 

J Number of covariate acquisition points  

up to failure 

q Covariate type ( q= 1,…,Q,  

Q: total number of covariates) 

zq(tj
o) Value of covariate acquired at tj

o 

 

The nonlinear transformation of lifetime T to quantity U(β) is 

illustrated in Fig. 2.  
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Fig. 2.  Transformation to U(β) 

  

Let i (i=1,…,n) be the product number of each user, Ti be 

the lifetime of each product, z(tij
o) be the value of the 

observed covariate at tij
o for each product, and Ui (β*) be the 

amount of transformation for each product. 

B. Likelihood Function 

Let μ be the mean and σ be the standard deviation of the 

log-transformed log-normal distribution. The likelihood 

function for a log-normal distribution is given by 
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The log-likelihood function for a gamma distribution is given 

by 
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The log-likelihood function for a Birnbaum-Saunders 

distribution is given by 
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IV. SIMULATION STUDY AND RESULTS 

A. Simulation Setting 

In this simulation study, β was estimated from covariate 

z(tij
o) and lifetime Ti using MLE under assuming U(β*) as a 

log-normal distribution. These data were generated as 

explained below. 

 

(1). Ui (β*) 

The values of Ui (β*) were generated in accordance with a 

log-normal distribution, a gamma distribution or a 

Birnbaum-Saunders distribution. In section Ⅳ-B, the results 

of estimation under no misspecification is shown. On the 

other hand, in section Ⅳ-C, the results of estimation under 

misspecification for a gamma distribution is shown. 

Furthermore, in section Ⅳ-D, the results of estimation under 

misspecification for a Birnbaum-Saunders distribution is 

shown. 

 

(2). z(tij
o)    

As was explained above for Fig. 1, the values of z(tij
o) was 

generated as constant during each observation. We assumed 

two kinds of covariate; covariates z1(tij
o) and z2(tij

o) were 

independently generated for each product for each observed 

time point as following a normal distribution N(1.0,0.1), that 

is taking positive values. Thus, in our simulation, it is 

assumed that each product is used under a normal condition 

that time-varying covariates have no trend for time. Here, true 

values of parameter vector β*=(β1
*, β2

*) were set as 1.00 for 

both.  

 

(3). Ti 

The values of Ti were determined from the Ui (β*) and z(tij
o) 

generated as described above. The interval between each pair 

of covariate observations was determined as follows.  
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Therefore, lifetime Ti for each product was obtained from the 

summation of o

Ji i
t ,

. 

B. Simulation Results (Log-normal Distribution) 

First we show that U(β*) can be correctly estimated using 

MLE assuming a log-normal distribution for U(β*) generated 

in accordance with a log-normal distribution. Table I shows 

the estimation result of β. The μ and σ represent the set value 

of the mean value and the standard deviation value of the 

log-transformed log-normal distribution, respectively. The 

estimation from simulation data was repeated 2000 times. The 

results shown in the upper rows are the average estimated 

values, and those shown in the lower rows are the standard 

deviations. These results show that the value of β was 

correctly estimated by MLE. 
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C. Simulation Results (Gamma Distribution) 

Here we show that β can be approximately estimated using 

MLE assuming a log-normal distribution for Ui (β*) generated 

in accordance with a gamma distribution. That is, in this 

simulation study, β is estimated when a gamma distribution is 

misspecified as a log-normal distribution. 

The true value of β was set to 1.00, i.e., β1
*=β2

* =1.00. The 

number of samples n was set as 10000, the shape parameter m 

was set as 0.8, 1.0, 2.0, 4.0, 6.0 and the location parameter η 

was set as 200, 400. The estimation of β was repeated 2000 

times. Table II and Table III show the mean value and the 

standard deviations of estimated values.  

 

 

 

 

 

 

 

 

 

The results on Table II and Table III for different 

distribution assumptions show that parameter β can be 

approximately obtained. Next, it is investigated that the 

variation in the estimated results in each value of shape 

parameter m. Fig. 3 shows a box plot (for η=400, n=10000) 

of estimation result β1 in Table III.  

 

Fig. 3.  Box plot of estimation result β1 for the case of Table II 

(η=100, β1
*=β2

* =1.00, n=10000, no. of repetitions=2000) 

 

These result shows that when the value of the shape 

parameter m of the gamma distribution was large, the bias of 

the resulting estimates of β was small.  

 

D. Simulation Results (Birnbaum-Saunders Distribution) 

Here we show that β can be approximately estimated using 

MLE assuming a log-normal distribution for Ui (β*) generated 

in accordance with a Birnbaum-Saunders distribution. That is, 

in this simulation study, β is estimated when a 

Birnbaum-Saunders distribution is misspecified as a 

log-normal distribution. 

 

TABLE II 

Estimations obtained for Ui (β*) when Ui (β*) was generated 

using a gamma distribution  

(β1
*=β2

* =1.00, n=10000, no. of repetitions=2000) 
  

0.8 200 4.275 1.516 0.969 0.973
0.146 0.017 0.104 0.106

1.0 200 4.667 1.282 0.974 0.973
0.146 0.013 0.099 0.103

2.0 200 5.703 0.803 0.991 0.991
0.140 0.007 0.097 0.099

4.0 200 6.552 0.533 0.996 1.001
0.127 0.004 0.089 0.088

6.0 200 7.003 0.426 1.001 0.998
0.123 0.003 0.087 0.086

set value esitimated value

            

 
 (The upper column represents mean value of each estimation; the 

lower column represents standard deviation of each estimation) 
 

 

 ( 
 

 

 

 

TABLE I 

Estimations obtained for Ui (β*) when Ui (β*) was generated 

using a log-normal distribution  

(β1
*=β2

* =1.00, n=10000, no. of repetitions=2000) 
  

6.00 0.01 6.000 0.010 1.000 1.000
0.004 0.000 0.003 0.003

6.00 0.1 6.000 0.100 0.999 1.001
0.039 0.001 0.027 0.028

6.00 0.5 5.998 0.500 0.998 1.000
0.117 0.004 0.082 0.082

6.00 1.0 6.003 1.000 1.001 1.002
0.143 0.007 0.100 0.099

6.00 1.2 5.994 1.200 1.001 0.994
0.144 0.008 0.100 0.100

set value esitimated value

            

 
 (The upper column represents mean value of each estimation; the 

lower column represents standard deviation of each estimation) 
 

 

TABLE III 

Estimations obtained for Ui (β*) when Ui (β*) was generated 

using a gamma distribution  

(β1
*=β2

* =1.00, n=10000, no. of repetitions=2000) 
  

0.8 400 4.958 1.516 0.964 0.967
0.146 0.017 0.103 0.100

1.0 400 5.366 1.282 0.979 0.973
0.144 0.013 0.101 0.102

2.0 400 6.398 0.803 0.992 0.992
0.137 0.007 0.098 0.095

4.0 400 7.244 0.533 0.998 0.998
0.128 0.004 0.090 0.093

6.0 400 7.696 0.426 0.998 1.000
0.127 0.003 0.089 0.090

set value esitimated value

            

 
(The upper column represents mean value of each estimation; the 

lower column represents standard deviation of each estimation) 
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The true value of β was set to 1.00, i.e., β1
*=β2

* =1.00. The 

number of samples n was set as 10000, the shape parameter m 

was set as 0.5, 0.8, 1.0, 2.0, 4.0, 6.0 and the location 

parameter η was set as 200, 400. The estimation of β was 

repeated 2000 times. Table IV and Table V show the mean 

value and the standard deviations of estimated values.  

 

The results in Table IV and Table V show that parameter β 

can be approximately obtained in the case of misspecification 

for the Birnbaum-Saunders distribution. Next, it is 

investigated that the variation in the estimated results in each 

value of shape parameter m. Fig. 4 shows a box plot (for 

η=400, n=10000) of estimation result β1 in Table V.  

 

 

 

 

 
Fig. 4.  Box plot of estimation result β1 for the case of Table V 

(η=100, β1
*=β2

* =1.00, n=10000, no. of repetitions=2000) 
 

 

These result shows that when the value of the shape 

parameter m of the Birnbaum-Saunders distribution was small, 

the bias of the resulting estimates of β was small. 

However, there is a strange value observed for the mean 

value of estimation of β in the case of (m=6, η=200) at the 

Table IV. The cause is that there is many samples that the 

value of the covariate has not changed even once before 

failure point in this case, as Fig. 5. Thereby, bias has appeared 

on the estimation result in this case. Under a normal condition, 

the covariates are assumed to have changing in time. The 

validation for the influence due to the observed covariates 

which has not changed even once before failure point to 

estimation bias will be with future challenges.  

 

 

Fig. 5.  Number of acquisition points of covariate information up to 

failure in the case of a certain one estimation under a 

Birnbaum-Saunders distribution (m=6, η=200, n=10000). In this 

simulation study, the covariate value is assumed to be constant 

between each acquisition point. 
 

 

 

 

TABLE IV 

Estimations obtained for Ui (β*) when Ui (β*) was generated 

using a Birnbaum-Saunders distribution  

(β1
*=β2

* =1.00, n=10000, no. of repetitions=2000) 
  

0.5 200 5.298 0.486 0.998 1.002
0.110 0.003 0.076 0.078

0.8 200 5.297 0.751 0.997 1.002
0.128 0.005 0.092 0.091

1.0 200 5.297 0.914 0.995 1.003
0.135 0.006 0.093 0.095

2.0 200 5.305 1.591 1.004 1.003
0.146 0.008 0.103 0.099

4.0 200 5.349 2.507 1.022 1.029
0.157 0.011 0.109 0.109

6.0 200 5.322 3.130 1.012 1.012
0.163 0.013 0.111 0.113

set value esitimated value

            

 
(The upper column represents mean value of each estimation; the 

lower column represents standard deviation of each estimation) 
 

 

 

 

 

 

 

TABLE V 

Estimations obtained for Ui (β*) when Ui (β*) was generated 

using a Birnbaum-Saunders distribution  

(β1
*=β2

* =1.00, n=10000, no. of repetitions=2000) 
  

0.5 400 5.990 0.486 0.999 0.999
0.116 0.003 0.081 0.082

0.8 400 5.987 0.751 0.997 0.998
0.130 0.005 0.092 0.093

1.0 400 5.994 0.914 1.000 1.002
0.137 0.006 0.096 0.097

2.0 400 5.996 1.591 0.999 1.006
0.145 0.008 0.100 0.098

4.0 400 6.035 2.507 1.022 1.021
0.151 0.011 0.105 0.104

6.0 400 6.052 3.130 1.033 1.028
0.160 0.013 0.111 0.111

set value esitimated value

            

 
 (The upper column represents mean value of each estimation; the 

lower column represents standard deviation of each estimation) 
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E. Effect of Bias of Covariate Variation 

If an individual has failed before the lapse of enough time, 

it is considered that the failure data without a change of usage 

environment condition can be obtained. For the bias of a 

presence of such data which the usage environment condition 

does not change even once, it will be referred to as the bias of 

the covariate variation. In [11], it is mentioned that the bias of 

the covariate variation may affect the estimation of parameter 

β. Therefore, in this paper, the effect of the bias of the 

covariate variation is confirmed by numerical simulation. In 

this simulation, a misspecification for a baseline distribution 

of the cumulative exposure is not assumed. Thus, for the 

simulation data of Ui (β*) generated by the log-normal 

distribution, β is estimated by an assuming a log-normal 

distribution. 

A method of verification by simulation is shown below. 

The values of Ui (β*) were generated in accordance with a 

log-normal distribution. Next, the values of z(tij
o) was 

generated as constant during each observation. We assumed 

two kinds of covariate; covariates z1(tij
o) and z2(tij

o) were 

independently generated for each product for each observed 

time point as following a normal distribution N(1.0,0.1). Here, 

among the generated data, the covariate value of the data of a 

certain percentage (25%, 50% ) from smallest value of Ui (β*), 

without a variations of a normal distribution, ware fixed by 

the constant value of the initial observation value. As a result, 

the bias of the covariate variation is caused. Finally, The 

values of Ti were determined from the Ui (β*) and z(tij
o) 

generated by the same method in section Ⅳ-B. Here, true 

values of parameter vector β*=(β1
*, β2

*) were set as 1.00 for 

both. 

The results of the simulation is shown below. For a 

comparison, it is shown the results of the unbiased case 

(random) that the covariate value of the data ware fixed for 

the random selected individuals. 

 

It was confirmed that, as the mixing ratio of the bias of the 

covariate variation is increased, the bias of the estimated 

value of β increases. The correction of this bias will be with 

future challenges. 

 

V. CONCLUSION AND FUTURE WORK 

In this section, the strategy under misspecification for a 

baseline distribution is proposed. This paper investigates the 

asymptotic bias of the maximum likelihood estimator for a 

covariate parameter β under misspecification. The results in 

[9] and [10] also discussed the asymptotic bias and the 

asymptotic distribution of the MLE when the assumed model 

is incorrect. Besides, they called this incorrect MLE 

quasi-MLE (QMLE). From [9], it is shown that a bias 

between MLE and QMLE is independent for a sample size n. 

In the case of misspecification that the true model is a 

gamma distribution or a Birnbaum-Saunders distribution and 

the incorrect model is a log-normal distribution, the results of 

numerical simulation show that covariate parameter β can be 

approximately estimated by maximum likelihood estimation 

assuming a log-normal distribution for the baseline 

distribution of cumulative exposure.  

From the results of numerical simulation for a gamma 

distribution, it is shown that the value of a location parameter 

η has no influence for the estimation bias. On the other hand, 

it is shown that a scale parameter m affects the bias of 

estimation of covariate parameters β under misspecification. 

From Table II and Table III, when a shape parameter takes m 

≥ 4, it is confirmed that the rate of the bias for the true value 

(=1.00) is fall under 0.5% in the case of n=10000. 

Furthermore, from the results of numerical simulation for a 

Birnbaum-Saunders distribution, it is shown that the value of 

a location parameter η has no influence for the estimation bias. 

On the other hand, it is shown that a scale parameter m affect 

the bias of estimation of covariate parameters β under 

misspecification. From the result on Table IV and Table V, 

when a shape parameter takes m ≤ 2, it is confirmed that the 

rate of the bias for the true value (=1.00) is fall under 0.5% in 

the case of n=10000. 

Thereby, when the truly underlying baseline distribution is 

either a gamma distribution or a Birnbaum-Saunders 

distribution, these results provide a strategy to use a 

likelihood function under a log-normal distribution to 

estimate covariate effect parameters β. From the results of 

numerical simulation, it seems that, if the value of the 

estimated σ is small, the bias of β is small. This conclusion is 

under normal conditions that the covariates are assumed to 

have changing in time. If an individual has failed before the 

lapse of enough time, it is considered that the failure data 

without a change of usage environment condition can be 

obtained. If a normal condition is not satisfied, from Table VI, 

it was confirmed that it appears the bias of the estimated value 

of β. 

Future work includes finding ways to improve reliability by 

using online condition monitoring. It will be extended this 

study to the case of time-varying covariates having trend for 

time.  
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