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Abstract—In this paper, we study an open queueing network 

with operating service stations suffering breakdowns. 
Stochastic modeling of Markov chains is applied to describe the 
steady-state probabilities of the system. The steady-state 
probabilities are evaluated by matrix-geometric method. 
Performance measures including mean number in the system, 
mean waiting time in the system, blocking probability, failure 
probability of working stations and reliable probability of the 
system are defined. Stability conditions of the system are 
derived in closed-form formulae. Disposition strategies and 
sensitivity analysis of the system with variation of specific 
parameters are investigated to make the system operate more 
efficiently. 
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I. INTRODUCTION 

eries configuration open queueing networks are very 
popular in modern manufacturing systems (e.g. 

automobile assembly line). Traditional studies focused on 
“perfect working stations”. However, many cases show that 
the happening of breakdowns of working stations is frequent 
in real industrial applications. With the development of so 
called big data analytics and internet of things (IOT) in the 
21th century, having deep understanding about the 
characteristic of performances of this kind of queueing 
systems is beneficial for further designing high efficient 
automated production systems. In addition, we can imagine 
that each service station in this kind of system can reflect its 
statuses of average service rate by applying IOT technology. 
Furthermore, based on the information of mean arrival rate, 
mean service rate of each service station and other important 
system parameters, it is expected to design a controlling 
center to make the queueing system work more efficiently 
and reflect real-time situation of operations. Therefore, 
quantitatively evaluating performance measures of this kind 
of system is a prerequisite to make the system work smartly. 

Traditional analyses of open queueing networks focus 
on deriving exact result of the steady-state probabilities. 
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Exact results are useful to do further analysis, but it is 
difficult to obtain exact iterative relations of the steady-state 
probabilities when the situations of the system become more 
complex (e.g. breakdowns or other complicated situations). 
The most important results in steady-state analysis are 
stability conditions. If the calculated steady-state 
probabilities not obey the stability conditions composed of 
parameters of the system, the numerical value of the 
steady-state probabilities are wrong. Furthermore, evaluating 
related significant performance measures of the system 
become impossible. It hardly derives exact formulae by 
means of traditional ways.  
Fortunately, we can apply matrix-geometric method to 
analyze the system and obtain abundant results include 
numerical result of the steady-state probabilities, exact 
formulae of stability conditions, significant performance 
measures etc. In this research, we show how to apply 
matrix-geometric method to obtain theses results and make 
better decisions to increase operational efficiency through 
numerical simulations. 

Neuts and Lucantoni [1] have first considered a 
queueing system with N servers subject to breakdowns and 
repairs by means of Markovian chain. They discussed the 
stationary distributions of various waiting times and 
presented the effect of utilizing interactive computation in 
answering questions on the behavior, design and control of 
certain service systems. Neuts [2] systematically studied the 
matrix-geometric method in terms of algorithmic analysis 
and computational ways. Papadopoulos and Heavey [3] 
reviewed the works about the design and analysis of 
manufacturing system by queueing networks. Gray, Wang 
and Scott [4] discussed a queueing model with 
multiple-vacation and server breakdowns. Bierbooms et al. 
[6] proposed approximate methods for fluid flow production 
lines with multi-server workstations and finite buffers. Their 
method is suitable for the estimations of characteristics of 
longer production lines. An approximation method to 
determine the throughput and mean sojourn time of single 
server tandem queues with general service times and finite 
buffers by decomposition method was developed by 
Bierbooms et al. [7]. Zhou et al. [8] investigated a two-stage 
tandem queueing network with Markovian arrival process 
inputs and buffer sharing. The buffer sharing policy is more 
flexible when the inputs have large variant and are correlated 
was suggested. Hillier [9] studied the optimal design of 
unpaced assembly lines. He discovered that the allocation of 
work to the stations and the allocation of buffer storage space 
between service stations are two major key points for 
designing an unpaced assembly production line. Sakuma et 
al. [10] applied Whitt’s approximation to obtain the 
stationary distribution of an assembly-like queueing system 
with generally distributed time-constraint. Shin et al. [11] 
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proposed an approximation method for throughput in tandem 
queues with multiple independent reliable servers at each 
stage and finite buffers between service stations. Complete 
reviews for the topics about unbalanced unpaced serial 
production lines were collected by Hudson et al. [12]. Sani 
and Daman [13] studied a queueing system consisting of two 
service stations with an exponential server and a general 
service under a controlled queue discipline. The steady-state 
distribution for the number of customers in the system, mean 
waiting time and blocking probability of the system are 
derived in closed form. Ramasamy et al. [14] discussed the 
steady-state analysis of heterogeneous services of a queueing 
system, called Geo/G/2. They applied embedded method and 
supplementary variable technique to investigate the system 
performances. 

General disposition strategies of open queueing 
networks with multiple working service stations were 
proposed by Tsai, Yanagisawa and Nishinari [15]. They 
successfully evaluated steady-state probability and derived 
exact results of stability conditions for the system consisting 
of two, three and four service stations by matrix-geometric 
method.  
Our major contributions are following: 
 Methodological.  
We analyze open queueing networks with blocking 
phenomena subject to breakdowns and repairs, in particular: 
1. Constructing steady-state structured generator matrix 
equations of the queueing system with two service stations. 
2. Deriving exact formulae of stability conditions consist of 
system parameters. 
3. Numerically solving the steady-state probabilities with 
different conditions of system parameters. 
4. Providing insights through numerical simulations to 
suggest disposition strategies for the system working more 
smartly and efficiently. 
 Practical.  
We theoretically model and analyze the performance 
measures of the system in various scenarios under the control 
of service rates, failure rates and repair rates for each service 
station of the system from the viewpoint of practitioners. 
1. Important performance measures of the system can be 
quantitatively described by our model, such as mean number 
in the system, mean waiting time in the system, blocking 
probability of the station-1, reliable probability of the system, 
failure probability of each service station. 
2. Controlling finite resources and adjusting related 
parameters based on the information to increase the 
operational efficiency of the system in applications. 

Paper Outline: The rest of the paper is organized as 
follows. First, we introduce assumptions and notations used 
in our model in the beginning of next section. Section 3. 
contains details of matrix-geometric method derived for the 
system. Furthermore, the stability conditions and major 
performance metrics are also included in this section. In 
section 4., we perform numerical experiments and propose 
disposition strategies for the system through case studies. 
Finally, conclusions and discussions of our works and 
indications of possible directions for future research are 
included in Section 5. 

II. PROBLEM FORMULATION AND NOTATIONS 

In our analysis, the queueing system consists of two 
independent service stations disposed in series configuration 
and operates simultaneously with server breakdowns. For the 
simplicity of modeling work, we assume that the service 
stations cannot become breakdown simultaneously in this 
study. Customers arrive at the system in accordance with 
Poisson arrival process with mean arrival rate  . In each 
station, the average time to serve a customer follows 

exponential distribution with mean 1


. The service stations 

can break down and the breakdown times are exponentially 
distributed with breakdown rate  . Concurrently, the repair 
times are assumed to be exponential with mean repair time 
1


. A complete service is defined as customers passing 

through all of the service stations in order and finishes the 
final service in the terminal station. There is no queue 
between service stations. A queue with infinite capacity in 
front of the first station is allowed. In addition, each service 
station can only serve a customer at a time while the service 
rate is independent of the number of customers. The service 
of the system obeys the first come first serve (FCFS) 
discipline. 
 
 Notations 

In this section, the notations used in our model 
framework are introduced. In steady-state, the following 
notations are used. 
 , mean arrival rate of the customers 

1 , mean service rate of the station-1 

2 , mean service rate of the station-2 

1 , mean failure rate of the station-1 

2 , mean failure rate of the station-2 

1 , mean repair rate of the station-1 

2 , mean repair rate of the station-2 

1 2, 30; ,P n n n
, steady-state probability in working states (both 

service stations work concurrently). 
1 2, 31; ,P n n n

, steady-state 

probability in failure states of the station-1 (only station-2 
works ), 

1 2, 32; ,P n n n
, steady-state probability in failure states of 

the station-2 (only station-1 works). Note that the notation 

1 2, 30; ,P n n n
 is used to denote the steady-state probability in 

working states 
1 2, 30; ,P n n n

 of 1n customer in the station-2 and 

2n customer in the station-1 and 3n  customer in the queue. 

For instance, the notation 
,0;1 ,3P b

 of steady-state probability 

means that in working states, there is a customer receiving 
the service in the station-2 and a customer who is blocked in 
the station-1 by the customer in the station-2 and three 
customers waiting to secure services in the queue. 
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III. MODELING FRAMEWORK 

 Matrix-Geometric Method 
Let [ , , ,...] 0 1 2P P P P  denote as steady-state probability 

vector corresponding to the transition matrix Q. The 
steady-state probability vector contains steady-state 
probabilities of the quasi-death-birth process in working 
states, failure states of the station-1 and the station-2. The 
compositions of the sub-matrices of the transition matrix Q 
for the system are shown in Appendix. The steady-state 
equations of the quasi-birth-death process in vector form 
with the transition matrix can bewritten as QP = 0 , while 

1P1 =  is the normalization condition of the steady-state 
probability. Then, the global steady-state equations of the 
quasi-birth-death process can be described as 
 

0,0 1,0B B , 0 1P P 0
                            

(1) 

0,1 1 2 2B A A ,  0 1P P P 0
                      

(2) 

i 0 i 1 1 i 2 2A A A ,   P P P 0
        

i 1 .
   

(3) 

 
A rate matrix R exists, and the follows the recurrence 
relations 
 

i 1
i i 1 1R R ,

 P P P
             

i 1 .    
(4) 

We substitute (4) into (3), and simplify to quadratic matrix 
equation in order to solve the rate matrix R 

 2
0 1 2A RA R A 0   .                         

(5) 

The simplified matrix equations of (1) and (2) can be 
represented as 

0,0 1,0B B , 0 1P P 0
                           

(6) 

0,1 1 2B (A RA )  0 1P P 0.
                      

(7) 

The normalization condition equation that only involve 
0P  

and 
1P  can be referred in Bloch et al. [5], 

1(I R) 1,  0 1P 1 P 1                         
(8) 

where I is the identity matrix with same size as the rate matrix 
R.

 
We employ logarithmic reduction method to solve the rate 
matrix R from (5). Then, we collect (6), (7) and (8) together, 
the steady-state probability vector of 

0P  and 
1P can be 

obtained by solving following matrix equation 
*

0,0 0,1
1*

1,0 1 2

B B
( ) ( ,1)

B (I R)(A RA ) 

 
  

0 1

1
P , P 0 .

1
       

(9) 

where *(.)  indicates that the last column of the included 

matrix is removed to avoid linear dependency. 
 
 Stability Conditions 
According to Neuts [2], the stability conditions of the system 
can be derived from following inequality: 

A 0 A 2A A ,P 1 < P 1                             
(10) 

where 
AP  is the steady-state probability vector 

corresponding to the conservative stable matrix A. 

The conservative stable matrix is defined to be 

0 1 2A A A A   .                          (11) 

We can obtain the steady-state probability 
AP  

by solving the 

following system equations with normalization condition
 

A ,AP 0                                  
(12) 

2

A,i
i 0

P 1


 .
                                

(13) 

 Performance Metrics and Exact Results 
In this section, the performance metrics for the series 
configuration system consisting of two service stations 
subject to breakdowns and repairs are defined. Performance 
measures include mean number in the system, mean number 
in the queue, mean waiting time in the system, mean waiting 
time in the queue and blocking probability of the station-1, 
failure probability of each service station and reliable 
probability of the system. Exact formulae of stability 
conditions for the system with special and general case are 
also given in the section. 
 
Theorem 1. The following inequalities are necessary and 
sufficient conditions for the system to be stable. 
(1) Special case: 

1 2     , 
1 2     , and 

1 2     , 

2

2 2

2 ( + + )

(2 + )(3 +3 +2 +6 +3 )

   
 

      
.
 

    (14) 
(2) General case: 

1 2   , 
1 2   , 

1 2   , 

N
,

D
 

                      
(15) 

where 
2 2 2 2 2 2 2

1 2 1 2 1 2 1 1 2 1 1 1 2 1 2 1 2 1 2 1 1 1 2 1 1 2 1

2 2 2 2 2 2 3 2 3 2
1 2 1 1 2 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 2 2 2

2 2 2 2 2 2 2
1 2 1 2 2 2 1 2 2 1 2 2 1 1 2 2 1 2 2 1 2 1 2

N ( 2 2

+ 2 2 2 +2

2 2 2

                               

                          

                            2
1 2 1 2

2 2 2
1 2 1 1 2 2 1 1 2 2 1 1 2 1 2 1 2 1 2 2 1 2 1 1 2 1 2

2 2 2 2 2 2 2
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 1 1 2

2 2 2 2 2
2 1 1 2 1 1 2 1 2 1 2 1 2 1 2

2

4 2 2 2 4 4

4 2 2 2 4 2

4 4 4 2

    

                                

                                 

                   3 3 2
1 1 2 1 1 2 1 2 2 2

2 2 2 2 2 2 2 2 2 2
2 1 2 2 1 2 2 1 2 2 1 2 1 2 2 1 2 2 1 1 2 1 2 1 2

2 2 2 2 2 2 2 2 2 2 2 2
2 2 1 2 1 2 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2

3 2 3 2 3
1 2 2 2 2 2 2 2 1

2 2

2 2 2 4 4 4

2 4 2 2 2 2

2

           

                               

                            

            3 3 2 3
2 2 1 2 1 22 )        

and 

 

2 2 2 2 2 2 2 2 2 3 2 3 2 4
2 1 1 2 1 2 2 1 1 2 1 2 1 1 2 1 2 1 1 1 2 1 1 1

2 2 2 2 2 2 2
1 2 1 2 1 2 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 2 1 1 2

2 2 2 2 2 2
2 1 1 2 1 1 2 1 2 2 1 2 1 2 1 2 1 2

D ( )( 2 2 2

2 2

2 2 4 2

                            

                                 

                      2 2 3
1 2 1 2 1 1 1 2

3 2 3 3 4 2 2 2 2 2 2 2 2
2 1 1 2 1 1 2 1 2 1 2 1 1 2 1 2 2 1 1 2 2 1 2 2

2 2 2 2 2 2 2 2 2
1 2 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2

2 2 2 2 2 2
1 2 1 2 1 1 2 1 2 1

2

4 4 2 2

2 2 4 2 2 2

2 2

         

                            

                                

             2 2 2 2 2 2 2 2 2 2 2
2 2 1 2 1 1 1 2 2 1 1 2 1 1 2

2 2 2 2 2 2 2 2 2 3 2 3 2 3 2
1 2 1 2 2 2 1 2 1 2 1 2 2 1 2 1 1 2 2 1 2 1 1 2

3 2 4 2 2 3 2 3 3 3 3 2
2 1 2 1 2 1 2 2 1 2 2 1 2 1 2 2 2 1 2 1 2 1 2 2 1 2

2 4

4 2 4 2 2 2

2 2 2 4 4

                 

                             

                               3

2 3 2 3 2 3 2 3 3 3 2 4 4 2 4
1 1 2 2 1 2 1 1 2 2 1 2 1 2 2 2 2 1 2 1 22 2 2 2 2                           

 

 Performance metrics 
Performance measures for the system consisting of two 
service stations subject to breakdowns and repairs are 
defined by 
 (1) Mean number of customers in the system 
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0;1,0,0 0;0,1,0 0;1,b,0 0;1,b,n 1 0;1,1,n 2 0;0,1,n 1
n 2

1;1,0,0 1;0,1,0 1;1,b,0 1;1,b,n 1 1;1,1,n 2 1;0,1,n 1
n 2

2;1,0,0 2;0,1,0 2;1,b,0 2;1,b,n 1 2;1,1,n 2 2;0

L (P P P ) (P P P ) n

(P P P ) (P P P ) n

(P P P ) (P P P



  




  


 

      

      

     





,1,n 1
n 2

) n





 .
 

(16) 
 
(2) Mean number of customers in the queue 

q 0;1,b,n 0;1,1,n 0;0,1,n 1;1,b,n 1;1,1,n 1;0,1,n
n 1 n 1

2;1,b,n 2;1,1,n 2;0,1,n
n 1

L (P P P ) n (P P P ) n

(P P P ) n

 

 





       

   

 

 .
 

((((((((((((((((

(17) 

 

(3) Mean waiting time in the system (Little’s Law) 

L
W 


.                                     (18) 

(4) Mean waiting time in the queue (Little’s Law) 

q
q

L
W 


.                                     (19) 

(5) Blocking probability of the customer in the station-1 

b 0;1,b,n 1;1,b,n 2;1,b,n
n 0 n 0 n 0

P P + P P
  

  

    .
          

(20) 

(6) Failure probability of the station-1 

       

f ,1 1;0,0,0 1;1,0,0 1;1,b,0

1;0,1,n 1 1;1,1,n 1 1;1,b,n
n 1

P (P P P )

P P P


 


  

 + + .           

(21) 

(7) Failure probability of the station-2 

f ,2 2;0,0,0 2;1,0,0 2;1,b,0

2;0,1,n 1 2;1,1,n 1 2;1,b,n
n 1

P (P P P )

P P P


 


  

 + + .
          (22) 

(8) Reliable probability of the system 

r 0;0,0,0 0;1,0,0 0;1,b,0

0;0,1,n 1 0;1,1,n 1 0;1,b,n
n 1

f ,1 f ,2

P (P P P )

P P P

= 1- (P + P )



 


  

 + +

.            (23)

 

IV. NUMERICAL RESULTS 

In this section, we perform numerical experiments for 
the queueing system consisting of two service stations 
subject to breakdowns and repairs to study the effects of 
various parameters on mean waiting time in the system, 
blocking probability, failure probability and reliable 
probability. In addition, sensitivity analysis clearly shows 
how performance measures vary with specific parameters. 
We will suggest better disposition strategies and methods of 
controlling parameters to increase operational efficiency for 
the system according to the results of simulation. 

 
 

 Validation of stability conditions by numerical 
computations 
    First, we validate the consistency of stability conditions 
through numerical computations. We fix 1 2 1    , 

1 2 1    , 1 2 1    , and present the trends of mean 

number in the system and blocking probabilities of the 
station-1 as the mean arrival rate   varies from 0.01 to 
0.352. It is noted that mean number in the system increases as 
  increases, as shown in Figure 1. The upper bound of the 

stability condition in this case ( 6
0.352

17
 ) also validates the 

exact results we derived in the section 2.5. It is observed that 
the blocking probability of the station-1 increases as the 
values of   increases and the maximum value of the 
blocking probability of the station-1 approaches to 0.37, as 
shown in Figure 2. 
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Fig 1. Mean number in the system 
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Fig 2. Blocking probability 
 
 Sensitivity Analysis of Performance Metrics 
In this section, we examine the impact of mean failure rate of 
service stations in working states   on the mean waiting 
time in the system and blocking probability. We set 

1 2 1   , 1 2 0.8     with various numbers of mean 

failure rate which increases from 0.2 to 0.6 and vary the mean 
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arrival rate   from 0.01 to 0.35. It is discovered that both 
mean waiting time in the system and blocking probability 
increases as the values of   increases, as shown in Figure 3 
and Figure 4, respectively. 
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Fig 3. Mean waiting time in the system with respect to failure 
rates 
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Fig 4. Blocking probability with respect to failure rates 
 

On the other hand, we investigate the effect of mean 
repair rate of service stations either in failure states of the 
station-1 or of the station-2 on mean waiting time in the 
system and blocking probability. We fix 1 2 1   , 

1 2 1    with different numbers of mean repair rate 

which increase from 0.4 to 0.8 and vary the mean arrival rate 
  from 0.01 to 0.35. It is investigated that the mean waiting 
time in the system and the blocking probability decreases as 
  increases, as shown in Figure 5 and Figure 6, respectively. 
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Fig 5. Mean waiting time in the system with respect to repair 
rates 
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Fig 6. Blocking probability with respect to repair rates 
 

Next, we study the sensitivity performance of failure 
probability of the station-1 and the reliable probability of the 
system with respect to mean failure rate of the station-2 2  

and vary the mean failure rate of the station-1 1  from 0.01 

to 1. It is clear that the failure probability of the station-1 and 
the reliable probability of the system decreases as 2  

increases, as shown in Figure 7 and Figure 8, respectively. 
These results mean that in practice, we can control the failure 
probabilities of the station-1 and the station-2 and reliable 
probabilities of the system by adjusting the ratio of the mean 
failure rate of the station-2 2  to the mean failure rates of the 

station-1 1  and vice versa. 
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Fig 7. Failure probability of the station-1 with respect to 
failure rates 
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Fig 8. Reliable probability of the system with respect to 
failure rates 
 

The cross effects of the failure rate of the station-1 1  

and the failure rate of the station-2 2  on failure probability 

of the station-1, failure probability of the station-2 and 
reliable probabilities of the system are studied. We fix the 
parameters at 0.2  ,  1 2 1   , and 1 2 1    . 

Figure 9 and Figure 10 show how failure probabilities of the 
station-1 and failure probabilities of the station-2 change as 

1  and 2  vary from 0.01 to 1, respectively. The three 

dimensional surface presents that the failure probabilities of 
the station-1 and the failure probabilities of the station-2 
increase as 1  and 2  increase. The cross effects of the 

failure rate of the station-1 1  and the failure rate of the 

station-2 2  on reliable probabilities of the system as shown 

in Figure 11. It is investigated that the reliable probabilities 
decrease as 1  and 2  decrease. 

 
Fig 9. Failure probability of the station-1 

 
Fig 10. Failure probability of the station-2 

 
Fig 11. Reliable probability of the system 
 
 Disposition Strategies 

We consider the influence of disposition strategies of 
mean service rate, mean failure rate and mean repair rate on 
the performance of mean waiting time in the system. We set 

1 2 1   , 1 2 0.8   , and study the cases with 

different service rates 1 21, 2    , and 1 22, 1    , 

then vary the mean arrival rate   from 0.01 to 0.35. It is 
observed that setting higher service rate for the station-1 
increases the operational efficiency for the system subject to 
breakdowns and repairs, as shown in Figure 12. 
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Fig 12. Mean waiting time in the system with different 
service rates 
 

Next, we fix the parameters 1 2 1   , 1 2 0.8    
and investigate the cases with different failure rates of service 
stations in working states 1 20.6, 0.3    , and 

1 20.3, 0.6    , then vary the mean arrival rate   from 

0.01 to 0.25. It can be seen that if the system with higher 
failure rate of the station-1, the mean waiting time of the 
system is higher than that of the case with lower failure rate 
of the station-1, as shown in Figure 13.  
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Fig 13. Mean waiting time in the system with different failure 
rate 
 

Finally, the system parameters with different repair rates 
are fixed at 1 2 0.3   , 1 2 1   . We present the 

cases 1 20.4, 0.8    , and 1 20.8, 0.4    , and vary 

the mean arrival rate   from 0.01 to 0.25. It is noted that 
disposing higher repair rate for the station-1 can make the 
system work in a higher performance, as shown in Figure 14. 
These results show the fact that the bottleneck of the working 
stations for the series configuration queueing system with 
two service stations is the station-1 which affects the whole 
operational performances of the system with perfect working 
states, referred as Tsai [15], and the system subject to 
breakdowns and repairs. We suggest dispose higher service 
rate and repair rate and keep lower failure rate for the 
station-1 of the system in order to increase operational 
efficiency of the system. 
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Fig 14. Mean waiting time in the system with different repair 
rate 

V. CONCLUSIONS 

    We study a series configuration queueing system 
consisting of two service stations subject to breakdowns and 
repairs. The service stations in this kind of system might fail 
and contain repair procedures for the failure service stations 
We successfully demonstrate matrix-geometric method is 
still a powerful tool for further investigating and 
understanding characteristics of series configurations 
queueing systems as described in our previous works, Tsai 
[15], even for more complex extensions of the mathematical 
models and conditions close to the real applications in 
industries. 
    Numerical results validate the correctness of the exact 
formulae of stability conditions. We also discover the fact 
that the bottleneck of the working stations for the series 
configuration queueing system with two service stations is 
the station-1 which significantly influences the whole 
operational performances of the system with perfect working 
states and the system subject to breakdowns and repairs. We 
suggest that setting higher service rates, repair rate and 
sustain lower failure rate for the station-1 of the system to 
make the system work more efficiently according to the 
numerical experiments. 

Future research will focus on conducting statistical 
analysis for real industrial application of manufacturing 
systems and validate the propositions of the analysis with our 
theoretical results developed in this research. Transient 
analysis and reliability analysis of the system would be 
considered further. 

APPENDIX 

The structure of the transition matrix Q and its 
sub-matrices for the system with two service stations 
subject to breakdowns and repairs 

We provide transition matrix of the series configuration 
queueing system with two service stations subject to 
breakdowns and repairs as 
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The details of sub-matrices of the composition of the 
transition matrix corresponding to the quasi-birth-death 
process for the system with two service stations are given by 
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