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Abstract—The article presents the results of numer-
ical modeling of the solidification process. We used
one of the enthalpy formulations of solidification. In
particular, we focused on comparing the results of cal-
culations for various methods of the effective thermal
capacity approximation used in the apparent heat ca-
pacity formulation of solidification. We have shown
that the choice of one of four tested methods of ap-
proximation does not significantly affect the results
and duration of the numerical simulations. Differ-
ences in the resulting temperature did not exceed a
few degrees. All numerical simulations were executed
on software with our solidification module.
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1 Introduction

Aluminum alloys are very interesting material widely
used in industry. Modeling and computer simulation
are one of the most effective methods of studying diffi-
cult problems in foundry and metallurgical manufacture.
Numerical simulations are used for optimization of cast-
ing production. In many cases they are unique possible
techniques for carrying out the experiments whose real
statement is complicated. Computer modeling allows to
define the major factors of a quality estimation of alloy
castings. Simulations help to investigate interaction be-
tween solidifying casting and changes of its parameters
or initial conditions. That process defines the quality of

∗R. Dyja is with Czestochowa University of Technology,
Dabrowskiego 69, PL42201 Czestochowa Tel/Fax: (48) 34 3250589
Email: robert.dyja@icis.pcz.pl

†E. Gawronska is with Czestochowa University of Technology,
Dabrowskiego 69, PL42201 Czestochowa Tel/Fax: (48) 34 3250589
Email: elabizeta.gawronska@icis.pcz.pl

‡A. Grosser is with Czestochowa University of Technology,
Dabrowskiego 69, PL42201 Czestochowa Tel/Fax: (48) 34 3250589
Email: andrzej.grosser@icis.pcz.pl

§P. Jeruszka is with Czestochowa University of Technology,
Dabrowskiego 69, PL42201 Czestochowa Tel/Fax: (48) 34 3250589
Email: piotr.jeruszka@icis.pcz.pl

¶N. Sczygiol is with Czestochowa University of Technology,
Dabrowskiego 69, PL42201 Czestochowa Tel/Fax: (48) 34 3250589
Email: norbert.sczygiol@icis.pcz.pl

casting, and the problem of adequate modeling of foundry
systems. The process mainly depends on the solution of
heat equations [1].

Increasing capacity of computer memory makes it possi-
ble to consider growing problem sizes. At the same time,
increased precision of simulations triggers even greater
load. There are several ways to tackle this kind of prob-
lems. For instance, one can use parallel computing [2, 3],
someone else may use accelerated architectures such as
GPUs [4] or FPGAs [5], while another person can use
special organization of computations [6, 7, 8, 9].

Solidification may take place at a constant temperature
or in the temperature range [10]. If solidification occurs
at a constant temperature, it is then referred to as the so-
called Stefan problem or the solidification problem with
zero temperatures range. Pure metals or alloys of certain
specific chemical compositions (e.g. having an eutectic
composition) solidify at a constant temperature. A sharp
separation of the liquid phase from the solidified phase oc-
curs in the Stefan problem. The two phases are in contact
to form a solidification surface (front). Mathematical de-
scription of the Stefan problem consists of the equation
of heat conduction and the so-called Stefan condition ex-
isting on the solidification surface. However, most of the
metal alloys solidify in certain temperature ranges (so-
called temperature intervals of solidification). The tem-
perature at which the alloy starts to solidify is called
liquidus temperature (Tl), and the temperature at which
solidification ends is called solidus temperature (Ts). In
the case of alloys with eutectic transformation, in which
the solute concentration exceeds its maximum solubility
in the solid phase, the temperature of the solidification
end is the eutectic temperature. Analytical (rarely) and
numerical (commonly) methods are used in the model-
ing of solidification process. The finite elements method
(FEM) is the most commonly used numerical method,
but finite difference method (FDM), boundary element
method (BEM), the Monte-Carlo and other methods are
also used.

The most important heat effect, occurring during solid-
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ification, is the emission of (latent) heat of solidification
(L). It is also the most difficult phenomenon to numeri-
cal modeling. The basic division of numerical methods of
solidification modeling process relates to modeling of the
latent heat emission. These methods can be divided into
front-tracking methods and fixed-grid methods. Fixed-
grid methods are also divided into temperature formu-
lations (the latent heat of solidification is considered as
the temperature-dependent term of heat source) and en-
thalpy formulations (the latent heat of solidification is
considered as the temperature-dependent term of heat
capacity) [11, 12, 13, 14, 15, 16]. The enthalpy methods
are divided into methods in which the effective heat ca-
pacity depends on the temperature and those in which
the effective heat capacity depends on the enthalpy. In
our article, we have focused on solving the solidification
in the temperature range with the finite element method
with the use of fixed-grid methods in enthalpy formula-
tion. We have described the comparison of different ways
of approximation of heat capacity in apparent heat ca-
pacity (AHC) formulation of solidification. This paper is
the extention of previous work [17].

2 Description of the Entalphy Formula-
tion

Solidification is described by a quasi-linear equation of
heat conduction, considering a term of heat source q̇ as a
latent heat of solidification:

∇ · (λ∇T ) + q̇ = cρ
∂T

∂t
(1)

By entering the following designation:

ṡ = q̇ − cρ
∂T

∂t
(2)

equation (1) can be written as

∇ · (λ∇T ) + ṡ = 0 (3)

where ṡ denotes generalized heat source. By introducing
enthalpy, defined as:

h =

∫ T

Tref

cρ(T ) dt (4)

where Tref is the reference temperature, and calculating
the derivative with respect to the temperature:

dH

dT
= cρ(T ) = c∗(T ) (5)

where c∗ is the effective heat capacity. Assuming the heat
source is equal to zero, the equation (3) can be converted
to the form:

∇ · (λ∇T ) = c∗
∂T

∂t
(6)

All above equations form the basis of the thermal descrip-
tion of solidification.

2.1 The Enthalpy and The Effective Heat
Capacity

The enthalpy is the sum of explicit and latent heat [18].
For the metal solidifying in the temperature range (Ts —
Tl) amounts to:

H =

∫ T

Tref

cρs(T ) dT, for T < Ts,

H =

∫ Ts

Tref

cρs(T ) dT +

∫ T

Ts

(ρs(T )
dL

dT
+

+cρf (T )) dT, for Ts ≤ T ≤ Tl,

(7)

H =

∫ Ts

Tref

cρs(T ) dT +

+ρs(T )L+

∫ Tl

Ts

cρf (T ) dT +

+

∫ T

Tl

cρl(T ) dT, for T > Tl

The integration of the expressions in Equation 7 gives

c∗ = cρs, for T < Ts,

c∗ = cρf + ρs
dL

dT
, for Ts ≤ T ≤ Tl, (8)

c∗ = cρl, for T > Tl.

Assuming that the heat of solidification is exuded and
spread evenly throughout the temperature range of so-
lidification, the following can be written:

c∗ = cρs, for T < Ts,

c∗ = cρf + ρs
L

Tl − Ts
, for Ts ≤ T ≤ Tl, (9)

c∗ = cρl, for T > Tl.

On the basis of the Equation 7 and the Equation 9 one can
make the following graphical comparison of the enthalpy
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Figure 1: Distribution of enthalpy and effective heat capacity depending on temperature.

and the effective thermal capacity distributions for alloy
solidifying in the temperature range (see Figure 1).

2.2 The Types of the Entalphy Formulations

There are three types of enthalpy formulations of solidi-
fication:

• basic enthalpy formulation (BEF)

∇ · (λ∇T ) =
∂H

∂t
(10)

where

H(T ) =

∫ T

Tref

cρ dT + (1− fs(T ))ρsL (11)

• apparent (or modified) heat capacity (AHC) formu-
lation

differentiate Eq. 11 with respect to temperature is
obtained

dH

dT
= cρ− ρsL

dfs
dT

= c∗(T ) (12)

Since H = H(T (x, t)) then

∂H

∂t
=

dH

dT

∂T

∂t
= c∗(T )

∂T

∂t
(13)

Substituting Eq. 13 to Eq. 10 is obtained

∇ · (λ∇T ) = c∗(T )
∂T

∂t
(14)

• source term formulation (STF)

The total enthalpy is divided into two parts in ac-
cordance with:

H(T ) = h(T ) + (1− fs)ρsL (15)

where

h(T ) =

∫ T

Tref

cρ dT (16)

Derivative Eq. 15 with respect to time is

∂H

∂t
=

∂h

∂t
− ρsL

∂fs
∂t

(17)

Substituting Eq. 17 to Eq. 10 is obtained

∇ · (λ∇T ) + ρsL
∂fs
∂t

=
∂h

∂t
(18)

3 Approximation of the Effective Heat
Capacity

The effective heat capacity can be also calculated directly
from the Equation 5, but in this paper, we have presented
the results of solidification simulations using the various
methods of effective heat capacity approximation.

1. Morgan method – derivative of enthalpy is replaced
by a backward differential quotient

c∗ =
Hn −Hn−1

Tn − Tn−1
(19)

where n−1 and n are the time levels. In some cases,
however, this substitution may lead to oscillations
in the solution, especially near the boundaries of the
temperature range of solidification.

2. Del Giudice method – in order to remove oscillations
one should take into account the directional cosines
of temperature gradient

c∗ =

∂H

∂n
∂T

∂n

=

∂H

∂xi
αni

∂T

∂n
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where

αni =

∂T

∂xi

∂T

∂n

and
∂T

∂n
=

(
∂T

∂n
· ∂T
∂n

) 1
2

Hence

c∗ =

∂H

∂x

∂T

∂x
+

∂H

∂y

∂T

∂y
+

∂H

∂z

∂T

∂z

(
∂T

∂x
)2 + (

∂T

∂y
)2 + (

∂T

∂z
)2

=
H,iT,i

T,jT,j
(20)

3. Lemmon method – the temperature gradient is nor-
mal to solidification surface

c∗ =

√√√√√√
(
∂H
∂x

)2
+
(

∂H
∂y

)2

+
(
∂H
∂z

)2
(
∂T
∂x

)2
+
(

∂T
∂y

)2

+
(
∂T
∂z

)2 =

(
H,iH,i

T,jT,j

) 1
2

(21)

4. Comini method – the apparent heat capacity is ap-
proximated by the expression

c∗ =
1

n

⎛
⎜⎜⎝

∂H

∂x
∂T

∂x

+

∂H

∂y
∂T

∂y

+

∂H

∂z
∂T

∂z

⎞
⎟⎟⎠ =

1

n

H,i

T,i
(22)

where n is the number of dimensions.

4 Numerical model of solidification

Solving the partial differential equations can pass from
spatial discretization through time discretization to ap-
proximate solution. First, we use the finite element
method.

The finite element method facilitates the modeling of
many complex problems. Its wide application for found-
ing comes from the fact that it permits an easy adaptation
of many existing solutions and techniques of solidification
modeling.

Computer calculations need to use discrete models, which
means problems must be formulated by introducing time-
space mesh. These methods convert given physical equa-
tions into matrix equations (algebraic equations). This
system of algebraic equations usually contains many
thousands of unknowns, that is why the efficiency of a
method applied to solve them is crucial.

The semi-discretization of the governing equation leads
to the ordinary differential equation with time derivative,
given as:

M(T )Ṫ+K(T )T = b(T ) (23)

where M is the capacity matrix, K is the conductiv-
ity matrix, T is the temperature vector and b is the
right-hand side vector, whose values are calculated on
the boundary conditions basis. The global form of these
matrices is obtained by summing the coefficients for all
the finite elements. The matrix components are defined
for a single finite element as follows:

M =
∑
e

∫
Ω

c∗NTN dΩ, (24)

K =
∑
e

∫
Ω

λ∇TN · ∇N dΩ, (25)

b =
∑
e

∫
Γ

NT
Γq

Tn dΓ , (26)

where N is a shape vector in the area Ω, NΓ is a
shape vector on the boundary Γ, n is an ordinary vector
towards the boundary Γ, and q is a vector of nodal
fluxes.

Next, we have applied one of the one-step Θ time inte-
gration schemes [19]:

• modified Euler Backward (unconditionally stable)

(Mn +ΔtKn)Tn+1 = MnTn +Δtbn+1, (27)

where superscript n refers to following step of com-
putations.

5 Used software of engineering simula-
tion

Growth of computing power allows engineers to design
and run engineering simulations on PC. Researchers can
use typical engineering software (some kind of CAD etc.),
but some of physical phenomena may not be implemented
in such software. Authors decided to write their own so-
lidification computing module, because it made comput-
ing each method of heat capacity approximation possible.
The module was written in C++ programming language.
We used the C++ for the module should be fast, scalable
and compatible with chosen numerical utilities.

Both GMSH mesh generator and extended (to include
our module) TalyFEM library have been used in numer-
ical experiment [20]. GMSH is a widespread tool which
allows finite element mesh of problem geometry (declared
or created with graphical interface by user) to be gener-
ated. Furthermore, the boundary conditions (surfaces
and/or volumes) can be declared with the pre-procesor
using the graphical user interface.
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Figure 2: Package diagram in TalyFEM project.

TalyFEM is a scalable and extensible framework which
uses FEM method to simulate some of physical phe-
nomenon. TalyFEM contains many of PETSc data stuc-
tures, including vectors, matrices or solvers [21]. PETSc
library is easy to learn which allows programmers to use
mentioned structures in building scalable scientific appli-
cation. Scalable means using parallel techniques (pro-
vided by MPI) but a programmer does not have to write
MPI communication routine — all communication about
vectors and solvers is written in PETSc and TalyFEM
[22]. ParMETIS (for nodes splitting) was also used in
our GMSH loading file module (Fig. 2). TalyFEM also
divides whole problems into sub-meshes (called domains)
— each sub-problem can be solved on a separate process
(processor or computer node in cluster; Fig. 3).

Hovewer, the framework does not allow to load meshes
generated with GMSH pre-procesor. We wrote a GMSH
loader module using MPI to communicate the data be-
tween processes. Two problems occur:

• loading material properties (which nodes belongs to
a cast or an alloy);

• loading neighbourhood nodes (on contact boundary
condition) if both nodes are on separate processes;

which have been solved during implementation.

We also implemented solidification module with Taly
FEM library. The library requires numerical model of
problem solver to be implemented. A programmer does
not have to write matrices of the assembly code or com-
munication routines – they are provided with the library.
Nevertheles, we considered parameters of boundary con-
ditions (especially contact boundary condition), so we
modified standard modules of filling matrices while we
were creating the system of linear equations. Framework
also solves the created equations (by mentioned commu-
nication routines) and writes them into output files (in
TecPlot format).

6 Results of the Numerical Experiment

In the paper we considered a casting solidifying in a metal
mold. The finite element mesh comprising 32 814 nodes

and 158 417 elements was applied to the area of the cast-
ing and mold, as shown in Figure 4. We introduced two
boundary conditions: Newton and continuity condition,
for which the environment temperature 400 K, the heat
transfer coefficient with the environment 10 W/m2K−1

and the heat transfer coefficient through the separation
layer 1000 W/m2K−1 are definied. The initial temper-
ature of casting was 960 K, the initial temperature of
mold was 600 K, the size of the time step was 0.05 s.

Material properties of the alloy (of which the casting is
made of) and the mold are given in Tables 1 and 2, re-
spectively.

Figure 4 shows the distribution of temperatures in the
casting after 25 s for the Morgan heat capacity approxi-
mation.

The graphs in Figures 5 and 7 show the lack of differences
in the obtained results. We can see that cooling curves
and solid fractions of all methods overlap. It is caused by
the fact that although different heat capacity approxima-
tions use different formulas, the resulting approximations
are very close in values of effective heat capacity, as can
be seen in Figure 6.

However, there is a visible difference between the heat ca-
pacity approximation formulas in calculation times. The
Figure 8 shows the difference in assembly time for differ-
ent methods. It is easy to notice that the Morgan method
requires the least time, while the other formulas are close
together in time requirement.

The results from the Figure 8 were obtained for 750 time-
steps and mesh from Figure 1. On the 750th time-step
(after 37.5 s) the minimum solid fraction was still 0.95
(see Fig. 7). This ensures that during the whole calcula-
tion time in at least some fraction of finite elements the
heat capacity approximation formulas were used.

7 Conclusions

By analyzing the numerical results obtained from calcula-
tions carried out with the help of our own computer pro-
gram using the finite element method and the apparent
heat capacity method we can draw the following remarks
and conclusions:
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Figure 3: Splitting whole problem to domains in TalyFEM GMSH loader module.

Figure 4: Temperature field after 25 s of cooling. The Finite Element mesh is also visible.
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Figure 5: A cooling curve of a point located in origin of coordinate system.
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Figure 8: The difference between the heat capacity approximation formulas in time needed for the main matrix
assembly.
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Table 1: Material properties of the Al-2%Cu alloy (sub-
script s means solid phase and l – liquid phase)

Quantity name Unit Value

Density ρs
kg

m3
2824

Density ρl
kg

m3
2498

Specific heat cs
J

kgK−1
1077

Specific heat cl
J

kgK−1
1275

Thermal conductivity λs
W

mK−1
262

Thermal conductivity λl
W

mK−1
104

Solidus temperature Ts K 853
Liquidus temperature Tl K 926
Melt temperature of pure
component TM K 933
Eutectic temperature TE K 821

Heat of solidification L
J

kg
390 000

Partition coefficient of solute k — 0.125

Table 2: Material properties of the mold
Quantity name Unit Value

Density
kg

m3
7500

The specific heat
J

kgK−1
620

Thermal conductivity coefficient
W

mK−1
40

1. The capacity formulation gives an equation very sim-
ilar to the equation of heat conduction; heat of solid-
ification is hidden in the effective thermal capacity.

2. The use of any of the heat capacity approximation
methods does not affect the obtained result, if the
solution is stable.

3. When using the Morgan method of heat capacity ap-
proximation, one should be careful not to apply too
small time step, because then the obtained results
might be incorrect.

4. Heat capacity approximation formulas other than
Morgan are susceptible to give wrong results if tem-
perature values in nodes of one finite element differ
by very small values. The Comini method is espe-
cially sensitive to this.

5. Morgan method requires the least time for calcula-
tions.
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