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Abstract—Extending the results of a previous paper on the
relationship between fish consumption and coronary heart
disease, an optimal control approach is proposed in the present
paper.
The Pontryagin’s minimum principle is used to characterize
the optimal control, to minimize the population of susceptible

individuals and also to reduce the mortality rate of coronary
heart disease.
A numerical simulation is carried out to show the impact of
the proposed optimal control. Indeed, the model shows that
the prevalence and mortality of coronary heart disease can be
significantly reduced in a period of 10 years.

Index Terms—Fish consumption, CHD, Harvesting, Mod-
elling, Optimal control, Simulation.

I. INTRODUCTION

O
NE of the biggest challenges currently facing humanity

is chronic diseases which are sweeping the entire globe,

with an increasing trend in developing countries [1]. Accord-

ing to the World Health Statistics 2014, the top three causes

of years of life lost due to premature death are coronary heart

disease (CHD), lower respiratory infections and stroke [2].

The joint WHO/FAO Expert report on diet, nutrition and

the prevention of chronic diseases indicated that, fish oils

are rich in eicosapentaenoic acid (EPA) and docosahexaenoic

acid (DHA) which are the main sources of polyunsaturated

fatty acids (PUFAs) of the family omega-3 [3]. Consequently,

fish consumption is recommended as a protective action

against coronary heart disease and ischaemic stroke. Indeed,

most of the epidemiological evidence related to omega-

3 PUFAs is derived from studies of fish consumption in

populations or interventions involving fish diets in clinical

trials [4], [5], [6], [7], [8], [9], [10]. Fish oils have been

used in the Gruppo Italiano per lo Studio della Sopravvivenza

nell’Infarto Miocardico (GISSI) trial involving survivors of

myocardial infarction [4]. After 3.5 years of follow-up, the

group that received fish oil had a 20% reduction in total

mortality, a 30% reduction in cardiovascular death and a

45% decrease in sudden death. Hu et al. found that, among

women, higher consumption of fish and omega-3 fatty acids

was associated with a lower risk of CHD, particularly CHD

deaths [5]. Kris-Etherton et al. have studied the effects on

cardiovascular diseases (CVD) and concluded that Omega3
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(n3) acid supplements which are highly contained in fatty fish

can reduce cardiac events [6]. Virtanen et al. pointed out that

consuming fish can reduce risk of major chronic diseases

(cardiovascular disease, cancer...) [7]. A meta-analysis of

13 cohort studies examined the association between fish

intake and CHD mortality. Significant inverse associations

were reported between fish consumption and fatal CHD [8].

Another meta-analysis of observational studies on fish intake

and CHD indicated that fish consumption was associated

with significantly lower risk of fatal and total CHD [9].

In 2010 an updated meta-analysis of seven cohort studies

concluded that fish consumption has a significant protective

effect on fatal CHD [10].

Morocco has an important stock of fish living along the

3500 kms of Mediterranean and Atlantic coasts, with sardine

as the most abundant species [11]. However, the Moroccan

consumption of fish is relatively low (8kg/person/year).

Most of the mathematical models devoted to the dynamics of

fish populations deal with the bionomic equilibrium which

is achieved when the total revenue obtained by selling the

harvested biomass equals the total cost utilized in harvesting

it [12], [13], [14], [15], [16]. Consequently, maximizing

a benefit function is very often indicated as the optimal

harvesting policy under sustainability of fish populations.

Mathematical models with optimal control were used for

optimal prevention and vaccination strategies for commu-

nicable diseases like HIV/AIDS, Chikungunya disease and

more general SIR epidemic models [17], [18], [19]. Other

updated references dealing with optimal control and broadly

with mathematical modeling and simulation can be found in

[20], [21], [22], [23], [24], [25].

In this paper, we propose a mathematical model using op-

timal control for non communicable diseases, going beyond

the mere economic benefit by minimizing the rate of people

at risk of CHD based on the level of fish consumption.

II. THE MATHEMATICAL MODEL

We consider the mathematical model developed by Lamlili

et al. [26], studying the dynamics of a population at risk of

CHD and that of fish population living along the Moroccan

coasts, presented as follows:
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dY

dt
= Λ − (µ+ α)Y + βY

dY

dt
= −(µ+ δRR + β)Y + αY

dX

dt
= r

(

1−
X

K

)

X − qEX

X(0) > 0, Y (0) > 0, Y (0) > 0 .

(1)

Where:

Y = Y (t): the number of persons without CHD risk,

Y = Y (t): the number of persons with CHD risk,

X = X(t): the biomass of the fish population in Moroccan

coasts,

r: the biotic potential,

K: the carrying capacity,

E: the total harvesting effort,

q: the catchability coefficient,

Λ: the recruitment of persons without CHD risk,

µ: the natural mortality rate,

δ: the mortality rate due to CHD,

α: the probability to have CHD,

β: the rate of patients with CHD who are cured,

RR: is the relative risk depending on fish consumption.

Note that the relative risk is a logistic function which

describes (in order to compare) the likelihood of developing

CHD in a group of individuals eating fish compared to

individuals who have a little or no consumption (RR = 1).

We recall that RR is given by the following function:

RR =
a1

a2 + ea3γX
,

with

γ =
qE

Pt

aTf ,

where a1, a2, a3 are negative coefficients, a is the rate

of fish consumed from the total harvested and Tf is a

coefficient that transforms the consumption of fish per

capita and per year to a frequency per month.

Most cardiovascular diseases can be prevented by

addressing metabolic risk factors like obesity, high blood

pressure, diabetes and raised lipids, and behavioural risk

factors such as tobacco use, alcohol, physical inactivity

and unhealthy diet [27]. Consequently, an optimal control

strategy can be obtained by acting on these risk factors.

In particular, a reduction of fish price is required by the

Moroccan authorities and a sensitisation is needed to

convince Moroccan people to consume more fish, using

healthy eating habits.

Mathematically, introducing a control u = u(t) in the

model above (1) leads to the following controlled model:



























































dY

dt
= Λ− (µ+ α(1− u))Y + βY

dY

dt
= −(µ+ δRR + β)Y + α(1 − u)Y

dX

dt
= r

(

1−
X

K

)

X − qEX

X(0) > 0, Y (0) > 0, Y (0) > 0 .

(2)

With,

N(t) = Y (t) + Y (t) for all t.

III. THE OPTIMAL CONTROL

In order to reduce the rate of people at risk of CHD, we

use the optimal control theory to analyse the behaviour of the

controlled model (2) on the basis of minimizing the objective

functional J (u) given by:

J (u) =

∫ T

0

(

Y +Au2(t)
)

dt . (3)

Where A is a positive weight that balances the size of the

terms. U is the control set defined by:

U = {u/u is measurable, 0 ≤ u(t) ≤ 1, t ∈ [0, T ]} .

Our goal is to characterize an optimal control u∗ ∈ U
satisfying:

J (u∗) = min
u∈U

J (u) .

A. Existence and Positivity of Solutions

Proposition 3.1: The following set

Ω = {(Y, Y , X) ∈ R
3/0 ≤ Y, Y ≤ Λ

µ
and 0 ≤ X ≤ K}

is positively invariant under system (2).

Proof:

We have:

dY (t)

dt
= Λ− (µ+ α(1− u(t))) Y (t) + βY (t) ,

⇒
d(Y (t) e(µ+α)t)

dt
= e(µ+α)t

[

Λ + αu(t)Y (t) + βY (t)
]

(4)

Assume that there exists t∗ > 0 such that Y (t∗) = 0 while

Y (t), Y (t) and X(t) are all positive for t ∈ [0, t∗[ .

By integrating the equation (4) from 0 to t∗, we obtain:

Y (t∗) = e
−(µ+α)t∗

[

Y (0) +

∫ t∗

0

e
(µ+α)t [Λ + αu(t)Y (t)

+ βY (t)
]

dt

]

.

⇒ Y (t∗) > 0, which is in contradiction with the

assumption that Y (t∗) = 0.

Thus,

Y (t) > 0 for all t ∈ [0, T ] .
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Let

dY

dt
= − (µ+ δRR(t) + β) Y (t) + (α(1 − u(t))Y (t)) ,

with

α (1− u(t))Y (t) ≥ 0 ,

and

0 < RR(t) ≤ 1 .

⇒
dY (t)

dt
≥ − (µ+ δ + β)Y (t) ,

by using the Gronwall’s inequality, we obtain

Y (t) ≥ Y (0)e−(µ+δ+β)dt > 0 .

Let us return to the last equation of the system (2) above

dX(t)

dt
= r

(

1−
X(t)

K

)

X(t)− qEX(t) ,

d(X(t)eqEt)

dt
=

dX(t)

dt
eqEt + qEX(t)eqEt .

Assume that there exists t∗ > 0 such that X(t∗) = 0 and

X(t) > 0 for t ∈ [0, t∗[ .

By integrating the equation (5) from 0 to t∗, we obtain:

X(t∗) = e−qEt∗

[

X(0) +

∫ t∗

0

eqEt

[

r

(

1−
X(t)

K

)

X(t)

]

]

.

This implies X(t∗) > 0, which is in contradiction with

X(t∗) = 0.

Therefore,

X(t) > 0 for all t ∈ [0, T ] .

The fact that X ≤ K is relative to the ecological

assumption that the biomass X can’t be greater than the

carrying capacity K .

Finally,

dN(t)

dt
= Λ− µY (t)− µY (t)− δRR(t)Y (t)

= Λ− µN(t)− δRR(t)Y (t)

≤ Λ− µN(t)

⇒ N(t) ≤

(

N(0)−
Λ

µ

)

e−µt +
Λ

µ

≤
Λ

µ
.

Proposition 3.2: The controlled system (2) that satisfies

a given initial condition (Y (0), Y (0), X(0)) ∈ Ω has an

unique solution.

Proof:

The proof of the Proposition 3.2 is based on the following

Lemma.

Lemma 3.3 ( [28], Lemma 3.3):

If f(t, x) and
[

∂f
∂x

]

(t, x) are continuous on [a, b]×R
n, then

f is globally Lipschitz in x on [a, b] × R
n if and only if

[

∂f
∂x

]

(t, x) is uniformly bounded on [a, b]× R
n.

Let

Y = Y (t) , Y = Y (t) , X = X(t), RR = RR(t) ,

φ =





Y

Y
X



 and f(φ) =





dY
dt
dY
dt
dX
dt



.

From the system (2) we obtain:

∂f

∂φ
= M .

Where M takes the following form:















−µ− α(1 − u) β 0

α(1− u) −β − µ−

δ a1

a2 + ea3γ X

δ a1a3γ ea3γ XY

(a2 + ea3γ X)2

0 0 r − 2rX
K

− qE















Hence,
∣

∣

∣

∣

∣

∣

∂f
∂φ

∣

∣

∣

∣

∣

∣

1
= max (|µ+ α(1 − u)|+ |α(1 − u)|,

|β|+

∣

∣

∣

∣

β + µ+
δ a1

a2 + ea3γ X

∣

∣

∣

∣

,
∣

∣

∣

∣

∣

δ a1a3γ e
a3γ XY

(a2 + ea3γ X)
2

∣

∣

∣

∣

∣

+
∣

∣r − 2rX
K

− qE
∣

∣

)

.

Since 0 ≤ 1− u ≤ 1, it follows that:

|µ+ α(1 − u)|+ |α(1 − u)| ≤ µ+ 2α .

From the definition RR =
a1

a2 + ea3γX
≤ 1, we find

|β|+

∣

∣

∣

∣

β + µ+
δ a1

a2 + ea3γ X

∣

∣

∣

∣

≤ 2β + µ+ δ,

and finally,

∣

∣

∣

∣

∣

δ a1a3γ e
a3γ XY

(a2 + ea3γ X)
2

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

r −
2rX

K
− qE

∣

∣

∣

∣

≤
a3δΛ

a1µ
γ+3r+qE.

Therefore,

∣

∣

∣

∣

∣

∣

∣

∣

∂f

∂φ

∣

∣

∣

∣

∣

∣

∣

∣

1

≤ max

(

µ+ 2α, 2β + µ+ δ,
a3δΛ

a1µ
γ + 3r + qE

)

.

Consequently, from Lemma (3.3) f is globally Lipschitz.

From the definition of the control u(t) and the restriction on

Y (t) > 0, Y (t) > 0 and X(t) > 0, one can conclude that an

unique solution of the system (2) exists.

B. Existence of an optimal control

Proposition 3.4: There exists an optimal control u∗ and

solutions Y ∗, Y
∗

and X∗ of the corresponding state system

(2), such that

J (u∗) = min
u∈U

J (u) .

subject to the control system (2) with initial conditions.

Proof:

The existence of the optimal control can be obtained by

checking the following steps (Theorem III.4.1 from [28]):

• From Propositions 3.1 and 3.2 and given that coeffi-

cients of the system (2) are bounded, the set of controls

and corresponding state variables is nonempty.

• J (u) =

∫ T

0

(

Y (t) +Au2(t)
)

dt is convex in u.

• The control space:
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U = {u/u are measurable, 0 ≤ u(t) ≤ 1, t ∈ [0, T ]}

is convex and closed by definition.

• All the right hand sides of equations of system (2)

are continuous, bounded above by a sum of bounded

control and state variables, and can be written as a linear

function of u with coefficients depending on time and

state.

• The integrand in the objective functional, Y (t)+Au2(t),
is clearly convex on U .

• There exists constants α1, α2 > 0, and α > 1 such that

Y (t) +Au2(t) satisfies: Y (t) +Au2(t) ≥ α1 +α2|u|
α.

The state variables being bounded,

let α1 =
1

2
Y (t), α2 = A and α = 2 then it follows that:

Y (t) +Au2(t) ≥ α1 + α2|u|
2 .

Theorem III.4.1 from [28] assures the existence of an

optimal control.

C. Characterization of the optimal control

The necessary conditions for the optimal control arise from

the Pontryagin’s minimum principle [29]
Proposition 3.5: Given an optimal control u∗ and solu-

tions Y ∗, Y
∗

and X∗ of the corresponding state system (2),
there exist adjoint variables λ1, λ2 and λ3 satisfying

=⇒































dλ1

dt
= (λ1 − λ2)(1 − u∗)α + µλ1

dλ2

dt
= −1 + λ2(µ + β + δR∗

R) − λ1β

dλ3

dt
= λ3

(

−r +
2rX∗

K
+ qE

)

−
λ2δ a1a3γ ea3γ X∗

Y
∗

(

a2 + ea3γ X∗
)2

With transversality conditions:

λ1(T ) = λ2(T ) = λ3(T ) = 0 .
Moreover, the optimal control is given by

u∗ = min(1,max(0,
αY ∗(λ2 − λ1)

2A
)) .

Proof:

The Hamiltonian H for the control problem is given by:

H(~λ, ~f , u, t) = Y +Au2 + t~λ.~f,

with ~λ =





λ1

λ2

λ3



, ~f =





f1(Y, Y ,X, u, t)
f2(Y, Y ,X, u, t)
f3(Y, Y ,X, u, t)



 ,

where,

f1(Y, Y ,X, u, t) = Λ− (µ+ α(1 − u))Y + βY ,

f2(Y, Y ,X, u, t) = −(µ+ δRR + β)Y + α(1 − u)Y ,

f3(Y, Y ,X, u, t) = r
(

1− X
K

)

X − qEX .

Let

~f∗ =





f1(Y
∗, Y

∗

, X∗, u∗, t)

f2(Y
∗, Y

∗

, X∗, u∗, t)

f3(Y
∗, Y

∗

, X∗, u∗, t)



 ,

then the optimal control is determined by assuming that
dH

du
(~λ, ~f∗, u∗, t) = 0, which is the optimality condition.

Thus

u∗ =
αY ∗(λ2 − λ1)

2A

By standard control arguments involving the bounds on

the controls, we conclude

u∗ =







































=
αY ∗(λ2 − λ1)

2A
, if 0 <

αY ∗(λ2 − λ1)

2A
< 1

= 1 , if
αY ∗(λ2 − λ1)

2A
≥ 1

= 0 , if
αY ∗(λ2 − λ1)

2A
≤ 0

In compact notation,

u∗ = min(1,max(0,
αY ∗(λ2 − λ1)

2A
)) .

The adjoint variables λ1, λ2 and λ3 are obtained by the

following system:
dλ1

dt
= −

dH

dY
= (λ1 − λ2)α (1− u∗) + λ1µ

dλ2

dt
= −

dH

dY
= −1 + λ2 (µ+ β + δR∗

R
)− λ1β

dλ3

dt
= −

dH

dX
= λ3

(

2rX∗

K
+ qE − r

)

− λ2δ a1a3γ ea3γ X∗

Y
∗

(a2+ea3γ X∗)2
.

IV. NUMERICAL SIMULATION

The resolution of the optimality system (2) is based

on the Gauss Seidel-like implicit finite-difference method

developed in [30] and denoted GSS1 method.

The time interval [t0, T ] is discretized with a step h (time

step size) such that ti = t0 + ih for i = 0, 1, . . . , n and

tn = T .

At each point ti, let

Yi = Y (ti), Y i = Y (ti), Xi = X(ti) ,

RRi
= RR(ti), λ

i
1 = λ1(ti), λ

i
2 = λ2(ti) ,

λi
3 = λ3(ti) and ui = u(ti) .

For the approximation of the following derivatives we

use the first-order forward-difference.

dYi+1

dt
≈

Yi+1 − Yi

h
dY i+1

dt
≈

Y i+1 − Y i

h
dXi+1

dt
≈

Xi+1 −Xi

h























for i = 0, · · · , n− 1.

Similarly, we approximate the time derivative of the

adjoint variables by their first-order backward-difference:

dλn−i
1

dt
≈

λn−i
1 − λn−i−1

1

h
dλn−i

2

dt
≈

λn−i
2 − λn−i−1

2

h
dλn−i

3

dt
≈

λn−i
3 − λn−i−1

3

h



























for i = 0, · · · , n−1.

Hence the problem is given by the following numerical

scheme for i = 0, · · · , n− 1.
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Yi+1 − Yi

h
= Λ− (µ+ α (1− ui))Yi+1 + β Y i

Y i+1 − Y i

h
= − (µ δRRi

+ β)Y i+1

+α (1− ui)Yi+1

Xi+1 −Xi

h
= r

(

1−
Xi

K

)

Xi+1 − qEXi+1

λn−i
1 − λn−i−1

1

h
=

(

λ1
n−i−1 − λ2

n−i
)

α (1− ui)

+λ1
n−i−1µ

λn−i
2 − λn−i−1

2

h
= −1 + λn−i−1

2 (µ+ β + δRRi+1)

−λn−i−1
1 β

λn−i
3 − λn−i−1

3

h
= λn−i−1

3

(

2rXi+1

K
+ qE − r

)

−
λn−i−1
2 δ a1a3γ e

a3γ Xi+1Y i+1

(a2 + ea3γ Xi+1)
2

So we find























































































































































Yi+1 =

(

Λ+ β Y i

)

h+ Yi

1 + hµ+ hα− hαui

Y i+1 =
α (1− ui)Yi+1h+ Y i

1 + hµ δRRi
+ hβ

Xi+1 =
Xi

(

1− r
(

K−Xi

K

)

h+ qEh
)

λn−i−1
1 =

λn−i
1 + αhλn−i

2 − αhλn−i
2 ui

1 + αh− αhui + µh

λn−i−1
2 =

(

1 + λn−i−1
1 β

)

h+ λn−i
2

1 + µh+ hβ + hδRRi+1

λn−i−1
3 =

(

λn−i−1
2 δ a1a3γ ea3γ Xi+1Y i+1hK

(a2 + ea3γ Xi+1)
2

+Kλn−i
3

)

(K + 2 hrXi+1 + hqEK − hrK)

ui+1 =
αYi+1(λ

n−i−1
2 − λn−i−1

1 )

2A
.

Simulations are performed by taking the following param-

eters [26]:

Λ = 500000, µ = 0.014, α = 0.06, β = 0.005, δ = 0.006 ,

r = 1, K = 1.1× 3.75× 109, q = 0.04, E = 10 ,

Pt = 32× 106, Y0 = Pt × 0.75 ,

Y 0 = Pt × 0.25, X0 = 225× 107 .

Since control and state functions are on different scales,

the weight constant value is chosen as follows:

A = 3500000 .

We consider different scenarios depending on the pa-

rameter a (the proportion of fish consumed from the total

harvested) as shown in Fig 1 and Fig 2.

a=0

No fish is consumed at all: we find that the total mortality

due to CHD in ten years is 7.9× 105 (without control) and

5.9× 105 (with control).
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 a=0 without control
 a=0 with control
 a=1 without control
 a=1 with control
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 a=0 without control

a=1 with control

a=1 without control

Fig. 1. Mortality due to CHD with a = 0 and a = 1 (with and without
control)

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Time

M
or

ta
lit

y 
du

e 
to

 C
H

D

 

 
 a=0.3 without control
 a=0.3 with control
 a=0.6 without control
 a=0.6 with control a=0.3 without control

a=0.3 with control

a=0.6 without control

a=0.6 with control

Fig. 2. Mortality due to CHD with a = 0.3 and a = 0.6 (with and without
control)

a=0.30

30% of the total harvested fish is consumed: we find that

the total mortality due to CHD in ten years is 5.2 × 105

(without control) and 3.9× 105 (with control).

a=0.60

60% of the total harvested fish is consumed: we find that

the total mortality due to CHD in ten years is 4.3 × 105

(without control) and 3.2× 105 (with control).

a=1

The total harvested fish is completely consumed: we find

that the total mortality due to CHD in ten years is 3.7× 105

(without control) and 2.8× 105 (with control).

These simulations prove that when the consumption of

harvested fish goes from 30% to 60%, CHD mortality rate

is reduced by 38% in ten years with control.

The report of the National Observatory of Human

Development [31] states that household food expenditure

accounts to 34% of income. 18.7% of its expenses are

dedicated to poultry meat and red meat consumption, while
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TABLE I
ESTIMATED PRICE OF EACH FOOD PRODUCT ACCORDING TO THE

MINISTRY OF AGRICULTURE [32]:

Food products Estimated price in dollars

Red meat 7 Dollars/kg

poultry 1.8 Dollars /kg

Sardine From 1.2 to 1.5 Dollars /kg

White fish From 5 to 12 Dollars/kg

only 3.5% of food expenditures are allocated to fish.

In light of the data of TABLE I and to encourage the

Moroccan population to double their fish consumption to 7%
of food expenditures (proposed strategy) without affecting

their food consumption budget, it is necessary and sufficient

to affect the share of food expenditures dedicated to red

meat and poultry expenditure to consume more fish. This is

clearly possible (in view of price table above) by substituting

a portion of the share allocated to red meats and white fish

and the substitution of a part of share allocated to poultry

and sardines.

V. CONCLUSION

In this paper, extending the model proposed in [26],

an optimal control approach was used to deal with the

relationship between fish consumption and CHD mortality

as a part of a whole strategy.

Existence and positivity of solutions as well as existence of

an optimal control were proved. Given an optimal control and

the corresponding solutions, adjoint variables were charac-

terized. Finally a simulation was carried out showing that the

use of an optimal control reduces the mortality rate by 25%
at all levels of fish consumption.

It was already seen in the previous work that consuming fish

rich in omega3 can reduce the mortality due to CHD, when

the parameter a changes from 0.3 (actual strategy) to 0.6
(proposed strategy) by 17%. This work shows that a further

25% reduction can be obtained by using optimal control.
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