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Abstract-In this paper, we study the traveling wave solutions of 
the generalized Hirota – Satsuma KdV equations by using the 
modified extended trial equation method. We construct the 
exact solutions for the nonlinear partial differential equations 
when the balance number is a positive integer via the 
generalized Hirota–Satsuma KdV equations using different 
types of  functions such as: hyperbolic functions, trigonometric 
functions, Jacobi elliptic functions, and rational functional. The 
performance of this method is reliable, effective, and powerful 
for solving more complicated nonlinear partial differential 
equations in mathematical physics. The balance amount in this 
method is not constant and changes whenever the derivative 
definition of the trial equation changes. This method allowed us 
to construct many new types of exact solutions. We show by 
using the Maple software package that all obtained solutions 
satisfy the original partial differential equations. 
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Traveling wave solutions, Balance number, Soliton solutions, 
Jacobi elliptic functions.  
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I. INTRODUCTION 
 
he exact solutions of nonlinear differential equations play 
an important role in understanding most of the nonlinear 
physical phenomena. In recent years, exact solutions of 

nonlinear PDEs have been investigated by many authors 
(see for example [1-28]) who are interested in nonlinear 
physical phenomena. Many powerful methods have been 
presented by those authors such as the inverse scattering 
transform [1], the Backland transform [2], the Darboux 
transform [3], the generalized Riccati equation [4,5], the 
Jacobi elliptic function expansion method [6,7], the 
Painlev´e expansion method [8], the extended tanh- function 
method [9], the modification of Fan sub- Equation method 
[10], the F- expansion method [11,12], the expansion 
function method [13,14], the sub-ODE method [15,16], the 
extended sinh- cosh and sine-cosine methods [17,18], and 
the (G´/G) -expansion method [19,20]. There are also many 
methods for finding the analytic approximate solutions for 
nonlinear partial differential equations such as the homotopy 
perturbation method [21,22], the Adomain decomposition 
method [23,24], the Variation iteration, and the homotopy 
analysis method [25,26].  
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Other methods for solving the nonlinear partial differential 
equations have also been developed (see for example [27-
35]).  

Recently, Gurefe et al [36] have presented a direct method, 
namely the extended trial equation method for solving the 
nonlinear partial differential equations. The main objective 
of this paper is to modify the extended trial equation method 
to construct a series of some new analytic exact solutions for 
the following generalized Hirota – Satsuma KdV system of 
equations which was introduced by Wu et al. [37]: 
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This system of equations describes the interaction of two 
long waves with different dispersion relations. Eq. (1.1) is 
reduced to a new complex coupled KdV equation [37] and 
the Hirota– Satsuma equation [38], with *vw   and vw   
respectively. In this paper, we construct the exact solutions 
for different types of roots of the trial equation. We obtain 
many different kinds of exact solutions in hyperbolic 
function, trigonometric function, Jacobi elliptic functions, 
and rational functions. In these solutions, the balance 
number is not constant and changes when the trial equation 
derivative of the nonlinear partial differential equations also 
changes. 

II. DESCRIPTION OF THE EXTENDED TRIAL 
EQUATION METHOD 

 
Suppose that we have a nonlinear partial differential 
equation in the following form: 

,0,.....),,,,,( xxuxtuttuxutuuF    (2.1)  

where ),( txuu   is an unknown function, F  is a 

polynomial in ),( txuu   and its partial derivatives, in 

which the highest order derivatives and nonlinear terms are 
involved. Let us now give the main steps for solving Eq. 
(2.1) using the extended trial equation method as in [36,39]: 
 
Step 1.  
Let the traveling wave variable be defined by 

,,)(),( txutxu                      (2.2)  

where   is a nonzero constant. 

The transformation (2.2) permits us to reduce (2.1) to the 
following ODE  

,0,......),,2,,,(  uuuuuuP        (2.3)  

where P  is a polynomial of )(u  and its total derivatives. 
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Step 2.  
Suppose the solution takes the form: 
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where Y  satisfies the following nonlinear trial differential 
equation: 
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where ji  ,  are constants to be determined later. Using 

(2.4) and (2.5), we have 
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where )(),( YY   are polynomials in .Y  

Step 3.  
Balancing the highest derivative term with the nonlinear 
terms, we can find the relations between  , and .  We can 

calculate some values of  ,  and .  

 
Step 4. 
 Substituting (2.4) - (2.6) into (2.3) yields a polynomial 

)(y of Y as follows:  

.001...)(   YsYsy      (2.7) 

 
Step 5.  
Setting the coefficients of the polynomial )(y  to zero 

yields a set of algebraic equations: 
.,...,0,0 sii                     (2.8) 

Solving this system of algebraic equations to determine the 

values of  ,0,1,...,1,  0,1,...,1,    and 

.0,1,...,1,    

 
Step 6.  
 Reduce (2.5) to the elementary integral form: 
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      (2.9) 

where 0  is an arbitrary constant.  

Using a discriminant for the polynomial to classify the roots 
of ),(Y we solve (2.9) to determine Y . In addition, we can 

write the corresponding exact traveling wave solutions to 
(2.1). 
 

III. EXTENDED TRIAL EQUATION METHOD FOR 
THE GENERALIZED HIROTA–SATSUMA KDV 

EQUATIONS 
 

In this section, we consider a generalized Hirota–Satsuma 
Korteweg – de Vries (KdV) equation which was 

introduced by Wu et al.. One of the typical equations in 
the hierarchy is a new generalized Hirota–Satsuma KdV 
equations, which we reproduce below: 
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 (3.1) 

 
The traveling wave variables 
 

,),(),(),(),(),(),( txwtxwvtxvutxu    
(3.2) 

where )(),(  vu  and )(w  are arbitrary functions of  , 

and   is an arbitrary constant. The traveling wave 

transformation (3.2) permit us to convert (3.1) into the 
following system of ODE's: 
 

.03

,03

,0333
2

1







wuww

vuvv

vwwvuuuu







                          (3.3) 

 
From (2.4)-(2.9), we can write the exact solution of (3.3) 
into the following form: 
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where Y  satisfies (2.5) and 2,1  , 3  are arbitrary 

positive integers. From balancing the highest derivative 
terms with the nonlinear terms in (3.3), we obtain: 
 

2321  
                        

(3.5) 

 
Equations (3.5) have infinitely many solutions. We suppose 
some of these solutions as follows: 
 
Case 1.  
In the special case 0  , 3 , we get 

.1321    Equations (2.4)-(2.9) lead to: 
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The higher order derivatives can be found in the same 
manner. Similarly, we find: 
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Substituting (3.6), (3.7) and (3.8) into (3.3), we get a system 
of algebraic equations which can be solved to obtain the 
following results: 
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where 1,0,2,1,0,0 TT  and 1  are arbitrary constants. 

Substituting these results (3.9) into  (2.5) and (2.9), we have: 
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where 
3
0



L . Now, we will discuss the roots of the 

following equation: 
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to integrate equations (3.10) as the following families: 
 

Family 1. 

If equation (3.11) has three equal repeated roots 1 , 

consequently we can write (3.11) in the following form: 
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By equating the coefficients of Y in both sides of (3.12) , 

we get a system of algebraic equations in 2,1,0,0   

and 1  which can be solved by using the Maple software 

package to get the following results :  
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Equations (3.13) , (3.9) and (3.10) lead to: 
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where 0,0 T  and 1T  are arbitrary constants, and 
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Substituting (3.16), (3.14) and (3.13) into (3.6), (3.7), and 
(3.8), we get the exact solutions of the generalized Hirota–
Satsuma equations (3.1) in the form: 
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Family 2. 

If the equation (3.11) has two distinct roots 1  a double 

root, and 2  a simple root, such that 21   , we can 

write (3.11) in the following form: 
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Equating the coefficients of Y  from both sides of (3.20), we 

get a system of algebraic equations in 2,1,0,0   and 

1  which can be solved by using the Maple software 

package to get the following results: 
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Equations (3.21) , (3.9) and (3.10) lead to: 
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where 0,0 T  and 1T  are arbitrary constants. If 12    in 

this family, the solution of Eq.(3.10) has the form : 
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or 
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Substituting equations (3.24), (3.22) and (3.21) into (3.6) , 
(3.7) and (3.8), we get the exact solutions of the generalized 
Hirota–Satsuma equations (3.1) in the form: 
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If 21    in this family, the solution of (3.10) has the 

form : 
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Substituting equations. (3.28), (3.21) and (3.22) into (3.6)- 
(3.8), we get the exact solutions of the generalized Hirota–
Satsuma equations (3.1) in the form: 
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Family 3. 

If the equation (3.11) has three distinct roots 1 , 2  and
 

3 , we can write equation (3.11) in the following form: 
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By equating the coefficients of Y  in both sides of (3.32), 

we get a system of algebraic equations in 2,1,0,0   

and 1  which can be solved by using the Maple software 

package to get the following results: 
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Equations (3.33) , (3.9) and (3.10) lead to: 
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where 0,0 T  and 1T  are arbitrary constants . In this family 

the solution of (3.10) has the following form: 
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Substituting (3.36), (3.34) and (3.33) into (3.6)-(3.8), we get 
the exact solutions of the generalized Hirota–Satsuma 
equations (3.1) in the form: 
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Family 4. 

If the equation (3.11) has one real root 1  and two 

imaginary roots ,212 NiN  213 NiN  , where 

1N  and 2N  are real numbers, we can then write the 

equation (3.11) in the following form: 
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From equating the coefficients of Y  to both sides of Eq. 
(3.40) , we get a system of algebraic equations in 

2,1,0,0   and 1  which can be solved by using the 

Maple software package to get the following results: 
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Equations (3.41) , (3.9) and (3.10) lead to: 
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where 0,0 T  and 1T , are arbitrary constants. With the help 

of Maple software package, the integration of 
equation.(3.10) in this family take the following form: 
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Substituting  (3.44), (3.42) and (3.41) into (3.6)- (3.8), we 
get the exact solutions of the generalized Hirota–Satsuma 
equations (3.1) in the form: 
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Case 2. In the special case when 0  and 4 , we get 

221   . Equations (2.4)- (2.9) lead to: 
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The higher order derivatives can be computed in the same 
manner. Similarly, we can deduce the following: 
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Substituting (3.48) ,(3.49) and (3.50) into equation.(3.3), we 
get a system of algebraic equations which can be solved to 
obtain the following results: 
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where 0,1,2,2,0,0 T  and 2T  are arbitrary 

constants. Substituting these results (3.51) into (2.5) and 
(2.9), we have: 
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  where 0L  . Now we will discuss the roots of the 

following equation: 
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to integrate equations (3.52). We discuss the roots of 
Eq.(3.53) as following families: 
 
Family 5. 

If equation (3.53) has one single repeated real root 1  (the 

root being repeated four times), we can write equation (3.53) 
in the following form: 
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From equating the coefficients of Y to both sides of 
Eq.(3.54) , we get a system of algebraic equations in 

1,0,2,0   and 2 , which can be solved by using the 

Maple software package to get the following results: 
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Equations (3.55) , (3.51) and (3.52) lead to: 
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where 0,0 T  and 2T  are arbitrary constants and 
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Substituting (3.58), (3.56) and (3.55) into (3.48)- (3.50), we 
get the exact solutions of the generalized Hirota– Satsuma 
KdV equations (3.1) in the following form : 
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Family 6. 

If the equation (3.53) has two twice-repeated roots 1  and 

2 , 21   , we can write equation (3.53) in the 

following form: 
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By equating the coefficients of Y in both sides of (3.62), we 

get a system of algebraic equations in 1,0,2,0   and 

2  which can be solved by using the Maple software 

package to get the following results: 
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Equations (3.63) , (3.51) and (3.52) lead to: 
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where 0,0 T  and 2T  are arbitrary constants and 
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Substituting (3.66) (3.64) and (3.63) into (3.48)- (3.50), we 
get the exact solutions of generalized Hirota–Satsuma KdV 
equations (3.1) in the following form: 
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Family 7. 

If equation (3.53) has four different real roots 1 , 2 , 3  

and 4 , we can write the equation (3.53) in the following 

form: 
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By equating the coefficients of Y  in both sides of equation. 
(3.70), we get a system of algebraic equations in

1,0,2,0   and 2  which can be solved by using the 

Maple software package to get the following results: 
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Equations (3.71) , (3.51) and (3.52) lead to: 
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Substituting (3.74), (3.72) and (3.71) into (3.48)- (3.50), we 
get the exact solutions of the generalized Hirota–Satsuma 
KdV equations (3.1) in the form: 
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Family 8. 

If equation (3.53) has four complex roots 211 iNN   

212 iNN   

433 iNN   

434 iNN   

where 4...,1, jjN  are real numbers, we can write the 

equation (3.53) in the following form: 
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By equating the coefficients of Y  in both sides of Eq.(3.78), 

we get a system of algebraic equations in
 1,0,2,0   

and 2  which can be solved by using the Maple software 

package to get the following results:  
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Equations (3.79) , (3.51) and (3.52) lead to: 
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where 0,0 T  and 2T  are arbitrary constants and 
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Substituting (3.82), (3.80) and (3.79) into (3.48)- (3.50), we 
get the exact solutions of generalized Hirota–Satsuma KdV 
equations(3.1) in the form: 
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Remarks: 

1- This method allowed us to construct many types of the 
traveling wave solutions in the hyperbolic functions, 
trigonometric functions, and Jacobian elliptic 
functions. 

 
2- The balance number of this method is not constant as 

in other methods but changes when the trial equation 
changes. 
 

3- This method has generalized the tanh-function 
method, Jacobian elliptic functions methods, and Exp 
function method. 

  
IV.CONCLUSION 

In this paper, we used the extended trial equation method to 
construct a series of new analytic solutions for some 
nonlinear partial differential equations in mathematical 
physics when the balance number is a positive integer. We 
constructed the exact solutions in many different functions 
such as hyperbolic functions, trigonometric functions, 
Jacobian elliptic functions, and rational solutions for the 
nonlinear Hirota –Satsuma KdV equations. This method is 
more powerful than other methods for solving the nonlinear 
partial differential equations, and can be used to solve many 
other nonlinear partial differential equations in mathematical 
physics.  
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