
A New Combination Rule in Evidence Theory
Qianhui Dong, Qian Sun, Fei Yu

Abstract—Multi-target tracking system is used to distinguish
the class from different targets and obtain the trajectory of
all targets from multiple information systems. As a significant
and novel information fusion method, evidence theory has been
used in multi-target tracking system. The evidence combination
rule which is the core of evidence theory is turning into a new
research emphasis. Yager combination rule which defined in
DST is an effective solution. PCR5 and PCR6 are proposed in
DSmT which is an extension of DST. But because of the huge
computation problem, the use of PCR5 and PCR6 in informa-
tion fusion is restricted especially in real-time environment. In
order to overcome the huge computation drawback of PCR5/6,
a novel evidence combination rule, mixture combination rule
(MCR) is proposed in this paper. MCR combines the advantages
of PCR5/6 and YGR and switches its combination rule between
PCR5/6 and YGR after making a judgment of decision stability.
The simulation test on MCR is also done and the test results
show that the computation load of MCR is largely reduced
compared with PCR5/6.

Index Terms—multi-mobile robot system, observability anal-
ysis, graph, localization.

I. INTRODUCTION

The purpose of multi-target tracking (MTT) system is to
classify the different targets into different classes and to
obtain the trajectory of all targets. Because achievement of
MTT is based on the information from different systems or
sources, it belongs into the category of information fusion.
Information fusion is defined as a process dealing with the
association, correlation, and combination of data and infor-
mation from single and multiple sources to achieve refined
position and identity estimates, and complete and timely
assessments of situations and threats, and their significance.
The process is characterized by continuous refinements of
its estimates and assessments, and the evaluation of the need
for additional sources, or modification of the process itself,
to achieve improved results [1], [2]. It has been an emerging
technology which applied in robot navigation [3], [4], target
identification [5], mobile robot vision [6], fault diagnosis [7]
and other domains.

The main basic approach information fusion method-
s includes Bayesian probability theory, fuzzy logic and
Dempster-Shafer (D-S) evidence theory [8], [9], [10]. For
the Bayesian theory, it requires complete knowledge of com-
bined conditional probabilities and specification of the priori
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knowledge of probability distribution. On the other hand,
it cannot measure a body of evidence with an imprecision
on probability measurement. The main advantage of the
fuzzy fusion approach is that the evidence from multiple
features can be combined using fuzzy logic operations, and
uncertainty can be represented. The fuzzy set framework
provides a lot of combination operators, which allows the
user to adopt a fusion scheme and specify the data at hand.
However, to our knowledge, the membership functions for
the fuzzy set are not easy to obtain in real-world application
systems.

For the evidence theory, there are three main advantages
should be taken into account [11], [12]. First of all, since
the D-S evidence theory supports the representation of both
imprecision and uncertainty, it is considered to be a more
flexible and general approach than the traditional probability
theory. Secondly, evidence theory offers the possibility of
coming up with the probabilities of a collection of hypothe-
ses, whereas a classical probability theory only deals with
one single hypothesis. Finally, the major strength of the
evidence theory is its ability to deal with ignorance and
missing information.

The combination rule is one of key technologies of evi-
dence theory and the most common one is the Dempster’s
combination rule (DCR) [13], [14]. But since the counter-
intuitive behavior of DCR [15], [16], many researchers
are focus on it and proposed some effective combination
methods to solve this problem. Partial conflict redistribu-
tion rule 5 (PCR5) and partial conflict redistribution rule
6 (PCR6) are two novel combination methods and result
in good performance [17], [18]. But the large amount of
computation needed in PCR5 and PCR6 [19]makes it difficult
to implement in real time.

In order to solve this problem, a novel combination method
which is called mixture combination rule (MCR) is proposed
in this paper. MCR combines the advantages of DCR and
PCR5/6 and has a better performance than DCR and lower
computation load than PCR5/6 by shifting between DCR
and PCR5/6 based on the condition of stable decision.
MCR makes its judgement based on the basic probability
assignment (BPA) and switches the combination rules. If the
BPAs from each experts at the same time meet with the
requirement of decision stability, the combination rule will
be switched to DCR, otherwise the combination rule will be
switched to PCR5/6.

This paper is organized as follows. In section 2, the
background of evidence theory is briefly recalled. The ev-
idence combination rules used in this paper are introduced
in section 3. The decision stability of combination rules
analyzed and a novel combination algorithm is proposed in
section 4. Section 5 will make a conclusion and propose
some challenging problems which need to be done in the
future.
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II. BACKGROUND ON EVIDENCE THEORY

A. Dempster-Shafer Theory

The Dempster-Shafer evidence theory was originally de-
veloped by Dempster, who concerned about the lower and
upper probabilities, and later Shafer made his contribution
by offering belief functions to model uncertain knowledge
on the basis of mathematical foundations.

A key point of the D-S evidence theory is the basic
probability assignment (BPA, or mass function) m which
is defined on 2Θ, the the power set of Θ, as

m : 2Θ → [0, 1] (1)

where m is defined for every element A of 2Θ and m(A)
belongs to the [0, 1] interval with the following property:

m(ϕ) = 0,
∑
A∈2Θ

m(A) = 1 (2)

Θ is called a frame of discernment and is constituted with a
set of mutually and exhaustive singleton hypotheses θi as

Θ = {θ1, θ2, · · · , θN} (3)

B. Dezert-Smarandache Theory

In the context of the belief function theory, the DST is
based on the use of functions defined on the power set 2Θ

(that is the set of all the disjunctions of the elements of Θ).
Hence the experts can express their option not only on Θ
but also on 2Θ as in the probabilities theory. The extension
of this power set into the hyper-power set DΘ (that is the
set of all the disjunction and conjunction of the elements
of Θ) proposed by Dezert and Smarandache[17], gives more
freedom to the expert. This extension of DST is call Dezert-
Smarandache Theory (DSmT).

Hence BPA of DSmT is defined as

m : DΘ → [0, 1] (4)

where m is defined for every element A of DΘ and m(A)
belongs to the [0, 1] interval with the following property:

m(ϕ) = 0,
∑

A∈DΘ

m(A) = 1 (5)

III. EVIDENCE COMBINATION RULES

A. Dempster’s combination rule

The Dempster’s Combination Rule (DCR) is the most
commonly used combination rule in D-S theory and is
defined as

mDCR
1,2,...,s(X) =

1

1−K
m1,2,...,s(X) (6)

where K =
∑

Ai

∩
Bj=∅ m1(Ai)m2(Bj) ̸= 1 is referred to

as the conflict mass.
Suppose there are 4 different classes of targets and FoD

is expressed as ΘB = {B1, B2, B3, B4}. The basic probility
assignments (BPA) reported by two different sensor systems
are shown as Table I.

According to the Dempster’s combination rule, the conflict
mass can be calculated as K = 0.47, the combination results
can be figured out as mΘB(B1) = 0.453; mΘB(B2) = 0.132;
mΘB(B3) = 0.057; mΘB(B4) = 0.283; mΘB(Θ) = 0.057.

TABLE I
BASIC BELIEF ASSIGNMENTS

B1 B2 B3 B4 Θ
Expert 1 0.3 0.1 0.15 0.3 0.15
Expert 2 0.4 0.2 0.0 0.2 0.2

TABLE II
BASIC BELIEF ASSIGNMENTS

∅ A B C Θ
Expert 1 0.00 0.96 0.04 0.00 0.00
Expert 2 0.00 0.00 0.02 0.98 0.00

According to the Dempster’s combining rule, the identifica-
tion result supports that the target is B1. It seems that the
decision result makes sense.

Another example shows as Table II and according to
the Dempster’s combination rule, the K = 0.9992, the
combination results can be figured out as mΘ(∅) = 0.0,
mΘ(A) = 0.0, mΘ(B) = 1.0, mΘ(C) = 0.0, mΘ(Θ) = 0.0.
According to the Dempster’s combining rule, the two system
offer little belief to C. But the combination and identification
result supports that the target is C. It does not make sense at
all. So it is called counter-intuitive problem for this situation
which is caused by the conflict evidence. To solve the conflict
problem, several alternatives to the combination process have
been proposed [20] which including a simple but effective
combination rule, Yager combination rule (YGR). So some
typical methods will be introduced in the following subsec-
tions.

B. Yager combination rule

Yager’ idea is to assign the conflict mass in the null set
to the base set Θ. That is, the non-null m(∅) is distributed
among all the elements of the FoD rather than just the
elements which happen to be intersections of the combining
masses. Thus, the fused BPA is generated by the Yager’s
Rule (YGR) as:

mY GR
1,2,...,s(X) =

{
m1,2,...,s(X), forX ̸= ∅;
m1,2,...,s(X) +K, forX = Θ

(7)

C. Partial conflict redistribution rule 5

PCR5 is a combination rule which defined in DSmT and
the general formula when s ≥ 2 sources is given as

mPCR5
1,2,...,s(X) = m1,2,...,s(X)+∑

2≤t≤s
1≤r1,...,rt≤s

1≤r1≤r2≤...≤(rt=s)

∑
Xj2 ,...,Xjt∈GΘ\{X}

{j2,...,jt}∈Pt−1({1,...,n})
X∩Xj2∩...∩Xjs=∅

{i1,...,is}∈Ps({1,...,s})

(
∏r1

k1=1 mik1
(X)2)[

∏t
l=2(

∏rl
kl=rl−1+1 mikl

(Xjl))]

(
∏r1

k1=1 mik1
(X)) + [

∏t
l=2(

∏rl
kl=rl−1+1 mikl

(Xjl))]

(8)

where i, j, k, r,s and t in (8) are integers. m1,2,...,s(X)
corresponds to the conjunctive consensus on X between
s sources and where all denominators are different from
zero. If a denominator is zero, that fraction is discarded;
Pk({1, 2, . . . , n}) is the set of all subsets of k elements from
{1, 2, . . . , n} (permutations of n elements taken by k), the
order of elements does not count.
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D. Partial conflict redistribution rule 6

The general formula of PCR6 proposed by Martin and
Osswald is given as

mPCR6
1,2,...,s(X) = m1,2,...,s(X) +

s∑
i=1

mi(X)2

∑
∩s−1

k=1 Yσi(k)∩X≡∅
(Yσi(1)

,...,Yσi(s−1))∈(GΘ)s−1

∏s−1
j=1 mσi(j)(Yσi(j)

)

mi(X) +
∑s−1

j=1 mσi(j)(Yσi(j)
)

(9)
where σi counts from 1 to s avoiding i:{

σi(j) = j if j < i

σi(j) = j + 1 if j ≥ i
(10)

After simplified previous two fusion rules when (s = 2),
one finds that the simplified PCR5 and PCR6 are coincided
as mPCR5/6(·) = mPCR6

1,2 (·) = mPCR5
1,2 (·). in this case, the

combination result is expressed as

mPCR5/6(X) =
∑

X1,X2∈GΘ

X1∩X2=∅

m1(X1)m2(X2)+

∑
Y ∈GΘ\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
]

(11)

IV. A NOVEL COMBINATION METHOD: MIXTURE
COMBINATION METHOD

A. The condition of stable decision between different com-
bination rules

As we all know, the decision of evidence theory is based
on the basic belief assignments obtained by combination
rules, so the decisions vary with different combination rules.
If the decision result do not change with combination rules, it
is called stable decision. Conversely, the decision is unstable.
As the stable decision is essential criteria of combination
rules switch, this section will focus on the decision stability
analysis of different combination rules.

The decision stability can be defined as followed:
If and only if

m~(Bi) > m~(Bj), ∀Bj ∈ ΘB and i ̸= j

and

m}(Bi) > m}(Bj), ∀Bj ∈ ΘB and i ̸= j

are true simultaneously, it is called stable decision, where ~
and } denotes different combination rules, respectively.

If the system is ”two classes” situation, the condition of
stable decision the between different combination rules can
be simplified as

[m~(A)−m~(B)][m}(A)−m}(B)] > 0 (12)

For a defined system, the number of elements is known and
the condition of stable decision is also determined uniquely.
Let’s take a “two classes and two expert” as an example and
show the determination method of stable decision.

The basic probability assignments are shown as Table III.

TABLE III
BASIC BELIEF ASSIGNMENTS

∅ A B Θ
Expert report 1 0 a1 b1 1− a1 − b1
Expert report 2 0 a2 b2 1− a2 − b2

The combination results of Yager’s combination rule are
mY GR(A) = a1 + a2 − a1a2 −K

mY GR(B) = b1 + b2 − b1b2 −K

mY GR(Θ) = (1− a1 − b1)(1− a2 − b2) +K

(13)

where K = a1b2 + a2b1. Eq.(13) can be transferred as

mY GR(A)−mY GR(B) =

(a1 + a2 − a1a2)− (b1 + b2 − b1b2)
(14)

The combination results of PCR5/6 are
mPCR5/6(A) = a1 + a2 − a1a2 +

a2
1b2

a1+b2
+

a2
2b1

a2+b1
−K

mPCR5/6(B) = b1 + b2 − b1b2 +
b21a2

b1+a2
+

b22a1

b2+a1
−K

mPCR5/6(Θ) = (1− a1 − b1)(1− a2 − b2) +K
(15)

And the simplified functions of Eq.(15) are expressed as

[mPCR5/6(A) +K](a1 + b2)(a2 + b1) =

(a1 + b2)(a2 + b1)(a1 + a2 − a1a2)

+ a21b2(a2 + b1) + a22b1(a1 + b2)

(16)

[mPCR5/6(B) +K](a1 + b2)(a2 + b1) =

(a1 + b2)(a2 + b1)(b1 + b2 − b1b2)

+ b21a2(a1 + b2) + b22a1(a2 + b1)

(17)

And Eq.(16) and Eq.(17) can be rewritten as

[mPCR5/6(A)−mPCR5/6(B)](a1 + b2)(a2 + b1) =

(a1 + b2)(a2 + b1)[(1− b1)(1− b2)− (1− a1)(1− a2)]

+ a1b2(a2 + b1)(a1 − b2) + a2b1(a1 + b2)(a2 − b1)
(18)

The condition of stable decision between YGR and PCR5/6
can be expressed as

[mY GR(A)−mY GR(B)][mPCR5/6(A)−mPCR5/6(B)] > 0
(19)

In order to determine the condition of stable decision,
random tests are designed. a1, b1, a2 and b2 are designed as
random numbers which ranged between 0 and 1, respectively
and the test is repeated 500,000 times. The test results contain
4 unrelated variables so the results are projected to a1 − b2,
a2 − b1, a1 − a2, b1 − b2 planes, respectively. The unstable
points projected to each planes are shown as Fig. 1 to Fig.
4.

The dot-forming region denotes unstable decision area. It
can be seen from Fig. 5 to Fig. 8 that the boundary of the
area can be regard as an exponential curve approximately.
MATLAB curve fitting tool is used to obtain the curve which
can enclose the whole unstable region. The curve function
expressions are expressed as

a2 = 0.4e−57.3a1 (20)

b2 = e−10.2b1 (21)

b1 = 0.91e−29.3a2 (22)
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Fig. 1. Unstable points projected to a1 − b2 planes
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Fig. 2. Unstable points projected to a2 − b1 planes
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Fig. 3. Unstable points projected to a1 − a2 planes
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Fig. 4. Unstable points projected to b1 − b2 planes
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Fig. 5. Unstable region projected to a1 − b2 planes
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Fig. 6. Unstable region projected to a2 − b1 planes
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Fig. 7. Unstable region projected to a1 − a2 planes
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Fig. 8. Unstable region projected to b1 − b2 planes
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TABLE IV
ALGORITHM OF MCR

Algorithm of MCR
Inputs: m1(A),m1(B),m2(A),m2(B)

for l = 1 : L
if (Decision is stable)

mMCR(A)← mY GR(A);
mMCR(B)← mY GR(B);

else
mMCR(A)← mPCR5/6(A);
mMCR(B)← mPCR5/6(B);

end
end

Return mMCR(A);
Return mMCR(B);

b2 = 0.89e−30.3a1 (23)

At last the stable condition between YGR and PCR5/6 in
“two class, two experts” case is obtained and expressed as

a2 ≥ 0.4e−57.3a1

b2 ≥ e−10.2b1

b1 ≥ 0.91e−29.3a2

b2 ≥ 0.89e−30.3a1

0 ≤ a1, a2, b1, b2 ≤ 1

(24)

For “arbitrary classes and arbitrary experts” case, the
determination method of stable decision condition is the
same as “two class, two experts” case. As a result, it is not
needed to repeat here.

B. Mixture combination rule

As we all know that PCR5/6 suffers from the large
computation load and it is difficult to be used in real
multi-target tracking system especially for large amount and
fast-moving targets. In order to overcome the drawback of
PCR5/6, a mixture combination rule (MCR) is proposed
in this paper. The kernel of MCR can be described as
that the combination method switches between YGR and
PCR5/6. As a result, MCR combines the advantages of YGR
and PCR5/6, but the computation load is not enhanced. It
makes its judgement on the decision stability. If the decision
satisfies the condition of stability, the combination rule will
be switched to YGR. Otherwise the combination rule will be
PCR5/6. The algorithm of MCR is described as Table IV.

C. Case study

A “two experts and two class” example is used to illustrate
the MCR algorithm. The basic probability assignments are
shown as Table III. There is no need to calculate the results
of both combination methods in MCR, it only need to make
a judgement of the BPA. If the BPA a1, b1, a2 and b2
satisfy Eq.(24), the evidence combination rule will be YGR,
otherwise the evidence combination rule will be switched to
PCR5/6.

In order to verify the effectiveness which reducing the
computation load of MCR, the Monte Carlo method is used.
We sample 100,000 random numbers which are between 0
and 1 as the values of PBA. These values are combined with
YGR, PCR5/6 and MCR, respectively. These tests repeat 20
times and the results are shown in Table V. The average run
time of PCR5/6, YGR and MCR are 0.2667s, 0.1720s and

TABLE V
RUNNING TIME COMPARISON OF THESE THREE ALGORITHMS

Test Run Time Test Run Time
PCR5/6 YGR MCR PCR5/6 YGR MCR

1 0.0233 0.0173 0.0170 11 0.2798 0.1818 0.2065
2 0.0479 0.0352 0.0378 12 0.3060 0.1974 0.2243
3 0.0734 0.0530 0.0580 13 0.3325 0.2126 0.2421
4 0.0978 0.0714 0.0768 14 0.3573 0.2272 0.2605
5 0.1218 0.0872 0.0947 15 0.3837 0.2420 0.2797
6 0.1483 0.1022 0.1126 16 0.4090 0.2579 0.2978
7 0.1739 0.1176 0.1314 17 0.4341 0.2746 0.3161
8 0.1981 0.1336 0.1511 18 0.4596 0.2892 0.3355
9 0.2290 0.1493 0.1706 19 0.4881 0.3046 0.3526
10 0.2554 0.1664 0.1877 20 0.5139 0.3199 0.3714

0.1962s, respectively. The performance of MCR is same as
PCR5/6 because of the design idea of MCR. Compared with
PCR5/6, the running time of MCR is reduced by 26%.

V. CONCLUSIONS

The evidence theory and evidence combination rules are
introduced in this paper. After the comparison of YGR and
PCR5/6, it is known that PCR5/6 has a better performance in
combination than YGR, but the computation load of PCR5/6
is larger than YGR. The stability of decision between YGR
and PCR5/6 is also studied in this paper. At last, a novel
combination rule, mixture combination rule (MCR) which
combines the virtues of YGR and PCR5/6 is proposed in
this paper. The kernel of MCR can be described as that the
combination method switches between YGR and PCR5/6.
The Monte Carlo analysis result show that the computation
load of MCR is largely reduced than PCR5/6.
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