

Abstract—In this paper, a novel system reliability assessment

model with two dependent performance characteristics (PCs) is
proposed via the marginal distribution functions and copula
theory. Firstly, the best fitted marginal distribution function is
obtained by using the approximation method and the Anderson
Darling test statistic. Secondly, the dependent of the two PCs is
described by different copula functions, and the unknown
parameters of the proposed model are obtained by using an
inference for margins method. Finally, a numerical example
about an actual train wheels wear degradation data is given to
demonstrate the usefulness and validity of the proposed model
and method. Numerical results show that ignoring the
dependence between two PCs may result in different reliability
conclusion.
Index Terms—Bivariate degradation model, Copula function,

the inference for margins method

I. INTRODUCTION
ONSIDERING that modern products have long life and
high reliability, it is difficult to assess the reliability of

these products by using life test or accelerated life test
method, degradation data can provide useful reliability
information to assess the reliability of those products. In the
last decades, degradation data has played a more important
role in reliability assessment than ever before.

There are some important references about the degradation
reliability assessment. Nelson[1] has reviewed two methods
for modeling the degradation data: the general degradation
path approach and the stochastic process approach, and the
degradation path method has been widely used for
degradation modeling, such as Su et al.[2], Gebraeel et al.[3-4],
Lu and Meeker[5], Wu and Shao[6], and so on. Another method
is the stochastic process method, such as Markov chain[7],
Gamma process[8], and Wiener process[9].

Most of the previous research about the reliability
evaluation just thinks about one performance characteristic
(PC). In practice, modern products usually have multiple PCs
due to complex structure, which means that multiple
degradation mechanisms may be involved. In such situations,
if PCs are independent with each other, it is easy to deal with
the issue of the reliability assessment. When the two PCs are
dependent, it creates a challenging problem to accurately
analyze the system reliability.
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There is little literature dealing with the system reliability
of bivariate or multivariate degradation data. Related work
can be found in Ref. [10-16]. However, those multiple PCs
usually are assumed to be independent with each other, or to
be dependent with a multivariate normal distribution. From a
practical point of view, these assumptions may be not match
the engineering practice.

In this paper, we assume that a system has two PCs, and
each PC is treated as a linear degradation model. By
extrapolating the degradation path to a certain critical value,
the marginal distributions of the pseudo failure lifetime are
obtained. Moreover, we assume that the dependency of PCs
is described by different copula functions, such as Gumbel
copula、Clayton copula and Frank copula. Via the copula
functions and the marginal distributions, the system
reliability assessment model is proposed, and the inference
for margins method is used to estimate the unknown
parameters. As an illustration of the proposed model, a
numerical example about an actual train wheels wear
degradation data is presented.

The rest of the paper is organized as follows. In Section 2,
copula function is described. Then, the system reliability
model via the marginal distributions and copula functions is
introduced in Section 3. In Section 4, the estimation of
unknown parameter based on the inference for margins
method is obtained. A numerical example is given in Section
5. Finally, some conclusions are made in Section 6.

II.COPULA FUNCTION BRIEF INTRODUCTION

Copula is a function that couples the joint distribution
function and their marginal distribution functions together,
which is a powerful tool to model the dependence of
multivariate (see in Nelson[18]).
Definition [18]A two dimensional copula function, ( , )C   , has
the following properties:
(1) The domain of definition is [0,1]2.
(2) Function, ( , )C   , has zero-grounded and it is two

increasing.
(3) Any variables u, v∈[0,1], then C(u,1)= u and C(1,v)= v.
Theorem[18] Let X and Y be random variables with
continuous distribution F(x) and G(y), respectively, and H(x,
y) be the two dimensional cumulative distribution function.
Then, there exists a two dimensional copula ( , )C   such that
for all x, y ( , )   ,

   , ( ), ( )H x y C F x G y (1)
Archimedean copulas have a wide range of applications

because they have many nice properties, such as they can be
constructed easily, they can be easily extended from
2-dimension to m-dimension when satisfying some

A Copula-based Degradation Modeling and
Reliability Assessment

Chunping Li, Huibing Hao

C

Engineering Letters, 24:3, EL_24_3_09

(Advance online publication: 27 August 2016)

 
______________________________________________________________________________________ 



conditions, and so on. In this paper, the Gumbel copula,
Clayton copula and Frank copula are used to depict the
dependence among multiple PCs, where those three copulas
are belong to Archimedean copula family.

The definition of the Gumbel Copula function is

   
1 1

( , ; ) exp log logC u v u v


 
            

(2)

where θ is the Gumbel copula parameter and (0,1]  . And
the relationship between Kendall’s τ and the Gumbel copula
parameter θ is given by

1   (3)
The definition of the Clayton Copula function is

1( , ; ) max(( 1) ,0)C u v u v        (4)
where  is the Clayton copula parameter and [ 1, ) \{0}    .
And the relationship between Kendall’s τ and the Clayton
copula parameter θ is given by

2






(5)

The definition of the Frank Copula function is

1 [exp( ) 1][exp( ) 1]( , ) ln 1
exp( ) 1
u vC u v  

 
    

   
  

(6)

where α is the Frank copula parameter and ( ,0) (0, )   .
And the relationship between Kendall’s τ and the Frank
copula parameter α is given by

1( ) 11 4 D 





  (7)

where  1 0
( ) (1 ) ( 1)tD t e dt


   is a Debye function.

III. SYSTEM RELIABILITY MODEL VIA THE MARGINAL
DISTRIBUTIONS AND COPULA FUNCTION

A.Marginal reliability model based on the
approximation approach

The approximation approach comprises two steps. In the
first step, when the unit’s degradation path reaches the failure
threshold, the pseudo failure time can be predicted. In the
second step, the failure lifetime distribution can be obtained
by fitting these pseudo lifetime data.

Suppose that a product has two PCs, and each PC is treated
as a linear degradation path model ( ) ( ; , )k kX t D t     ,

2~ (0, )N  , 1,2k  . Let ξk be the threshold value of the
kth PC, then the formally approximation method is consists
of the following steps:
a) Based on the kth degradation path ( ) ( ; , )k kX t D t     ,

by using different estimation methods to obtain the

estimate of parameter k and k , say as ˆk and ˆ
k .

b) By solving the equation ˆˆ( ; , )k k k kD t    , the pseudo
failure time for each unit in the kth PC can be obtained.

c) Some distributions are used to fit these pseudo lifetime
data, such as Exponential distribution, Normal
distribution and Weibull distribution. The best fitted

distribution ( )kF t can be determined by using the
Anderson-Darling test statistic.

d) By using the fitted distribution ( )kF t , the reliability

function ( )kR t of the kth PC can be obtained.

B.Degradation model based on bivariate degradation
data

Copula function is a powerful tool to model the
dependence structure among multiple PCs. One advantage of
copula function is that the joint distribution function can be
modeled directly through the univariate marginal distribution
function.

Suppose that Fk (t) =1-Rk (t) is the distribution function of
lifetime Tk for each PC, and let 1 2( , )H t t be the joint copula
of the marginal distribution function. According to the
Theorem, there exists a unique copula C such that

 1 2 1 2 1 2( , ) ( , ) ( ), ( );P T t T t H t t C F t F t    

where θ is the parameter vector of the copula function.
It is noticed that the product is considered to be failed if

any one PC reaches its corresponding failure threshold.
Therefore, the product still works when each PC keeps below
its failure thresholds. Given the failure time Tk of the kth PC,
suppose that the lifetime of the system is T, and T = min(T1,
T2). Then, the product reliability can be written as follows

1 2( ) ( ) ( , )R t P T t P T t T t    

1 2 1 21 ( ) ( ) ( , )P T t P T t P T t T t       

 1 2 1 21 ( ) ( ) ( ), ( );F t F t C F t F t    

 1 2 1 2( ) ( ) 1 ( ), ( );R t R t C F t F t     (8)
If the product has two PCs linked by Gumbel copula

function in Equation (2), then, we can obtain the system
reliability function as

1 2( ) ( ) ( ) 1R t R t R t  

   
1 1

1 2exp log ( ) log ( )F t F t


 
            

(9)

If the two degradation failure mechanisms are assumed to
be independent, the product reliability in Equation (4) can be
rewritten as

1 2( ) Pr( , )R t T t T t      1 2Pr PrT t T t   

1 2(1 ( )) (1 ( ))F t F t    1 2( ) ( )R t R t  (10)

IV. STATISTICAL INFERENTIAL METHODS FOR UNKNOWN
PARAMETERS

The inference for margins (IFM) approach is effect
parameter estimation method for copula function. The IFM
approach first estimates the marginal distribution parameters
separately, and then estimates the parameters of the copula
function via the estimated marginal parameters. More details
information can be found in Cherubini et al. (2004).

Let  1 2 1
, , , T

t t Kt t
X x x x


  be the data matrix, drawn from

the marginal distribution function ( ; )i i iF x  with copula C.
The density function for the joint distribution can be obtained
as

     1 2 1 1 1
1

, , , ; ( ; ), , ( ; ); ;
K

K K K K c i i i
i

f x x x c F x F x f x    


   (11)
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where
 

 
1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 2 2 2

( ; ), ( ; ), , ( ; );

( ; ), ( ; ), , ( ; );
( ; ) ( ; ) ( ; )

K K K c

K
K K K c

K K K

c F x F x F x

C F x F x F x
F x F x F x

   

   
  




  






(12)

Therefore, the log-likelihood function is in the form of

 *
1 1 1 2 2 2

1
( ) ln ( ; ), ( ; ), , ( ; );

T

K K K c
t

l c F x F x F x    


 

1 1
ln ( ; )

T K

i it i
t i

f x 
 

 (13)

where λ* is composed of all the parameters, and λ*=(λ1, λ2,…,
λK, λc).

The IFM method comprises two stages. The first stage is to
calculate the parameters in marginal functions; and in the
second stage, the maximum likelihood method is used to
estimate the parameters of the joint copula function.

Stage 1

1
1 1 1 1

1

ˆ argmax ln ( ; )
T

t
t

f x


 


 

2
2 2 2 2

1

ˆ argmax ln ( ; )
T

t
t

f x


 


  (14)



1

ˆ argmax ln ( ; )
K

T

K K Kt K
t

f x


 


 
Stage 2

 1 1 1
1

ˆ ˆ ˆargmax ln ( ; ), , ( ; );
c

T

c t K Kt K c
t

c F x F x


   


   (15)

It is noticed that, by using the IFM method, it is easy to
estimate the unknown parameters in the copula function,
especially for the one-parameter copula function.

V.NUMERICAL EXAMPLE

Train wheel failures will lead the catastrophic events and
tremendous economic loss. To avoid catastrophic events,
many railway companies are periodically monitoring the
wear degradation of wheels for the purpose of preventive
maintenance scheduling, and the wear degradation database
is store for the maintenance actions performed on their trains.
In this paper, the degradation data is collected from a study
by a Brazilian railway company.

The actual train wheels wear degradation data are taken
from Freitas et al. [17]. The diameter of the wheel is an
important performance for train wheel. Usually when the
diameter exceeds to a predefined threshold level, the train
wheel is considered to be failed. The diameter of a new train
wheel is 966 mm. When the diameter reaches 889 mm, the
train wheel is replaced by a new one. In the original data, 14
samples are tested for train wheels wear degradation data and
the measurements are taken at the same measurement times.
The measured frequency of its mileage is 50,000km. For
demonstrating the bivariate degradation model, we choose 14
samples and the data will be treated as if half of it is the first
PC (left wheel) and the other half represents the second PC
(right wheel). The used data are the data measured only until
600,000km, or until the wheel fails, whichever comes first.

Fig.1 and Fig.2 show the cumulative degradation of the train
wheels. Instead of plotting the diameters itself, the curves are
constructed by using the degradation observed at time t (i.e.,
966-[observed diameter measure at time t]). Failure of the
train wheel is then defined to occur when the degradation
reaches the failure threshold level 77mm.

0 1 2 3 4 5 6

x 10
5

0

5

10

15

20

25

30

35

40

45

50

left wheel5

left wheel6

left wheel4

left wheel1

left wheel2

left wheel3

left wheel7

distance covered (km)

de
gr

ad
at

io
n 

m
ea

su
re

m
en

t

 

 
left wheel1
left wheel2
left wheel3
left wheel4
left wheel5
left wheel6
left wheel7

Fig.1. The degradation data of left wheel
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Fig.2. The degradation data of right wheel

A.Marginal distribution via the approximation method
From the Fig.1 and Fig.2, we choose linear degradation

path model to describe the degradation path of train wheel
wear data. Suppose that train wheel system has two PCs, and
each PC is treated as a linear degradation path model.
Let ( )k ijX t be the degradation observed at time tij of the unit i

in the kth PC, then the degradation path model can be given
as

( ) ( ; , )k ij k ij k k k k ijX t D t t          , 1,2k  . (16)

By using the least squares estimator method,
parameters ( , )k k  of the kth degradation path model can be
estimated. By extrapolating the model of each unit to the
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critical failure threshold, the pseudo failure times the kth PC
can be obtained as Table I and Table II, where the Table I

displays the calculation result of the PC1 (left wheel) and
Table II displays the result of the PC2 (right wheel).

The next step of the approximation method is to obtain the
probability distribution of the pseudo failure times. In this
paper, three type distribution functions (Exponential, Normal
and Weibull) are selected to fit the pseudo failure times, and
the fitting results are justified by the Anderson-Darling (A-D)
test statistic. The A-D test statistic is quantitatively defined as
follows[20]:

2[ ( ) ( )] ( )
( )[1 ( )]
n

n
G x G xA n dG x
G x G x








 (17)

where n is the number of sample, Gn(x) is the empirical
distribution function of sample, and G(x) is the hypothesized
continuous distribution function. The judgment standard of
this method is to compare the A-D value of proposed fitting
models and the lowest A-D value means the best distribution
fitting. According to the A-D value shown in Table III and
Table IV, normal distribution with lowest A-D value presents
the best fitting performance among those distributions, and
by using the maximum likelihood method, the parameter

estimation results of the corresponding distribution are
shown in Table III and Table IV.

B.Estimation of unknown parameters
From Table III and Table IV, we know that the marginal

distributions of PCs follow Normal distribution with local
parameter i and scale parameter i , and the cumulative
distribution function as follow

1
1

1

1532470( )
537472

t tF t 


         
  

,

2
2

2

626763( )
252775

t tF t 


         
  

From the Equation (9), we know that the probability
density function of Gumbel Copula C can be obtained as

 

   

1 1
1 2

1 2 21 1

1 2 1 2

log ( ) log ( )
( , ; )

( ) ( ) log ( ) log ( )

F t F t
c u u

F t F t F t F t





 









      

   
1 1

1 2exp log ( ) log ( )F t F t


 
         

   
1 1

1 2
1log ( ) log ( ) 1F t F t



 


             
Then, the log-likelihood function can be given as

2

1 1
1 111,2, , 1,2, ,

1log ( , ; ) 1 log log ( ) log ( )1 2
w w

i ij j
j jij w j w

L F t F tj jt t 
   

              
 

 

12

2 2
1 1

1log ( ) log ( log ( )) 1
w

j i ij
j i

F t F t




 

         
  

 
2112 2

1 1 1 1
log ( ) log ( log ( ))

w w

i ij i ij
j i j i

F t F t
 





   

              
   

By using the maximum likelihood method, the estimator of
unknown parameter θ in the Gumbel copula function can be
obtained.

Similarly, the unknown parameter γ in the Clayton copula
and the unknown parameter α in the Frank copula can be also
obtained, and the estimated results are presented in Table V.

C. Train wheels system reliability assessment
Based on the estimated results of the unknown parameters,

the reliability curves of PC1 (left wheel) and PC2 (right
wheel) are presented in Fig.3. It can be concluded from the
Fig.3 that there is larger difference between the reliability of
left wheel and the right wheel.

Furthermore, the system reliability curves under the
independent and dependent case (with Gumbel copula、
Clayton copula and Frank copula assumption) are plotted in
Fig.4. From the Fig.4, we can obtain the following two
conclusions. Firstly, when the dependent of two PCs is
described by three different copula functions, the system has

TABLE I
THE PSEUDO FAILURE TIME OF LEFT WHEELS

wheel α1 β1 Pseudo failure time (km)
1 3.1754E-5 0.7522 2.4011e+006
2 3.8408E-5 0.7737 1.9845e+006
3 5.5429E-5 0.7161 1.3762e+006
4 7.4905E-5 0.7322 1.0181e+006
5 7.8219E-5 -1.8736 1.0083e+006
6 4.2659E-5 0.7367 1.7877e+006
7 6.6296E-5 0.6882 1.1511e+006

TABLE II
THE PSEUDO FAILURE TIME OF RIGHT WHEELS

wheel α2 β2 Pseudo failure time (km)
1 1.1328E-4 0.7288 6.7325e+5
2 0.7777E-4 0.6923 9.8111e+5
3 1.0616E-4 0.7051 7.1867e+5
4 2.1381E-4 0.6186 3.5723e+5
5 2.7638E-4 0.5562 2.7658e+5
6 0.8756E-4 3.5934 8.3835e+5
7 1.4073E-4 0.7034 5.4213e+5

TABLE IV
THE PARAMETER ESTIMATION RESULTS RIGHT WHEELS

Model Exponential Normal Weibull
Parameters Scale:626763 Local:626763

Scale:252775
Shape:3.02439
Scale:704139

p-value 0.048 0.901 0.254
A-D value 1.236 0.164 0.259

TABLE III
THE PARAMETER ESTIMATION RESULTS OF LEFT WHEELS

Model Exponential Normal Weibull
Parameters Scale:1532470 Local:153247

Scale:537472
Shape:3.35161
Scale:1711620

p-value 0.020 0.403 0.250
A-D value 1.552 0.330 0.348

TABLE V
THE PARAMETER ESTIMATION OF COPULAS

Copula Unknown parameter
Gumbel Copula ˆ 0.1371 
Clayton Copula ˆ 1.3354 
Frank Copula ˆ 243.75 
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same reliability curves. This means that the wheel system is
not sensitive to the choice of different copula functions.
Secondly, there are some differences between the dependent
and independent cases. That is to say that ignoring the
dependence between left wheel and right wheel may result in
different reliability conclusion. Therefore, it is necessary to
analyze the possibility of the failure mechanisms dependency
and perform the dependent reliability analysis.
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Fig.3. Reliability curves of PC1 (left wheel) and PC2 (right wheel)

0 2 4 6 8 10 12

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gumbel

Clayton

Frank

Independent

distance covered (km)

Re
lia

bil
ity

 

 
Independent
Frank copula
Clayton copula
Gumbel copula

Fig.4. Reliability curves of system based on dependent and independent cases

VI. CONCLUSION

In this paper, we establish a reliability assessment model
for the train wheel system with two PCs, and each PC is
treated as a linear degradation model. We suppose that the
two PCs are dependent and the dependency is described by
different copula functions. The inference for margins method
is used to obtain the estimator of unknown parameters. From
the numerical example of Section 5, we know that ignoring
the dependence between PCs may result in different
reliability conclusion.

In this work, we have only considered the bivariate
Normal distributions, but the results can be extended to other
bivariate distributions. For example, one PC could be
modeled by a Normal distribution, while the other could be
described by a Weibull distribution. Moreover, from the
practice point of view, how to make effective maintenance

decisions for the products with two PCs based on the
proposed estimation results is necessary to be studied in the
future.
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