
 

 

Abstract—As a semantic representation model, ontology has 

penetrated into all areas of natural science and social science. 

The core issue of ontology applications is similarity computing 

between ontology concepts. In this article, we report a sparse 

vector learning algorithm for ontology similarity measure and 

ontology mapping in terms of sub-gradient calculating and 

iterative computation. The main procedure of our iterative 

computation is based on the tricks of fuse and divide. The 

simulation experimental results show that the new proposed 

algorithm has high efficiency and accuracy in ontology 

similarity measure and ontology mapping in biology and 

physical education science. 

 
Index Terms—Ontology, similarity measure, ontology 

mapping, sparse vector, fuse and divide 

 

I. INTRODUCTION 

HE concept “ontology” was originally used in 

philosophy which represents the essence of the matter 

and the necessary connection between things. Later, as a 

knowledge representation and conceptual shared model, 

ontology was brought into computer science where it turned 

out to be useful in image retrieval, knowledge management 

and information retrieval search extension. What’s more, as 

an effective concept semantic model, ontology also finds its 

place in the other disciplines like social science, medical 

science, biology science, pharmacology science and 

geography science (for instance, see Raad and Evermann [1], 

Ali et al., [2], Gao and Shi [3], Gao et al., [4], and Gopal and 

Gowri Ganesh [5]). 

In fact, the ontology model is a graph G=(V,E), each vertex 

v in an ontology graph G stands for a concept and each edge 

e=vivj on an ontology graph G stands for a relationship 

between concepts vi and vj. The ontology similarity measure 

aims to find a similarity function Sim: V×V    {0} 

through which each pair of vertices is mapped to a real 

number. The ontology mapping aims to bridge the link 

between two or more ontologies. Let G1 and G2 be two 

ontology graphs corresponding to ontology O1 and O2 

respectively. For each vG1, determine that a set SvV(G2) 
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where the concepts corresponding to vertices in Sv is 

semantically close to the concept corresponding to v. There is 

one method to get such mapping, which is, for each vG1, 

computing the similarity S(v,vj) where vjV(G2) and choose 

a parameter 0<M<1. Then Sv is a collection such that the 

element in Sv meets S(v,vj)  M. In this way, the key of 

ontology mapping is to get a similarity function S and select a 

suitable parameter M.  

In the past few years, ontology similarity-based 

technologies were used in various applications. Amini et al., 

[6] reported a technology for the integration of multiple 

domain taxonomies to build reference ontology on which the 

scholars’ background knowledge could be profiled. Sun et al., 

[7] studied uncertain features in the generation and 

application of metadata by virtue of ontology similarity 

measuring and the technologies of probability statistic. 

Zhong et al., [8] raised a hybrid assessment algorithm based 

on ACT-R cognitive learning theory and ontology 

knowledge map. Mahfoudh et al., [9] proposed a formal 

approach for evolving ontologies using Typed Graph 

Grammars. Gao et al., [10] presented an ontology sparse 

vector algorithm for ontology applications by virtue of the 

stopping condition judgment and dual problem solution. 

Concerning ontology similarity measure and ontology 

mapping, several effective learning tricks were introduced 

and proved to be in high efficiency. Gao et al., [11] raised 

new ontology mapping algorithm by means of harmonic 

analysis and diffusion regularization on hypergraph. Gao and 

Shi [12] proposed a new ontology similarity computation 

technology, which helps to make the operational cost 

considered in the real implement. Gao and Xu [13] presented 

the ontology similarity measuring and ontology mapping 

algorithms on basis of minimum error entropy criterion. Wu 

et al., [14] reported a bilinear model for ontology mapping.  

Furthermore, several papers contributed to the theoretical 

analysis of ontology learning algorithm. Gao et al., [15] 

studied the strong and weak stability for k-partite ranking 

based ontology algorithm. Gao and Xu [16] presented the 

uniform stability analysis of ontology learning computation. 

Considering the gradient learning algorithm for ontology 

computing, Gao and Zhu [17] found the way to get some 

generation bound. Gao et al., [18] proposed the piecewise 

function approximation and vertex partitioning schemes for 

multi-dividing ontology algorithm in AUC criterion setting. 

In this paper, we present a new ontology sparse vector 

learning algorithm for ontology similarity computation and 

ontology mapping by virtue of fuse and divide technologies. 

By means of the sparse vector, the ontology graph is mapped 

into a real line and vertices are mapped into real numbers. 

Then the similarity between vertices is measured by the 

difference between their corresponding real numbers. The 
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rest of the paper is arranged as follows: we present the 

notations and setting in Section 2; the ontology optimization 

algorithm and iterative strategies are raised in Section 3, and 

the technologies to tackle the details in algorithm are 

included in this section; at last, the experiments on biology, 

physical education, plant science and chemical index data are 

designed to show the efficiency of the algorithm. 

II. SETTING 

Let V be an instance space. For each vertex in ontology 

graph, a p dimension vector expresses information including 

its name, instance, attribute and structure, and semantic 

information of the concept which corresponds to the vertex 

and that is contained in name and attributes components of its 

vector. Let v= 1{ , , }pv v  be a vector that corresponds to a 

vertex v. To promote the representation, we try confusing the 

notations and using v to denote both the ontology vertex and 

its corresponding vector. The ontology learning algorithms 

are set to get an optimal ontology (score) function f: V , 

and the similarity between two vertices is judged by the 

difference between two corresponding real numbers. The 

core of this algorithm is dimensionality reduction, i.e., 

choosing one dimension vector to express p dimension vector. 

In specific, an ontology function f is a dimensionality 

reduction function f: 
p  . 

Since all the information in the ontology graph (including 

the vertex concept, attribute and the neighborhood structure) 

is contained in the corresponding vector, it’s always with 

high dimension. For instance, the information of all genes 

may be contained in only a vector in biological ontology. In 

addition, ontology structure becomes very complicated 

because of the ontology graph with large number of vertices, 

and the GIS (Geographic Information System) ontology may 

be taken as a typical example. A result may be gained from 

these factors, that is, the similarity calculation of ontology 

application is very large. However, in practice, it is small part 

of the vector components that determine the similarity 

between the vertices. For example, in biological ontology, a 

genetic disease often results from a small number of diseased 

genes, having nothing with most other genes. Moreover, 

proofs could be found in geographic information system 

ontology as well. If an accident happens and causes casualties, 

what we need to do is find the nearest hospital, having 

nothing with the neighboring schools and shops. In other 

words, we just need to find neighborhood information that 

meet our specific requirements on the ontology graph. 

Therefore, sparse ontology algorithm researches have 

attracted great academic and industrial interests.  

In the practice implement, one sparse ontology function is 

expressed by 

                          ( )f v =
1

p

i i

i

v  


 .                              (1) 

Here β = 1( , , )p   is a sparse vector and   is a noise 

term. The sparse vector β  is to shrink irrelevant component 

to zero. To determine the ontology function f, we should 

learn the sparse vector β  first. 

In our paper, we consider the general versions for learning 

β . Let 1{ , }n

i i iv y   be a sample set with n vertex, V
n p

 

be the matrix of n samples such that each sample vertex lies 

in a p dimension space, and y= 1( , , )ny y 
n

 be the 

vector of outputs of the these n sample vertex. Hence, the 

regression function (1) can be expressed as the linear model: 

y= Vβ ,                                      (2) 

where   is the n dimension vector for noise distributed as 
2(0, )n nN I  . 

The ontology regression obtains an estimate of the sparse 

vector by solving the following optimization problem: 

1
min ( )

p
l 




β
β β ,                                 (3) 

where ( )l β =
2

2

1

2
y Vβ =

T1
( ) ( )

2
 y Vβ y Vβ  is the 

loss term, 
1

β =
1

p

ii


  is the 1l -norm balance term that 

measures the sparseness of vector β , and  >0 is the 

balance parameter which controls the sparsity level. On the 

selection of the balance parameter  , readers can refer to 

Mancinelli et al., [19], Zhu et al., [20], Mukhopadhyay and  

Bhattacharya [21], Ishibuchi and Nojima [22], Zhang et al., 

[23] and Varmuza et al., [24] for more details about the 

method of cross-validation. In our article, cross-validation is 

not considered for dealing with parameters, and the idea of 

fuse and divide will be employed in next section.  

It restricts the ontology applicability to complex high 

dimensional situation in many applied fields if we don’t limit 

any ontology structure among the input vertex (variables). 

More structured ontology restrictions on the input vertices 

such as pairwise similarities should be utilized by using a 

more complicated ontology sparsity penalty that brings 

ontology sparsity patterns among related vertices. In this 

paper, we use ( ) β  to denote the general structured 

sparsity-inducing ontology penalty term, and the ontology 

optimization problem (3) can be extended as: 

1
min ( ) ( ) ( )

p
R l 


  

β
β β β β .                  (4) 

In this paper, we only consider ( ) β  =

1

1

1

p

i i

i








 β β  

and ( )R β  in (4) also denoted by , ( )R  β . 

III. ALGORITHM DESCRIPTION 

A. Notations and Basic Line of Algorithm 

   In this section, we present the main algorithm in our 

paper. The implement of our ontology algorithm is based on 

iterative computation. Note that there are two main 

parameters   and   in computation model (4). Hence, we 

should consider the treatment of combination ( , )  . Our 

idea is progressive: at the beginning, we set  =0, and then 

increase  . We say coefficients are being fused if 

neighboring coefficients are forced to be equal to each other 
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in this increasing process. Let iF  (i=1,…, ( )Fn  ) be the 

fused collections of coefficients at   where ( )Fn   is the 

number of such collections. Assume that 

iF ={ | }i ik l k u   for ensuring these collections to be 

valid. Use ( )
iF   for any ( )k   with k iF  and restrict 

the dependency of iF  onto  . Furthermore, we associate 

these collections with coefficients: 
iF  0 if iF  are active 

at present and otherwise 
iF = 0. For this purpose, the 

assumption of initial fused collections should be slightly 

modified. Set ks = sign( )kβ  if kβ  0 and ks  [−1, 1] 

otherwise. And, let 
k lv vt  = sign( )k lβ β  if kβ  lβ  and 

k lv vt   [−1, 1] if kβ = lβ . Notice that the k-th sub-gradient 

for , ( )R  β  can be stated as 

, ( )

k

R 







β
=

T T

:

( ) ( )
k l

l k l

k k k v v

v v v E

s t 


    V y V Vβ . 

If kβ = lβ  then the variables are considered fused, and 

unfused if kβ  lβ . Under this setting, all fused variables in 

collection are either active or not: active if kβ  0, and 

unactive if kβ =0. Hence, we should activate a whole 

collection if we want to activate coefficients. In this way, ks  

is used to instead of kβ  for keeping track of collections of 

inactive variables.  

   Specifically, let ( )Fp   be the number of fused variable 

collections for parameter   (assume   is fixed). For the 

collections iF  (i=1,…, ( )Fn  ) to be valid, we suppose that 

( )

1
Fn

i iF


 = {1, , }n ; i jF F =   established for i  j; 

( )k β = ( )l β  and ( )ks  = ( )ls   if k, l  iF ; 

( )k β  ( )l β  or  ( )ks   ( )ls   for all parameters in 

an interval ( , )    with certain positive number   if 

k iF ,l jF , i j and iF  and jF  have a connecting edge; 

kv  and lv are connected in ontology graph G through a path 

with vertices in iF  if k, l iF . 

For parameter 
0  (assume that   is fixed), the active 

fused collections 
0( )A   and inactive fused collections 

0( )N   are defined by 

0( )A  =
0 0{ ( ) 0 for ( , )}

iFi          

and 
0( )N  =

0 0{1, , ( )} ( )Fp A  . 

Here, a collection is defined as active at 
0  if ( ) 0

iF    

for  >
0  instead of if 

0( ) 0
iF   . We will show how 

kβ , ks  and 
k lv vt change with  in the following contents. 

The line of steps for the derivation of the algorithm list as 

follows. First, we will combine the conditions of fused and 

active collections into the , ( )R  β  and then determine the 

derivative of ( )
iF   regarding to  . Second, we present 

how ks  and 
k lv vt change with   and apply it to explain if 

collections of variables are active or inactive and have to be 

fused or divided. Then, we manifest that the solution is 

piecewise linear with respect to  . 

B. Sub-gradient Computation for the Algorithm 

We state a predictor matrix that combines the information 

in view of active collections and collections of fused 

variables. For i = 1,…, ( )Fp  , using iF , the elements in 

matrix 
F

V 
( )Fn p 

 is denoted by 
F

iv =

i

k

k F

v


 . Thus, 

we combine the active collections into
,F A

V 
( )n A 

 by 

virtue of dropping all columns in 
F

V that don’t correspond 

to active collections. Similarly, k  iF  with i ( )A  , we 

refer to the columns of V corresponding to coefficients in 

active collections in terms of 
A

V . Let 
F  be a vector 

satisfies 
F

i =
iF . Then, the constrained ontology model 

combining active and fused collections is denoted by 

, , , ( )F AR   β  

=
T

( )

1
( ) ( )

2

F F F F F

i i

i A

F


 


   y V β y V β  

{( , ) : , } F F

i j i j

i j

k l k F l F  


    .                 (5) 

If the active and fused collections are correct, then 

minimize of , , , ( )F AR   β  is equal to the minimize , ( )R  β . 

Assume 
iFs is a simple version for ks with k iF  like 

iF . 

The sub-gradient for this restricted ontology model with 

respect to   can be expressed as 

, , , ( )F A

F

i

R  







β
=

, ,

i

F T F T F F

i i i FF s   V y V V  

( )

{( , ) : , } sign( )
i ji j F F

j A

k l k F l F


  


    =0. 

Let a and b be vectors defined by 

ia =
ii FF s ,  

and  

ib = {( , ) : , } sign( )
i ji j F F

i j

k l k F l F  


   . 

Then the above sub-gradient can be re-written as 
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, , ( )F A

F

R 







β
=

, ,F T F T F F

i i      V y V V a b =0. 

For i ( )A  , we deduce that ( )F

is   = ( )
iFs   = 1 with 

respect to   and for i   ( )N   we infer ( )F

i   

= ( )
iF  = 0. Therefore, we obtain 

,
, T ,( )

F A
F A F A A







V V b =0 and 

,
, T ,( )

F A N
F N F A N


 

 
 

 

a
V V b =0. 

Furthermore, these can be solved by 
,F A






=

, T , 1(( ) )F A F A A V V b                      (6) 

and 
N







a
=

,
, T ,1

(( ) )
F A

F N F A N

 


 


V V b .         (7)       

from which we yield 
iFs






=

1
N

i

i

a

F 




. Therefore, we have 

calculated the derivative of 
F  and 

Fs  by virtue of (6).  

We next determine the properties of 
k lv vt  regarding with 

  or equivalently of 
k lv v =

k lv vt  for dividing collections. 

By assuming the solution at   that meets the sub-gradient 

equations, we verify, for any coefficient k iF ,  

T T

:( , ) , ,
k l

k l i

A A

k k k v v

l v v E k l F

s t 
 

    v y v V β =0. 

It obtained by grouping the 
k lv vt according to whether k 

and l in the same or different collections. By taking the 

derivative regarding with  , we infer 

T

:( , ) , , :( , ) , ,
k l

k l i k l i

A
A k kl

k v v

l v v E k l F l v v E k l F

s
t




     

 
  

  
 v V =0. 

For determining kl






, we use the maximum flow setting 

in ontology graph and let 
k lv vt = sign( )k l   for k iF  

and l iF . The push kp  on vertex kv  is stated by 

kp =
T

:( , ) ,
k l

k l i

A
A k

k v v

l v v E l F

s
t




   


  

 
v V  

=
:( , ) , ,k l i

kl

l v v E k l F



 




   for k=1,…,p. 

Let klf be the maximal flow from vertex kv to vertex lv  

in iF . By setting kl






= klf , we use the maximum flow 

technology to determine kl






.  

C. Maximum flow ontology graph and Calculating of   

For certain
0 , let 1F ,…, 0( )pF

F


 be the valid grouping of 

the variables. Let iG  be the sub ontology graph restricted to 

the vertices in the collection iF . Let 
iG =( iV , iE , 

iC ) be 

the iF  associated maximum-flow ontology graph defined as 

follows: for each of the sub ontology graph iG , we artificial 

add a source vertex rv  and a sink vertex sv , then 

iV = ( , )i r sV v v ; iE = 

{( , ) : 0} {( , ) : 0}i r l l k s kE v v p v v p    ; and for 

k,l iF , 

( , )kl lkc c =

( , )    if ( , )

(1, )        if 

( ,1)        if  

kl

kl

kl

  

 

 

   


 
   

, 

( , )rl lrc c = ( ,0)lp  for the edge from the source vertex rv  

and ( , )ks skc c = ( ,0)kp  for the edge from the sink vertex 

kv . At last, 
iC  is determined by 

iC ={ : , }kl ic k l V . 

Let 
0( )k  , 

0( )ks  and 
0( )kl   be the solution to the 

fused ontology problem with parameter  =
0 . Suppose 

iG  has a maximum flow which has maximum capacity (i.e., 

rlf = rlc  for all ( , )r lv v  iE ), and 
iF






 and ks






 

determined by (6) and (7) respectively. Then there exists 

certain positive number   such that for any    

[
0 ,

0   ], the solution to the fused ontology problem is 

piecewise linear in   which given by 

( )k  =
0 0 0( ) ( ) ( )iF

k


    




  


 for k iF , 

( )ks  =
0 0 0( ) ( ) ( )iF

k

s
s    




  


 for k iF , 

0( )kl  =

0 0

0

( ) ( )  for ,  for some 

sign( ( ))            otherwise

kl kl i

kl

f k l F i   

  

   



. 

Now, we introduce the positive number  . Let the hitting 

time of groups i and j at   be  
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( )ijh  =

   if ,  with ( , )

      

                          otherwise

i j

ji

F F

i j k i
FF

k F l F v v E
 




 


    




 


. 

The hitting time ( )h   is then denoted by 

( )h  =
0

0min ( )
ij

ij
h

h





. For fixed flows klf , the violation time 

of the constraint on ( )kl  is defined as  

0( )klv  =

0 0sign( ) ( )
   if 1

1

                                        otherwise

kl kl

kl

kl

f
f

f

  


 
  





. 

Then, the violation time ( )v  is defined by 

0( )v  =
0min ( )klv  . Let 

( )iact  =

1
  if 0

1
  if 0

                  otherwise

i i

i

i i

i

F F

F

F F

F

s s

s

s s

s











 
   

 


 
 

 
 





 

be the activation time of collection iF  with i ( )N  . Then 

the activation time act( )  is denoted by 

act( ) =
( )

min ( )i
i N

act





.  Let 

( )id  =

  if 0, 0

  if 0, 0

                  otherwise

i i

i

i

i i

i

i

F F

F
F

F F

F
F

 
 

 



 
 

 




    

 

 

  
 

 





 

be the deactivation time of the active collection iF . Then the 

deactivation time ( )d   is defined by ( )d  =
( )

min ( )i
i A

d





. 

Combining these together,   can be computed by 

( ) = min{ ( ), ( ), ( ), ( )}h v act d     . 

D. The Rule of Dividing and Fusing, and Description of the 

Algorithm 

The last technology is to determine the rule on how to 

divide and fuse collections of variables as well as how to 

activate or inactivate a collection. 

If there are collections iF and jF  such that there are exist 

k  iF  and l  jF  with ( , )k lv v  E, 
iF =

jF  and 

iFs =
jFs , then these collections can be fused into a new 

collection 
ijF = i jF F  if 0

ji
FF

ss

 


 

 
, 

0
ji

FF


 


 

 
and 

i jv vt = 1. If there is a collection iF  

such that not all edges raising from the source vertex have 

maximal capacity in the associated maximal flow graph, then 

divide iF  in the two sub-collections iR  and is  as presented 

above. The above iterate steps stop until nothing changes. 

The rule for inactivating and activating the collections is 

given as follows: If 
iFs






> 0 and 

iFs = 1 or 
iFs






< 0 and 

iFs = −1 for an inactive collection iF , then we activate 

collection iF ; If  
iF = 0 and 

iFs = 1, 
iF






< 0 or 

iFs = −1, 

iF






> 0 for an active collection iF , then we deactivate the 

collection.  

For our ontology problem, searching the starting value 

requires an extra step. For  = 0, our ontology model is 

,0 ( )R β =
T

1

1
( ) ( )

2

p

k

k

 


   y Vβ y Vβ . 

Therefore, we can find the starting values for   by solving 

an ontology problem. For the starting value for s, note that the 

sub-gradient is 

,

k

R 






=

T T( ) ( )k k ks  V y V Vβ =0 

and thus 

T T1
( )s


 V y V Vβ . 

Based on these starting values we now describe the 

complete algorithm which can be stated as follows. 

Algorithm 1: Ontology Sparse Vector Learning via Fuse and 

Divide Technologies 

Initialize:  = 0; iF = {i} for i=1,…, p; Fp =p; determine 

k  and ks  for k=1,…, n. 

If Fp > 1, loop 

Update  , s and t; 

Determine the derivatives of 
iF  and 

iFs with respect to   

for i= 1,…, Fp ; 

Solve maximum flow problem for iF , i=1,…, ( )Fp  ; 
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Determine the next hitting time ( )h  ; next violation 

time ( )v  ; and the next time a collection will be activated 

( )act   or deactivated ( )d   

Calculate ( ) = min{ ( ), ( ), ( ), ( )}h v act d     ; 

if ( )ijh  = ( )    then fuse the two collections iF  and 

jF ; Fp = Fp -1, = ( )ijh  ; 

else if ( )v  = ( )    then 

if ( )v  =   then divide the collection iF  into two 

smaller collections; Fp = Fp + 1;  = ( )v  ; 

else if ( )ia  = ( )    then activate the collection iF  

and = ( )ia  ; 

else if ( )id  = ( )    then deactivate the collection iF ; 

 = ( )id  ; 

Output 

IV. SIMULATION STUDIES 

In this section, we designed four simulation experiments 

which are related to ontology similarity measure and 

ontology mapping. A vector with p dimension is used to 

express each vertex’s information with the purpose of being 

close to the setting of ontology algorithm. The information of 

name, instance, attribute and structure of vertex is contained 

in the vector. Here the instance of vertex refers to the set of its 

reachable vertex in the directed (or, undirected) ontology 

graph.  

In the following four experiments, for convenience, we set 

that the elements of matrix V are obtained by using a 

Gaussian distribution with mean 0, and y is determined by 

experts. After getting the sparse vector β , the ontology 

function then is derived by  ( )f v =
1

p

i i

i

v 


  such that the 

noise term   is ignored. 

A. Experiment on Biology Data 

“GO” ontology O1 (which was constructed in http: //www. 

geneontology. org) is used for our experiment, and Fig. 1 

shows the basic structure of O1. P@N (Precision Ratio, see 

Craswell and Hawking [25] for more detail) is used to judge 

the equality of the experiment. At first, it is experts that give 

the closest N concepts for every vertex on the ontology graph. 

Then we get the first N concepts for every vertex on ontology 

graph by the algorithm and compute the precision ratio. 

Ontology algorithms in Huang et al., [26], Gao and Liang [27] 

and Gao and Gao [28] are applied into “Go” ontology. In the 

end, through the precision ratio which we have obtained from 

the four methods, and some experiment results can be 

referred to Tab. 1. 

      

 
 Fig. 1. “GO” ontology 

 

While N= 3, 5, 10 or 20, the precision ratio which we get 

from our algorithm is higher than that determined by 

algorithms proposed in Huang et al., [26], Gao and Liang [27] 

and Gao and Gao [28]. Particularly, such precision ratios are 

increasing clearly as N increases. Thus, our algorithm is 

superior to the method presented by Huang et al., [26], Gao 

and Liang [27] and Gao and Gao [28].  

B. Experiment on Physical Education Data 

Physical education ontologies O2 and O3 (the structures of 

O3 and O3 are presented in Fig. 2 and Fig. 3 respectively) are 

chosen for our second experiment. This experiment tends to 

determine the ontology mapping between O2 and O3 by 

means of sparse ontology algorithm. P@N criterion works to 

measure the equality of the experiment. At first, it is experts 

that help to get the first closest N concepts for each vertex on 

the ontology graph. Then it is by the algorithm that we obtain 

the first N concepts for every vertex on ontology graph and 

compute the precision ratio. Then, we apply ontology 

algorithms in Huang et al., [26], Gao and Liang [27] and Gao 

et al., [11] to “physical education” ontology, too. In the end, 

by comparing the precision ratio that we have got from four 

methods, we get some experiment results which can be 

referred to Table 2. 

The experiment results in Table 2 shows that , our 

algorithm turns out to be more efficient than those proposed 

in Huang et al., [26], Gao and Liang [27]  and Gao et al., [11], 

especially in the situation where N is sufficiently large. 

C. Experiment on Plant Data 

In order to further evaluate the effectiveness of similarity 

measuring of our algorithm in special applications, we apply 

it to plant science. “PO” ontology O4 was constructed in 

http: / www.plantontology.org) is used for our third 

experiment, and Fig. 4 manifests the general structure of O4. 

Also, the P@N is used to measure the equality of the 

experiment data. Ontology learning algorithms presented in 

Gao and Zhu [17], Gao et al., [4], and Gao and Gao [29] are 

also applied into “PO” ontology. Finally, we compare the 

precision ratios which we have obtained from the four 

learning techniques in Table 3. 

 

Engineering Letters, 24:3, EL_24_3_11

(Advance online publication: 27 August 2016)

 
______________________________________________________________________________________ 



 

TABLE 1. THE EXPERIMENT DATA FOR ONTOLOGY SIMILARITY MEASURE 

 P@3 average 

precision ratio 

P@5 average 

precision ratio 

P@10 average 

precision ratio 

P@20 average 

precision ratio 

Our Algorithm 47.82% 58.94% 68.10% 80.64% 

Algorithm in [26] 46.38% 53.48% 62.34% 74.59% 

Algorithm in [27] 43.56% 49.38% 56.47% 71.94% 

Algorithm in [28] 42.13% 51.83% 60.19% 72.39% 

TABLE 2. THE EXPERIMENT DATA FOR ONTOLOGY MAPPING 

 P@1 average precision ratio P@3 average precision ratio P@5 average precision ratio 

Our Algorithm 70.97% 80.65% 92.26% 

Algorithm in [26] 61.29% 73.12% 79.35% 

Algorithm in [27] 69.13% 75.56% 84.52% 

Algorithm in [11] 67.74% 77.42% 89.68% 

 
Fig. 2. “Physical Education” Ontology O2  

 
Fig. 3. “Physical Education” Ontology O3  
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Fig. 4. “PO” Ontology O4 

TABLE 3. THE EXPERIMENT DATA ON PLANT ONTOLOGY 

 P@3 average precision ratio P@5 average precision ratio P@10 average precision ratio 

Our Algorithm 51.95% 63.67% 86.03% 

Algorithm in [17] 50.42% 62.16% 78.53% 

Algorithm in [4] 51.03% 61.76% 79.04% 

Algorithm in [29] 49.04% 57.85% 71.01% 

 
Fig.5. “Chemical Index” Ontology O5 

 
Fig. 6. “Chemical Index” Ontology O6 

TABLE 4. THE EXPERIMENT DATA ON CHEMICAL INDEX DATA 

 P@1 average precision ratio P@3 average precision ratio P@5 average precision ratio 

Our Algorithm 39.47% 52.92% 69.65% 

Algorithm in [17] 32.47% 44.15% 56.67% 

Algorithm in [4] 35.09% 45.32% 60.35% 

Algorithm in [29] 39.47% 49.42% 61.75% 
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The experiment comparing data in Table 3 reveals that our 

algorithm turns out to be more efficient than those proposed 

in Gao and Zhu [17], Gao et al., [4], and Gao and Gao [29] for 

N=3, 5 and 10. The trends of accuracy of the algorithm 

efficiency implies that our learning algorithm has more 

efficiency than other three learning tricks if N is large 

enough. 

D. Experiment on Chemical Index Data 

To deep test the effectiveness of ontology mapping of our 

algorithm in special engineering applications, we finally 

apply our algorithm on the chemical index data. Our aim is to 

build the similarity based ontology mapping between two 

chemical index ontology O5 and O6 which are constructed by 

Wu et al., [30]. Fig. 5 and Fig. 6 present the general structure 

of O5 and O6. We emphasize here that figures 5 and 6 

presented only consist of partial vertices of ontologies O5 and 

O6. In fact, chemical index ontology O5 contains 68 concepts, 

and the chemical index ontology O6 contains 46 concepts. 

Again, the P@N is used to measure the equality of the 

experiment data. Ontology learning algorithms presented in 

Gao and Zhu [17], Gao et al., [4], and Gao and Gao [29] are 

also applied into chemical index ontologies. Finally, we 

compare the precision ratios which we have obtained from 

the four learning techniques in Tab. 4. 

The experiment comparing results presented in Table 4 

implies that our sparse ontology learning algorithm has more 

efficiency than those proposed in Gao and Zhu [17], Gao et 

al., [4], and Gao and Gao [29]. Our algorithm is suitable to 

constructing the ontology mapping for chemical index 

ontologies.   

V． CONCLUSIONS 

In this paper, the fuse and divide technologies are 

presented for ontology sparse vector computation. The new 

iterative computation algorithm is based on these ontology 

technologies and sub-gradient computation. At last, 

simulation data shows that our new algorithm has high 

efficiency in biology, physical education, plant science and 

chemical index ontologies. The ontology sparse algorithm 

raised in our paper illustrates the promising application 

prospects for multiple disciplines. 
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