
 

 

Abstract—Two algorithms are presented for omnidirectional 

bee counting from images to estimate forager traffic levels. An 

audio processing algorithm is also presented for digitizing bee 

buzzing signals with harmonic intervals into A440 piano note 

sequences. The three algorithms were tested on samples 

collected through four beehive monitoring devices deployed at 

different apiaries in Northern Utah over extended periods of 

time. On a sample of 378 images from a deployed beehive 

monitoring device, the first algorithm for omnidirectional bee 

counting achieved an accuracy of 73 percent. The second 

algorithm for omnidirectional bee counting achieved an 

accuracy of 80.5 percent on a sample of 1005 images with green 

pads and an accuracy of 85.5 percent on a sample of 776 

images with white pads. The note range detected by the 

proposed audio processing algorithm on a sample of 3421.52 

MB of wav data contained the first four octaves, with the 

lowest note being A0 and the highest note being F#4. 

Experimental results indicate that computer vision and audio 

analysis will play increasingly more significant roles in 

sustainable electronic beehive monitoring devices used by 

professional and amateur apiarists.  

 
Index Terms—computer vision; audio analysis, electronic 

beehive monitoring, sustainable computing   

I. INTRODUCTION 

ince 2006 honeybees have been disappearing from many 

amateur and commercial apiaries. This trend has been 

called the colony collapse disorder (CCD) [1]. The high 

rates of colony loss threaten to disrupt the world’s food 

supply. A consensus is emerging among researchers and 

practitioners that electronic beehive monitoring (EBM) can 

help extract critical information on colony behavior and 

phenology without invasive beehive inspections [2]. 

Continuous advances in electronic sensor and solar 

harvesting technologies make it possible to transform 

apiaries into ad hoc sensor networks that collect multi-

sensor data to recognize bee behavior patterns. 

In this article, two algorithms are presented for 

omnidirectional bee counting from images to estimate 
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forager traffic levels. An audio processing algorithm is also 

presented for digitizing bee buzzing signals with harmonic 

intervals into A440 piano note sequences. The three 

algorithms were tested on samples collected through four 

beehive monitoring devices deployed at different apiaries in 

Northern Utah over extended periods of time. When viewed 

as time series, forager traffic estimates and note sequences 

can be correlated with other timestamped data for pattern 

recognition. It is probable that other musical instruments can 

be used for obtaining note sequences so long as their notes 

have standard frequencies detectable in a numerically stable 

manner.  

The standard modern piano keyboard is called the A440 

88-keyboard, because it has eighty-eight keys where the 

fifth A, called A4, is tuned to a frequency of 440 Hz [3]. 

The standard list of frequencies for an ideally tuned piano is 

used for tuning actual instruments. For example, A#4, the 

50-th key on the 88-key keyboard has a frequency of 466.14 

Hz. In this article, the terms note and key are used 

interchangeably. 

Buzzing signals and images are captured by a solar-

powered, electronic beehive monitoring device (EBMD), 

called BeePi. BeePi is designed for the Langstroth hive [4] 

used by many beekeepers worldwide. Four BeePi EBMDs 

were assembled and deployed at two Northern Utah apiaries 

to collect 28 gigabytes of audio, temperature, and image 

data in different weather conditions. Except for drilling 

narrow holes in inner hive covers for temperature sensor 

and microphone wires, no structural hive modifications are 

required for deployment.  

The remainder of this article is organized as follows. In 

Section II, related work is reviewed. In Section III, the 

hardware and software details of BeePi are presented and 

collected data are described. In Section IV, the first 

algorithm is presented for omnidirectional bee counting on 

Langstroth hive landing pads. In Section V, the second 

algorithm is presented for omnidirectional bee counting on 

Langstroth hive landing pads. In Section VI, an audio 

processing algorithm is proposed for digitizing buzzing 

signals into A440 piano note sequences by using harmonic 

intervals. In Section VII, an audio data analysis is presented. 

In Section VIII, conclusions are drawn. 

II. RELATED WORK 

Beehives of all sorts and shapes have been monitored by 
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Fig. 2. Covered BeePi camera. 

 

 

 
Fig. 3. Solar panels on beehives. 

humans for centuries. Gates collected hourly temperature 

measurements from a Langstroth beehive in 1914 [5]. In the 

1950’s, Woods placed a microphone in a beehive [6] and 

identified a warbling noise in the range from 225 to 285 Hz. 

Woods subsequently built Apidictor, an audio beehive 

monitoring tool. Bencsik [7] equipped several hives with 

accelerometers and observed increasing amplitudes a few 

days before swarming, with a sharp change at the point of 

swarming. Evans [8] designed Arnia, a beehive monitoring 

system that uses weight, temperature, humidity, and sound. 

The system breaks down hive sounds into flight buzzing, 

fanning, and ventilating and sends SMS or email alerts to 

beekeepers. 

Several EBM projects have focused on swarm detection. 

S. Ferrari et al. [9] assembled an ad hoc system for 

monitoring swarm sounds in beehives. The system consisted 

of a microphone, a temperature sensor, and a humidity 

sensor placed in a beehive and connected to a computer in a 

nearby barn via underground cables. The sounds were 

recorded at a sample rate of 2 kHz and analyzed with 

MATLAB and Cool Edit Pro. The researchers monitored 

three beehives for 270 hours and observed that swarming 

was indicated by an increase of the buzzing frequency at 

about 110 Hz with a peak at 300 Hz when the swarm left the 

hive. Another finding was that a swarming period correlated 

with a rise in temperature from 33° C to 35° C with a 

temperature drop to 32° C at the actual time of swarming.  

Rangel and Seeley [10] investigated signals of honeybee 

swarms. Five custom designed observation hives were 

sealed with glass covers. The captured video and audio data 

were monitored daily by human observers. The researchers 

found that approximately one hour before swarm exodus, 

the production of piping signals gradually increased and 

ultimately peaked at the start of the swarm departure.  

Meikle and Holst [11] placed four beehives on precision 

electronic scales linked to data loggers to record weight for 

over sixteen months. The researchers investigated the effect 

of swarming on daily data and reported that empty beehives 

had detectable daily weight changes due to moisture level 

changes in the wood. 

Bromenshenk et al. [12] designed and deployed bi-

directional, IR bee counters in their multi-sensor 

SmartHive® system. The researchers found their IR 

counters to be more robust and accurate than capacitance 

and video-based systems.  Since the IR counters required 

regular cleaning and maintenance, a self-diagnostic program 

was developed to check whether all of the emitters and 

detectors were functioning properly and the bee portals were 

not blocked by debris or bees. 

III. SOLAR-POWERED ELECTRONIC BEEHIVE MONITORING 

A. Hardware 

A fundamental objective of the BeePi design is 

reproducibility: other researchers and practitioners should 

be able to replicate our results at minimum cost and time 

commitments. Each BeePi consists of a raspberry pi 

computer, a miniature camera, a solar panel, a temperature 

sensor, a battery, a hardware clock, and a solar charge 

controller. 

The exact BeePi hardware components are shown in Fig. 

1. We used the Pi Model B+ 512MB RAM models, Pi T-

Cobblers, half-size breadboards, waterproof DS18B20 

digital temperature sensors, and Pi cameras (see Fig. 2). For 

solar harvesting, we used the Renogy 50 watts 12 Volts 

monocrystalline solar panels, Renogy 10 Amp PWM solar 

charge controllers, Renogy 10ft 10AWG solar adaptor kits, 

and the UPG 12V 12Ah F2 sealed lead acid AGM deep-

cycle rechargeable batteries. All hardware fits in a shallow 

super, except for the solar panel that is placed on top of a 

hive (see Fig. 3) or next to it (see Fig. 4). 

 

 
Fig. 1. BeePi hardware components. 

 

 

Two holes were drilled in the inner hive cover under a 

super with the BeePi hardware for a temperature sensor and 

a microphone. The temperature sensor chord was lowered 

into the second deep super (the first deep super is the lowest 

one) with nine frames of live bees to the left of frame 1. The 
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Fig. 4. BeePi in an overwintering beehive. 

microphone chord was lowered into the second deep super 

to the right of frame 9. More holes can be drilled if the 

placements of the microphone and temperature sensors 

should be changed.  

 

 

 

The camera is placed outside to take static snapshots of 

the beehive’s entrance, as shown in Fig. 2. A small piece of 

hard plastic was placed above the camera to protect it from 

the elements. Fig. 3 displays the solar panels on top of two 

hives equipped with BeePi devices at the Utah State 

University Organic Farm. The solar panels were tied to the 

hive supers with bungee cords. It takes approximately 20 

minutes to wire a BeePi monitor for deployment. Fig. 5 

shows the first author wiring two such monitors at an apiary 

in spring 2016. 

 

 
Fig. 5. Wiring BeePi monitors for deployment . 

 

B. Software 

In each BeePi, all data collection is done on the raspberry 

pi computer. The collected data is saved on a 25G sdcard 

inserted into the pi. Data collection software is written in 

Python 2.7. When the system starts, three data collection 

threads are spawned. The first thread collects temperature 

readings every 10 minutes and saves them into a text file. 

The second thread collects 30-second wav recordings every 

15 minutes. The third thread saves PNG pictures of the 

beehive’s landing pad every 15 minutes.  

A cronjob monitors the threads and restarts them after 

hardware failures. For example, during a field deployment 

the camera of one of the EBMDs stopped functioning due to 

excessive heat. The cronjob would periodically restart the 

PNG thread until the temperature went down and the camera 

started functioning properly again. 

C. Field Deployment 

Three field deployments of BeePi devices have been 

executed so far. The first deployment was on private 

property in Logan, UT in early fall 2014. A BeePi was 

placed into an empty hive and ran exclusively on solar 

power for two weeks. 

The second deployment was in Garland, UT in December 

2014 – January 2015 in subzero temperatures. A BeePi in a 

hive with overwintering bees is shown in Fig. 4. Due to 

strong winter winds typical for Northern Utah, the solar 

panel was placed next to the hive on an empty super and 

tied down to a hive stand with bungee cords to ensure its 

safety. The BeePi successfully operated for nine out of the 

fourteen days of deployment exclusively on solar power. 

Over 3 gigabytes of pictures, wav files, and temperature 

readings were obtained during the nine operational days. 

These field deployments indicate that electronic beehive 

monitoring may be sustained by solar power. 

IV. OMNIDIRECTIONAL BEE COUNTING: ALGORITHM 1 

Visual estimates of forager traffic are used by professional 

and amateur beekeepers to evaluate the health of a bee 

colony. In electronic beehive monitoring, computer vision 

can be used to estimate the amount of forager traffic from 

captured images. A sample image is shown in Fig. 6.  

 

 
Fig. 6. Image captured from the BeePi camera. 

 

The vision-based bee counting algorithms presented in 

this section and in Section V are omnidirectional, because 

they do not distinguish incoming and outgoing bee traffic. 

The reason why no directionality is integrated is two-fold. 

First, a robust vision-based solution to directionality will 

likely require video processing. Since the BeePi relies 

exclusively on solar power, in situ video capture and storage 

will drain the battery faster, thereby making EBM more 

disruptive. Second, omnidirectional bee counting can still be 

used as a valuable estimate of forager traffic so long as it 

accurately counts bees on landing pads. All algorithms were 

implemented in Java using the OpenCV 2 image processing 

library (www.opencv.org). 

Since the camera’s position is fixed, there is no need to 

process the entire image. The image processing starts by 

cropping a rectangular region of interest (ROI) where the 

landing pad is likely to be. The ROI is made wider and 

longer than the landing pad, because the camera may 

occasionally swing up, down and sideways in stronger 
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winds, which causes the pad to shift up, down, left, or right. 

The ROI is brightened when its intensity level is below a 

threshold. Image brightening provides for more accurate bee 

identification in darker images (e.g., third image from the 

top in Fig. 7) captured on rainy or cloudy days. The actual 

landing pad is detected in the ROI with color histograms, 

because all landing pads in the hives, where the BeePi 

devices were deployed, have a distinct green color, as 

shown in Fig. 7. In Fig. 7, the two color images are the 

landing pads cropped from the ROIs. 

 

 

 

 

 
Fig. 7. Bee detection at beehive’s entrance. 

 

 Two bee identification methods were implemented in 

Algorithm 1. The first bee identification method is based on 

a contour detection algorithm in OpenCV 2.  An image is 

binarized and a list of contours, connected components of 

pixels, is computed. Contours with fewer than 30 or more 

than 50 pixels are removed. These parameters can be 

adjusted if necessary. The number of found contours is an 

estimate of the number of bees on the pad. In the two color 

images in Fig. 7, the red lines correspond to the contours of 

detected individual bees. 

 The second bee identification method is based on binary 

pixel separation of the cropped landing pad. Each pixel is 

inspected for the presence of the green color. If the presence 

of the green color exceeds a threshold, the pixel is labeled as 

a pad pixel. Otherwise, the pixel is labeled as a bee pixel. 

The second and fourth images in Fig. 7 show the landing 

pad’s pixels as white pixels and the bees’ pixels as black. 

An estimate of the number of bees on the landing pad is 

then obtained by dividing the number of detected bee pixels 

by 30, which is the average number of pixels, 

experimentally found, in an individual bee. 
  

TABLE I  

Computer vision vs human evaluation. 

Images Bee Counts Mean STD ACC 

378 
CV HM CV HM CV HM 

73.07 
1582 2165 4.2 5.7 6.5 6.5 

 

Both methods were compared in two experiments. In the 

first experiment, a sample of 135 images of landing pads 

with bees on them was selected. The number of bees in each 

image was counted by a human observer. The total number 

of counted bees was 1204. The methods were evaluated on 

all images. The contour detection method (method 1) 

accurately identified 650 bees of 1204 (54%). The 

background separation method (method 2) found 871 bees 

out of 1204 (71%). 

In the second experiment, the pixel separation method 

was compared with human evaluation on another sample of 

378 images. The images from the first experiments were not 

used in the second experiment. The results are tabulated in 

Table I. The CV columns give the statistics for the pixel 

separation algorithm. The HM columns give the statistics of 

the two human evaluators who counted the actual numbers 

of bees in each of the 378 images. The first human evaluator 

processed 200 images. The second human evaluator 

processed the remaining 178 images. The human evaluators 

counted 2156 bees in 378 images. Human evaluation was 

used as the ground truth. 

Of the 2156 bees found by the human evaluators, the 

pixel separation algorithm found 1582 bees in the same 

images. The overall accuracy, given in the ACC column in 

Table I, was computed as the ratio of the bees found by this 

method and the bees found by the human evaluators. The 

accuracy came out to be 73%.  

The Mean column in Table I tabulates the mean numbers 

of bees identified by the pixel separation method and the 

human evaluators in the images. These numbers indicate 

that the computer vision algorithm, on average, identifies 

fewer bees than the human evaluators in each image.  

The standard deviation (STD) column shows that 

standard deviations of the computer vision algorithm and 

the human evaluation were the same on this sample of 

images, which indicates that the algorithm is consistent.  

The subsequent analysis of individual images on which 

the pixel separate method underperformed revealed two 

main causes of error. The first cause was the wrong 

identification of the landing pad in bright images when the 

method cropped not only the landing pad with bees but also 

chunks of grass. Some of the grass blades were erroneously 

counted as bees. The other cause of error was really dark 

images where the algorithm found smaller numbers of bees 

even after the images were brightened. Based on the 

experiments and observations, the pixel separation method 

appeared to outperform than the contour detection method 

on the selected sample of images. 

V. OMNIDIRECTIONAL BEE COUNTING: ALGORITHM 2 

In an attempt to improve the performance of Algorithm 1, 

another algorithm for omnidirectional bee counting was 

iteratively designed and implemented to address the main 

causes of failure of Algorithm 1.  

Algorithm 2 consists of three stages: pre-processing, 

landing pad identification, and omnidirectional bee 

counting. In the pre-processing stage, an approximate image 

region where the landing pad is likely to be is cropped and 

the brightness of the cropped region adjusted. The landing 

pad identification is obtained through iterative reduction of 

the cropped image to the actual landing pad. 

Omnidirectional bee counts are computed by dividing the 

total number of bee pixels by the average number of pixels 

occupied by individual bees obtained from camera 

calibration experiments. 

The coordinates of the image region with the landing pad 

is obtained through in situ experiments. The coordinates of 

the region are set in a configuration file and used in the 

algorithm to crop the region of interest. The lower image in 

Fig. 8 shows the output of the cropping step. Note that there 

may be some grass in the cropped image. The dimensions of 

the cropped region are intentionally set to be larger than the 
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actual landing pad to compensate for camera swings in 

strong winds. 

 

 
Fig. 8. Cropped landing pad (below) from original image (above). 

 

Image brightness is dependent on the weather. Brightness 

is maximal when the sun is directly above the beehive. 

However, when the sun is obscured by clouds, captured 

images tend to be darker. As experiments with Algorithm 1 

described in Section IV showed, both cases had an adverse 

effect on bee counting. To minimize this effect, image 

brightness is dynamically adjusted to lie in (45, 95), i.e., the 

brightness index should be greater than 45 but less than 95. 

This range was experimentally found to yield optimal 

results.  

Fig. 9 illustrates how brightness adjustment improves 

omnidirectional bee counts. The upper image on the right in 

Fig. 9 shows a green landing pad extracted from the cropped 

image on the left without adjusted brightness. The lower 

image on the right in Fig. 9 shows a green pad extracted 

from the same image with adjusted brightness. Only four 

bees were identified in the upper image on the left whereas 

in the lower image eight bees were identified, which is 

closer to the twelve bees found in the original image by 

human counters. 

 

 
Fig. 9. Extraction of green pad with from image with adjusted brightness. 

 

The three steps of the landing pad identification in the 

cropped region, i.e., the output of the pre-processing stage, 

are shown in Fig. 10. The first step in identifying the actual 

landing pad in the approximate region cropped in the pre-

processing stage is to convert the pre-processed RGB image 

to the Hue Saturation Value (HSV) format, where H and S 

values are computed with Equation (1). 

 

 

 

(1) 

 

In (1),  are the R, G, B values normalized by 255, 

 and  

The value of V is set to . In the actual implementation, 

the format conversion is accomplished with the cvtColor() 

method of OpenCV. The inRange() method of OpenCV is 

subsequently applied to identify the areas of green or white 

pixels, the two colors in which the landing pads of our 

beehives are painted.   

Noise is removed through a series of erosions and 

dilations. The white pixels in the output image represent 

green or white color in the actual image and the black pixels 

represent any color other than green or white. 

 

 
Fig. 10. Landing pad identification steps: 1) HSV conversion; 2) color 

range identification; 3) noise removal. 

 

To further remove noise from the image and reduce it as 

closely as possible to the actual landing pad, contours are 

computed with the findContours() method of OpenCV and a 

bounding rectangle is found for each contour. The bounding 

contour rectangles are sorted in increasing order by the Y 

coordinate, i.e., increasing rows. Thus, the contours in the 

first row of the image will be at the start of the list. Fig. 11 

shows the bounding rectangles for the contours computed 

for the output image of step 3 in Fig. 10. 

 

 
Fig. 11. Bounding rectangles of found contours. 

 

Data analysis indicates that if the area of a contour is at 

least half the estimated area of the landing pad, the contour 

is likely to be part of the actual landing pad. On the other 

hand, if the area of a contour is less than 20 pixels, that 

contour is likely to be noise and should be discarded.  

In the current implementation of the algorithm, the 

estimated area of the green landing pad is set to 9000 pixels 

and the estimated area of the white landing pad is set to 

12000 pixels. These parameters can be adjusted for distance.  

Using the above pixel area size filter, the approximate 

location of the landing pad is computed by scanning through 

all the contours in the sorted list and finding the area of each 
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contour. If the area is at least half the estimated size of the 

landing pad of the appropriate color, the Y coordinate of the 

contour rectangle is taken to be the average Y coordinate 

and the scanning process terminates.  

If the contour’s area is between 20 and half the estimated 

landing pad area, the Y coordinate of the contour is saved. 

Otherwise, the current contour is skipped and the next 

contour is processed.  When the first contour scan 

terminates, the average Y coordinate, μ(Y), is calculated by 

dividing the sum of the saved Y coordinates by the number 

of the processed contour rectangles.  

After μ(Y) is computed, a second scan of the sorted 

contour rectangle list is performed to find all contours 

whose height lies in [μ(Y)-H, μ(Y)+H], where H is half of 

the estimated height of the landing pad for the appropriate 

color. 

While the parameter H may differ from one beehive to 

another, as the alignment of the camera differs from one 

hive to another, it can be experimentally found for each 

beehive. For example, if the camera is placed closer to the 

landing pad, then H will have a higher value and if the 

camera is placed far from the landing pad, H will have a 

lower value. In our case, H was set to 20 for green landing 

pad images and to 25 and for white landing pad images. 

Bounding rectangles are computed after the second scan 

to enclose all points in the found contours, as shown in Fig. 

12. To verify whether the correct landing pad area has been 

identified, the area of the bounding rectangle is computed.  

If the area of the bounding rectangle is greater than the 

estimated area of the landing pad, the bounding rectangle 

may contain noise, in which case another scan is iteratively 

performed to remove noise by decreasing H by a small 

amount of 2 to 4 units. In most of the cases, this extra scan 

is not needed, because the landing pad is accurately found. 

Fig. 12 illustrates the three steps of the contour analysis to 

identify the actual landing pad. 

 

 
Fig. 12. Contour analysis: 1) 1st contour scan; 2) 2nd contour scan; 3) pad 

cropping. 

 

Foreground and background pixels are separated on color. 

Specifically, in the current implementation of the algorithm, 

for green landing pads, the background is assumed to be 

green and the foreground, i.e., the bees, is assumed to be 

yellow; for white landing pads, the background is assumed 

to be white and the foreground is assumed to be yellow.  

All pixels with shades of green or white are set to 255 and 

the remaining pixels are set to 0. Three rows of border 

pixels of the landing pad image are arbitrarily set to 255 to 

facilitate bee identification in the next step. Fig. 13 shows 

the output of this stage. In Fig. 13, the green background is 

converted to white and the foreground to black. Since noise 

may be introduced, the image is de-noised through a series 

of erosions and dilation with a 2 x 2 structuring element. 

 

 
Fig. 13. Background and foreground separation. 

To identify bees in the image, the image from the 

previous stage is converted to grayscale and the contours are 

computed again. Data analysis suggests that the area of an 

individual bee or a group of bees vary from 20 to 3000 

pixels. Therefore, if the area of a contour is less than 20 

pixels or greater than 3000 pixels, the contour is removed. 

The area of one individual bee is between 35 and 100 

pixels, depending on the distance of the pi camera from the 

landing pad. The green landing pad images were captured 

by a pi camera placed approximately 1.5m above the 

landing pad with the average area of the bee being 40 

pixels.   

On the other hand, the white landing pad images were 

captured by a pi camera placed approximately 70cm above 

the landing pad where the average area of an individual bee 

is 100 pixels.  To find the number of bees in green landing 

pad images, the number of the foreground pixels, i.e., the 

foreground area, is divided by 40 (i.e., the average bee pixel 

area on green landing pads), whereas, for the white landing 

pad images, the foreground area is divided by 100 (i.e., the 

average bee pixel area on white landing pads). The result is 

the most probable count of bees in the image. In the upper 

image in Fig. 14, five bees are counted by the algorithm. 

The lower image in Fig. 14 shows the found bees in the 

original image. 

 

 
Fig. 14. Omnidirectional bee counting. 

 

A sample of 1005 green pad images and 776 white pad 

images were taken from the data captured with two BeePi 

EBMDs deployed at two Northern Utah apiaries. Each 

image has a resolution of 720 x 480 pixels and takes 550KB 

of space.  To obtain the ground truth, six human evaluators 

were recruited. Each evaluator was given a set of images 

and asked to count bees in each image and record their 

observations in a spread sheet. The six spread sheets were 

subsequently combined into a single spread sheet. 

Table II gives the ground truth statistics. The human 

evaluators identified a total of 5,770 bees with an average of 

5.7 bees per image in images with green landing pads. In 

images with white landing pads, the evaluators identified a 

total of 2,178 bees with a mean of 2.8 bees per image. 

Table III summarizes the performance of the algorithm ex 

situ on the same green and white pad images. The algorithm 

identified 5,263 bees out of 5,770 in the green pad images 

with an accuracy of 80.5% and a mean of 5.2 bees per 

image. In the white pad images, the algorithm identified 

2,226 bees out of 2,178 with an accuracy of 85.5% and an 

average of 2.8 bees per image. The standard deviations of 

the algorithm were slightly larger than those of the human 

evaluators. 
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TABLE II 

Ground truth statistics. 

Pad Color Num Images Total Bees Mean STD 

Green 1,005 5,770 5.7 6.8 

White 776 2,178 2.8 3.4 

 
TABLE III 

Ex situ performance of algorithm 2. 

Pad Color Num Images Total Bees Mean STD ACC 

Green 1,005 5,263 5.2 7.6 80.5 

White 776 2,178 2.8 4.1 85.5 

 

 
Fig. 15. False positives. 

 

Our analysis of the results identified both true negatives 

and false positives. There appear to be fewer true negatives 

than false positives. The main reason for true negatives is 

the algorithm’s conservative landing pad identification, 

which causes some actual bees to be removed from the 

image.  

The bees on the sides of the landing pad are also typically 

removed from the image. Another reason for true negatives 

is image skewness due to wind induced camera swings. If 

the landing pad is skewed, then a part of the landing pad is 

typically cropped out during the bounding rectangle 

computation. In some images, some actual bees were 

removed from images during image de-noising, which 

resulted in lower bee counts compared to human counts.  

False positives were primarily caused by occasional 

shades, leaves, or blades of grass wrongly counted as bees. 

Fig. 15 gives an example of false positives. A human 

evaluator counted 9 bees in the upper image whereas the 

algorithm counted 28 bees on the landing pad (lower image 

in Fig. 15) cropped out of the upper image.  The shade 

pixels on the right end of the cropped landing pad were 

counted as bees, which resulted in a much higher bee count 

than the human evaluator’s count. 

VI. AUDIO ANALYSIS OF BUZZING SIGNALS WITH 

HARMONIC INTERVALS 

Digitizing buzzing signals into A440 piano note 

sequences is a method of obtaining a symbolic 

representation of signals grounded in time. When viewed as 

a time series, such sequences can be correlated with other 

timestamped data such as estimates of forager bee traffic 

levels or temperatures.  

Bee buzzing audio signals were first processed with the 

Fast Fourier Transform (FFT), as implemented in Octave 

[11], to compute the FFT frequency spectrograms to identify 

the A440 piano key notes. The quality of the computed 

spectrograms was inadequate for reliable note identification 

due to low volumes. 

The second attempt, which also relied on Fourier 

analysis, did not use the FFT. A more direct, although less 

efficient, method outlined in Tolstov’s monograph [12] was 

used. Tolstov’s method relies on periodic functions f(x) with 

a period of 2π that have expansions given in (1). 

Multiplying both sides of (1), separately, by cos(nx) and by 

sin(nx), integrating the products from  -π to π, and 

regrouping, the equations in (2) are obtained for the Fourier 

coefficients in the Fourier series of f(x). The interval of 

integration can be defined not only on [-π, π] but also on [a, 

a+2π] for some real number a, as in (3). 

 

 
(1) 

 

 

(2) 

 

 

(3) 

 

In many real world audio processing situations, when f(x) 

is represented by a finite audio signal, it is unknown 

whether the series on the right side of (1) converges and 

actually equals the sum of f(x). Therefore, only the 

approximate equality in (4) can be used. Tolstov’s method 

defines constituent harmonics in f(x) by (5). 

 

 
(4) 

 

 (5) 

 

The proposed algorithm for detecting A440 piano notes 

in beehive audio samples is based on Tolstov’s method and 

implemented in Java. An A440 key K is represented as a 

harmonic defined in (5). Since n in (5) is a non-negative 

integer and note frequencies are real numbers, K is defined 

in (6) as a set of harmonics where f is K’s A440 frequency 

in Hz and b is a small positive integer that defines a band of 

integer frequencies centered around K’s real frequency.  For 

example, the A440 frequency of A0 is 27.56 Hz. Thus, a set 

of six integer harmonics, from h25(x) to h30(x), can be 

defined to identify the presence of A0 in a signal, as in (7). 

The presence of a key in a signal is done by thresholding 

the absolute values of the Fourier coefficients or harmonic 

magnitudes. Thus, a key is present in a signal if the set in 

(6) is not empty for a given value of b and a given 

threshold. 
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(6) 

 

 (7) 

 

A Java class in the current implementation of the 

algorithm takes wav files and generates LOGO music files 

for the LOGO Music Player (LMP) 

(www.terrapinlogo.com). Fig. 16 shows several lines from 

an LMP file generated from a wav file. PLAY is a LOGO 

function. The remainder of each line consists of the 

arguments to this function in square brackets. A single pair 

of brackets indicates a one-note chord; double brackets 

indicate a chord consisting of multiple resulting notes. 

 

 
Fig. 16. LMP instructions with A440 notes detected in wav files. 

 

 
Fig. 17. Musical score of bee buzzing. 

 

 To visualize beehive music, the audio files generated by 

the LMP can be converted into musical scores. Fig. 17 gives 

one such score obtained with ScoreCloud Studio 

(http://scorecloud.com) from an LMP file converted to midi. 

VII. AUDIO DATA ANALYSIS 

The audio digitization algorithm described in Section VI 

was applied to the buzzing signals collected by a BeePi 

device at the USU Organic Farm from 22:00 on July 4th, 

2015 to 00:00 on July 7th, 2015.  

Each signal was saved as a 30-second wav file. A total of 

152 wav files were collected in this period, which amounted 

to a total of 3421.52 MB of wav data. The digitization 

algorithm described in Section VI was applied to these data 

on a PC running Ubuntu 12.04 LTS.  

The A440 piano keys were mapped to integers from 1 to 

88 so that A0 was mapped to 1 and C8 to 88, according to 

the standard A440 piano key frequency table [3]. In Fig. 19, 

these key numbers correspond to the values on the X axes. 

Each 24-hour period was split into 6 non-overlapping half-

open hour intervals: [0, 5), [5, 9), [9, 13), [13, 17), [17, 20), 

[21, 0). The frequency counts of all notes detected at a 

frequency of 44100 Hz were computed for each interval.   

The detected spectrum contained only the first four 

octaves with the lowest detected note being A0 (1) and the 

highest F#4 (50). The buzzing frequencies appear to have a 

cyclic pattern during a 24-hour period. 

 

 

Fig. 18. A440 note frequency histogram for time interval 1 from 0:00 to 

4:59; lowest detected note is A0 (1); highest detected note is C#3 (29). 

 

From 0:00 to 4:59 (see Fig. 18), the detected notes mostly 

ranged from A0 (1) to D#1 (7), with the two most frequent 

notes being C#1 (5) and D1 (6). Note C#3 (29) was also 

detected. The frequency counts of detected notes were low 

and ranged from 1 to 6. The hive was mostly silent.  

 

 
Fig. 19. A440 note histogram for time interval 2 from 5:00 to 8:59; lowest 

detected note A0 is (1); highest detected note is (46). 

 

From 5:00 to 8:59 (see Fig. 19) the detected note range 

widened from A0 (1) to F#4 (46). The two most frequent 

notes were D1 (6) and D#1 (7). The range of frequency 

counts widened up to 170. The hive was apparently 
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becoming louder and less monotonous in sound.  

 

 
Fig. 20. A440 note histogram for time interval 3 from 9:00 to 12:59; lowest 

detected note is A#2 (2); highest detected note is C#4 (41). 

 

From 9:00 to 12:59 (see Fig. 20) the note range slightly 

narrowed from A0# (2) to C#4 (41). However, the note 

range had three pronounced sub-ranges. The first sub-range 

ran from A#0 (2) to A1 (13), with the two most frequent 

notes being D#1 (7) and E1 (8). The second sub-range ran 

from D#2 (19) to A2 (25), where the two most frequency 

notes were F#2 (22) and G2 (23). The third sub-range ran 

from (26) to D3 (30), with the two most frequent notes 

being C3 (28) and C3# (29).  The frequency count range 

edged slightly upward to 180.  Compared to the preceding 

time interval from 5:00 to 8:59 the hive appeared to have 

become louder and the overall audio spectrum shifted 

higher, as exemplified by the two higher sub-ranges.  

 

 
Fig.21. A440 note frequency histogram for time interval 4 from 13:00 to 

16:59; lowest detected note is A0 (1); highest detected note is E4 (44). 

 

From 13:00 to 16:59 (see Fig. 21) the detected note range 

to ran from A0 (1) to E4 (44). The two most frequent notes 

were C3 (28) and C#3 (29).  There were also two 

pronounced sub-ranges from C1 (4) to G#1 (12) and from 

G2 (23) to D#3 (31). The lower sub-range carried over from 

the previous time interval shown in Fig. 21. The most 

frequent notes in the lower sub-range were D#1 (7) and E1 

(8). The most frequent notes in the higher sub-range were 

C3 (28) and C#3 (29). It is noteworthy that the frequency 

count range also widened up to 1700.   

Both sub-ranges detected in the preceding time interval 

from 9:00 to 12:59 were still present. However, the lower 

sub-range with peaks at D#1 (7) and E1 (8) was much less 

pronounced than then higher sub-range with peaks at C3 

(28) and C#3 (29). The audio spectrum appeared to have 

shifted to the higher sub-range.  

 
Fig. 22. A440 note frequency histogram for time interval 5 from 17:00 to 

20:59; lowest detected note is A0 (1); highest detected note is A#4 (50). 

 

From 17:00 to 20:59 (see Fig. 22) the range ran from A0 

(1) to A#4 (50), with the two most frequent notes being C3 

(28) and C3# (29). The frequency count range narrowed 

down from 1700 in the preceding time interval to 690.  

There were three sub-ranges. The first sub-range ran from 

A0 (1) to B1 (15) with peaks at D1 (6), E1 (8) and G1 (11). 

The second sub-range ran from D#2 (19) to A2 (25) with a 

single peak at F2 (21). The third sub-range, the most 

pronounced one, ran from A#2 (26) to D3 (30) with peaks at 

C3 (28) and C#3 (29). Compared to the preceding time 

interval from 13:00 to 16:59, the first sub-range widened 

whereas the third sub-range remained the most prominent 

one but its frequency counts were lower.  

 

 
Fig. 23. A440 note frequency histogram for time interval time interval 6 

from 21:00 to 23:59; lowest detected note is A0 (1); highest detected note is 

F#3 (34). 

From 21:00 to 23:59 (see Fig. 23), the detected note 

range narrowed run from A0 (1) to F#3 (34). There were 

three observable sub-ranges. The first sub-range ran from 

A0 (1) to F#1 (10) and had peaks at C1 (4) and C#1 (5). The 

second sub-range ran from A1 (13) to C2 (16) and had a 

peak at A#1 (14). The third sub-range ran from F2 (21) to 

C#3 (29) and had peaks at B2 (27) and C#3 (29). Compared 

to the preceding time interval from 17:00 to 20:59 in Fig. 23 

there was a sharp drop in the frequency count range from 

690 to 30.  
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VIII. CONCLUSIONS 

An electronic beehive monitoring device, called BeePi, 

was presented. Four BeePi devices were assembled and 

deployed in beehives with live bees over extended periods 

of time in different weather conditions. The field 

deployments demonstrate that it is feasible to use solar 

power in electronic beehive monitoring. The presented 

algorithms for omnidirectional bee counting and harmonic 

analysis indicate that computer vision and audio analysis 

will likely play increasingly more significant roles in 

sustainable electronic beehive monitoring units used by 

professional and amateur apiarists. 

A. Computer Vision   

Two computer vision algorithms for omnidirectional bee 

counting on landing pads were implemented and tested. The 

first algorithm consisted of two methods. The first method, 

based on a contour detection algorithm, takes a binarized 

image and estimates the bee counts as the number of 

detected contours containing between 30 and 50 pixels.  

The second method is based on the binary pixel 

separation of the cropped landing pad into pad pixels and 

bee pixels. An estimate of the number of bees on the landing 

pad is obtained by dividing the number of the bee pixels by 

30, which is the average number of pixels in an individual 

bee.  

The pixel separation method performed better than the 

contour detection algorithm on a sample of 135 images. The 

pixel separation algorithm was compared to the human 

evaluation on another sample of 378 images with an 

observed accuracy of 73%. Two main causes of error were 

individual grass blades detected as bees in bright images 

and dark images where some bees were not recognized. 

The second algorithm for omnidirectional bee counting 

on landing pads was implemented to address the 

shortcomings of the first algorithm. The second algorithm 

consists of three stages: pre-processing, landing pad 

identification, and omnidirectional bee counting. In the pre-

processing stage, an approximate image region where the 

landing pad is likely to be is cropped and the brightness of 

the cropped image adjusted. The landing pad identification 

is obtained through iterative reduction of the cropped image 

to the actual landing pad. Omnidirectional bee counts are 

computed by dividing the total number of bee pixels by the 

average number of pixels occupied by individual bees.  

Subsequent analysis of the results identified both true 

negatives and false positives. The main cause of true 

negatives is the algorithm’s conservative landing pad 

identification, which causes some actual bees to be removed 

from the image. Another cause of true negatives is image 

skewness due to wind induced camera swings. If the landing 

pad is skewed, then a part of the landing pad is typically 

cropped out during the bounding rectangle computation. 

False positives were primarily caused by occasional shades, 

leaves, or blades of grass wrongly counted as bees. 

A weakness of both algorithms for omnidirectional bee 

counting is landing pad localization. Both algorithms 

localize landing pads with row and column parameters in 

configuration files. These parameters are hardcoded for each 

particular monitoring unit and must be manually modified 

when the unit is deployed in a different beehive.  To address 

this weakness, an algorithm is currently being designed to 

localize landing pads in images automatically. The 

algorithm has four run time logical steps: brightness 

adjustment, pad skew detection, cluster classification, and 

landing pad localization. The third run time step, i.e., cluster 

classification, requires the offline computation of clusters to 

improve the performance of histogram back project. 

B. Audio Analysis   

The algorithm was presented for digitizing bee buzzing 

signals into A440 piano note sequences and for estimating 

forager traffic levels from images. The algorithm for 

digitizing buzzing signals converts the wav signals into 

timestamped sequences of A440 piano notes by using 

harmonic intervals. The detected note spectra contained the 

first four octaves of the A440 piano.  

 

 
Fig. 24. Upper bounds of frequency note count ranges for six time intervals. 

 

The upper levels of frequency note counts exhibited a 

cyclic pattern during a 24-hour period. Specifically, as 

shown in Fig. 24, the upper bounds of the frequency count 

ranges started at 6 in time interval 1, increased to 170 and 

180 in intervals 3 and 4, sharply increased to 1700 in 

interval 4 and then dropped to 690 and 30 in intervals 5 and 

6, respectively.  

It was also observed that the peaks in the frequency 

counts, as the selected 24-hour time period progressed, 

started in the first octave (D1), shifted higher to C3 and C#3 

in the third octave, and returned back to the first octave in 

time interval 6 at the end of the selected time period. 

Several notes in the fourth octave, e.g., and F#4 C#4, were 

also detected but their frequency counts are substantially 

lower than those of the peaks in the first three octaves. 
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