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Abstract—This paper addresses the identification of the Dual
Tone Multiple Frequency (DTMF) signal from real environ-
ments where the signal was corrupted during acquisition and
transmission processes by using the sequential Bayesian filtering
along with the time-frequency representation of time-series. The
mathematical and statistical models were employed to estimate
the frequency content embedded in the real DTMF signal. A
sequential state-space framework, by treating each frequency
component as a target to be tracked, that is developed in this
work for the extraction of time-frequency information from
time slice spectrograms provides excellent results, stemming
from an efficient representation of the DTMF signals in the
frequency domain. The paper also illustrates the accuracy of
the estimates by displaying the probability density functions
(PDFs) of the frequencies obtained from the filter. The per-
formance of the proposed approach was compared to those
of the conventional method. The comparison demonstrates a
significant benefit of our method for DTMF signal identification
under various noisy environments.

Index Terms—Dual Tone Multiple Frequency, sequential
Bayesian filtering, particle filter (PF), frequency estimation,
time-frequency, signal processing.

I. INTRODUCTION

The telephone network is designed to carry the voice
signals. To make a phone call with the touch tone phones, it
is traditionally performed over the keypads. DTMF has long
been used as the signalling system for identifying the keys
or actually the numbers that the caller is dialling. Besides,
the DTMF is also used in data transmission over the air am-
ateur radio frequency bands. Many applications that require
interactive control, telephone banking, ATM machines, for
examples, utilize the DTMF signaling. Each DTMF signal is
composed of a pair of two different sinusoidal signals (tones).
Each pair of such tones represents a unique number or a
symbol and this representation is the international standard
used globally. To illustrate, for example, if the key ‘1’ is
pressed, the DTMF signal with the designated frequencies
of 697 Hz and 1,209 Hz is generated, which is sent out for
processing. Table 1 summarizes the DTMF frequencies.

The DTMF tones may be generated either mathemati-
cally or from a look-up table. By means of Digital Sig-
nal Processing, the digital samples of two sine waves are
generated mathematically, then scaled, and added together.
At the receiver, the logarithmically-compressed, 8-bit digital
data words from the codec are received and logarithmically
expanded to their 16-bit linear format. Then, the tones are
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detected to decide on the transmitted digit. Traditionally,
the DFT implementation via fast Fourier Transform (FFT)
is used as a detection tool. Since each DTMF signal is
composed of a pair of tones, the filter bank is typically more
efficient.

In the real environment where the transmission channel
and interference cannot be simply considered as just linear
and additive Guassian, the classical filtering methods gener-
ally fail to accomplish their mission [1]. More sophisticated
framework, where the simple assumption is relaxed, must be
used for the filtering method.

A probabilistic framework is often considered as the opti-
mal way to perform tracking in order to deal with uncertainty
over time. Since tracking DTMF signals that are evolving
with time is the goal of this work, such a framework is
suitable. This work builds on Bayesian filtering approach
for tracking time-varying spectral features of DTMF sinal.
The technique incorporates a state equation that determines
how frequency evolves at each time step, and an observation
equation, that is used in likelihood formulation based on
observed data. The mathematical and statistical foundations
of Bayesian filtering have been extensively presented in
the literature. The very first filter that was proposed is
the well-known Kalman Filter (KF) [2], that estimated the
parameters in cases of additive and Gaussian perturbations in
the evolution of the unknown parameters, additive Gaussian
noise present in the measured data, and a linear relationship
between measurements and state vector parameters.

As just mentioned above, KFs are the foundations of
sequential Bayesian filtering. When (a) consecutive state
parameters vary linearly, (b) data and parameters are linearly
related, and (c) noise both in the state and observation
equations is additive and Gaussian, the KF is the optimal
estimator for parameters between the consecutive steps in
the sense that the root mean squared (RMS) errors are
minimized. Hence, the classical KF has been extensively and
successfully employed for the solution of many problems
under linear and Gaussian assumptions. Based on the linear-
ity and Gaussian nature of the noise, the KF delivers PDFs
of the state parameters by propagating their expectations
and covariances from state to state. In other words, the
expectations and covariances of the state parameters from
previous time step are used for the next time step.

When the problem encounters nonlinear/non-Gaussian sys-
tems as well as non-additive noise, variations or gener-
alizations of the standard filter are necessary. Subsequent
developments of the KFs were announced to solve those
problems such as EKFs, UKFs. A series of these filters can
be, for examples, found in [3], [4], [5], [6], [7]. Nevertheless,
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strongly nonlinear models and complex noise processes
require numerical methods for the computation of posterior
PDFs and, ultimately, point estimates and uncertainty. A
recent and powerful method for nonlinear/non-Gausian fil-
tering developed for such circumstances is particle filtering.
It is a class of Monte Carlo simulation-based and recursive
Bayesian framework filtering methods for nonlinear/non-
Gaussian systems, a system setting where conventional meth-
ods often fail to achieve satisfactory estimation. Particle
filtering framework is based on random point-mass repre-
sentations of the state parameters PDFs, which captures the
time-varying characteristics of the states. Some problems that
particle filtering has been encountered are given in [8], [9],
[10].

The rest of the paper is organized as follows. Sect. II
presents the foundations of sequential Bayesian filtering
framework and the particle filtering formulation. Sect. III
discusses the time-frequency model that is employed for
describing the spectrogram slices of the DTMF signal for
this work. Sect. IV provides how the time-frequency model
and particle filter (PF) can be combined to track recorded
DTMF signals in various environments. Conclusions can be
found in Sect. V.

TABLE I
DTMF KEY FREQUENCIES

Frequencies 1209 Hz 1336 Hz 1477 Hz 1633 Hz

697 Hz 1 2 3 A

770 Hz 4 5 6 B

852 Hz 7 8 9 C

941 Hz ∗ 0 ] D

II. BAYESIAN FILTERING

A. State Space Model

In order to analyse and make any inference about a dy-
namic system, two following models are needed. A transition
model that describes the evolution of the state with time or
space depending on the task at hand, and an observation
model that relates noisy data measurements to the state
vector. Both models can be written, respectively, as:

Xn = Fn−1(Xn−1,Vn−1) (1)

Yn = Gn(Xn,Wn). (2)

The Equation (1) is the state or system equation describing
the evolution or transition of Xn that is followed the first
order Markov process. Function Fn is a known function
relating the state vector at step n to that at step n − 1. In
addition, term Vn represents the state noise or perturbation
from one state to the next and has a known probability
density function (PDF).

Another Equation is the observation equation that relates
the measurements Yn to the state vector Xn through function
Gn, which actually is the mathematical description via the
physical model of the problem. In most problems, the func-
tion Gn is a known function, but for some scenarios it can
be unknown function and is estimated at the preprocessing
step. Finally, the term Wn is the measurement/observation
noise and typically known.

B. Bayesian Inference

Let Xn = [x1, x2, . . . , xn] be the sequence of the unknown
state vectors and Yn = [y1, y2, . . . , yn] be the set of the
observations measured at the first n steps. With the prior
density p(X0), the posterior PDF, p(Xn|Yn), can be written
as:

p(Xn|Yn) =
p(Yn|Xn)p(X0)

p(Yn)
. (3)

The posterior PDF (3) contains all information about the
state Xn that is hidden in the observation data Yn. Given
Xn, assume that the observation data up to step n are
independent; and conditional on xn, the observation yn is
independent of the states at all other times. Therefore, the
likelihood can be expressed by

p(Yn|Xn) =
n∏
i=1

p(yi|Xn). (4)

Since the first order Markov process is assumed here, we
can write (3) as:

p(Xn|Yn) =
p(x0)

∏n
i=1 p(yi|xi)p(xi|xi−1)

p(Yn)
. (5)

The efficient Bayesian framework recursively estimates
the marginal PDF p(xn|Yn) from p(xn−1|Yn). The process
is explained here. Let the marginal PDF p(xn−1|Yn−1) is
available, the prediction of the p(xn|Yn−1) can be calcu-
lated from the transitional PDF p(xn|xn−1). The transitional
density is obtained from the system equation and the state
noise PDF. Under the first order Markov chain assumption,
the PDF p(xn|Yn−1) can be expressed as the so called
Chapman-Kolmogorov equation:

p(xn|Yn−1) =

∫
p(xn|xn−1,Yn−1)p(xn−1|Yn−1)dxn−1

=

∫
p(xn|xn−1)p(xn−1|Yn−1)dxn−1. (6)

According to the Bayes theorem, the new estimate of the
state vector at step n is:

p(xn|Yn) =
p(yn|xn)p(xn|Yn−1)

p(yn|Yn−1)
. (7)

Given that the observation data Yn is available, the like-
lihood of the state vector xn is obtained from the density
p(yn|xn). Fig. 1 shows the sequential update from stem n−1
to step n.

Since the posterior PDF of the states is available from the
sequential update described above, the interference can be
performed using this distribution. The estimate function of
the state can now be computed from

ẑ(xn) = Ep(xn|Yn)[z(xn)|Yn]

=

∫
z(xn)p(xn|Yn)dxn. (8)
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Fig. 1. A sequential update of the posterior density from step n − 1 to
step n.

C. Particle Filters

Particle filtering performs sequential estimation based on
representation of probability densities of which main char-
acteristics (mean and variance, for example) are not known.
The idea is that the posterior density is represented by a set
of particles, and their associated weights which correspond
to probabilities,

{
xin, win

}N
i=1

, where N is the number of
particles. In other words, we can approximate the PDF by
the point-mass histogram from the random sampling of the
state space.

Particle filtering utilizes the sequential updating as de-
scribed above. This work uses sequential importance sam-
pling (SIS) [11] to estimate the conditional density of the
state given past observations in the PF implementation. The
idea of the SIS is that the output of the previous step
forms the prior for the next one. For each time step, the
approximated density p(xn|yn) is given by

p(xn|yn) =
N∑
i=1

winδ(xn − xin) (9)

and

win ∝
p(Xin|Yn)
q(Xin|Yn)

, (10)

where δ is the Dirac delta function, and N is the number of
particles used in the approximation and this quantity dictates
the accuracy of the filter [1], [12]. The quantity q(Xin|Yn) is
the importance density. If the results from the previous time
step are used and the importance density is chosen as

q(Xn|Yn) = q(xn|Xn−1,Yn)q(xn−1,Yn−1), (11)

we can write the posterior PDF as:

p(Xn|Yn) =
p(yn|xn)p(xn|xn−1)

p(yn|Yn−1)
p(Xn−1,Yn−1). (12)

By substituting (11) and (12) into (10) and as suggested by
[12], [13] for the choice of the proposal density to minimize

the IS error, the weight of the ith particle can then be simply
written as (for the full details, please see [12])

win = p(yn|xin)win−1. (13)

The variance of the importance weights increases with
time [1], [12], [14]. This strongly influences the filter per-
formance since the majority of the normalized weights tends
to be zero after a few states. This is called the degeneracy
problem. Implementation of suitable methods is necessary for
resolving this problem; this leads to the resampling scheme.
The recent work that makes use of the resampling scheme
has been reported in [15]. Resampling is a key process for the
successful implementation of PFs. The resampling procedure
is used to generate multiple copies of those particles with
significant weights and remove those particles with negligible
importance weights. The particles with larger weights may be
chosen a number of times and samples with small weights
may not be selected at all. After resampling process, the
offspring particles are centralized around the parameters that
are of interest. The process that includes resampling within
sequential filtering is referred to as Sequential Importance
Resampling (SIR) [13], [16]. A technique for deciding the
need for resampling is to use the effective number of particles
needed to avoid the degeneracy problem by comparing to the
threshold defined by:

Neff =
1∑N

i=1(w
i
n)

2
. (14)

Although one can reduce the effect of degeneracy through
the resampling process, a problem that could occur is the loss
of particle diversity. This is known as sample impoverishment
and occurs when all particles are identical (all weights are
equal). This is especially prevalent when the noise level in
the measured data is very low. There are developments of the
PFs [17], [18] that have been designed for remedying these
problems. The algorithm called a diversity enhanced particle
filter was proposed to improve the estimation accuracy. It is
done by generating a new set of secondary particles from the
very high weight primary particles and then combine those
sets to construct the updated particles [19].

III. PARTICLE FILTERING FOR TIME-FREQUENCY
MODELLING OF DTMF SIGNALS

We consider each DTMF signal as

s(t) =
2∑
k=1

Ak sin(2πfkt+ ϕk), (15)

where Ak is the amplitude, fk is the frequency, and ϕk
represents the phase of the kth component. Since each DTMF
signal is composed of two tones, we therefore have two
sinusoidal components appeared in (15). Extension of (15)
can be easily used to model the multiple DTMF signals that
were measured at the receiver; we will relax this for now
without loss of generality. The spectrogram of the DTMF
signal s(t) is obtained through the Short-Time Fourier Trans-
forms (STFTs) and the corresponding squared magnitude of
its STFT is obtained by:

SGs =
1

2π

∣∣∣ ∫ s(λ)w(λ− t)e−jωλdλ
∣∣∣2, (16)
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where w(t) is the window function used for enhancing the
signal information in calculating the STFT.

We consider the measurement data via the transformed
(frequency) domain because the frequency contents of the
signal can be seen from it better than working in time-
domain. Moreover, the expected number of the frequencies
(number of tones) at a given time should be two or none,
which is actually from the nature of the signal. From this
setting, the Fourier transforms of the received data yn is ide-
ally considered as the sum of the impulses in the frequency
domain. For the real signal, the ideal conditions may not
apply, the STFT of the received signal can be considered as
the sum of the squared sinc function as analysed and reported
in [20]. This leads us to the formulation of the measurement
equation as

yn =
2∑
j=1

Anjz(f − xnj) + wn. (17)

The quantity yn is the spectrogram slice at time step n, wn
is assumed to be additive Gaussian noise in the spectrogram
with the distribution w ∼ N (0, σ2

w), and z(·) is the squared
sinc function where its center is located at xnj .

For the PF framework, the state and measurement equa-
tions for DTMF tracking are given as:

fn = fn−1 + vn, (18)

yn = G(fn) + wn, (19)

where fn is the vector containing frequencies of the DTMF
signal. Quantities vn and wn are state and measurement
noises and Gn is the transmission channel. For the PF
state equation (18), the state vector is composed of the
frequencies. We simply consider that the DTMF is corrupted
by the additive white Gaussian noise; with this assumption,
as discussed in Sect. IV, the filtering results are excellent.

Not only the frequencies that we estimate via PF in this
work, but also the corresponding amplitudes. In general,
amplitudes are the elements in the state vector, we can
treat them as the parameters to be estimated exactly the
same as the frequencies. But by doing that we need to
double the size of the state vector and this could degrade
the computational performance. The alternative approach
discussed in [20], [21], a maximum likelihood (ML) or a
maximum a posteriori (MAP) estimator can be used for
amplitudes estimation rather than a sampling procedure at
each state. This could be done based on the assumption that
the noise in the measurement is considered to be additive and
Gaussian. Therefore, the conditional PDFs of the amplitudes
on the frequencies can be found to be Gaussian. When the
density function of the random variable is known, drawing
samples from such distribution is possible. Since ML or
MAP provides the means, and the covariance matrix of these
conditional probability densities can be computed as well,
constructing conditional PDFs of the amplitudes on frequen-
cies is available. Drawing samples from these conditional
PDFs forms the marginal posterior PDFs of the amplitudes
at each time step. The obtained PDFs are used at the next
time step for the prediction of the new set of frequencies
at the next arrival time and, consequently, of corresponding
amplitudes.

The multiple model particle filter (MMPF) [5], [12] is
required in this work in order to estimate number of tones
(frequencies) that is present at a given time. In other words,
the filter incorporates the birth (appearance of new frequen-
cies in the spectrogram) and death (disappearance of the
existing frequencies in the spectrogram) processes in the
estimating procedure. The dimension of fn in equation (18) is
rn, where rn is the number of tones at time step n. Number
of tones present at a given time could be ’two’ or ’none.’ This
stems from the fact that when the touch-tone button is pressed
at a specific time, two tones are presented. If the button is
released, no tone should appear. However, we include the
possibility of having one tone into the estimation process
allowing the PF to smoothly change the number of tones
from the previous step. In a noisy environment, the PF favors
the model with the highest order because there is an inherent
bias towards large dimensionality. To compensate for this, a
penalizing factor is multiplied to the original likelihood for
remedying the typical preference of the high-order models.
This penalty factor comes from the prior density on the order.
In this work, the prior densities are selected to be uniform:

p(Anj) = max(yn) (20)

for each amplitude, and

p(xnj) =
1

L
(21)

for each tone, where L is the length of the Fourier transform
that supports the frequency space. The likelihood function in
this case is given by

p(yn|xn) ∝
1

Lrn
exp{− 1

2σ2
w
‖yn −

rn∑
j=1

Anjz(f − xnj)‖2}.

(22)
As discussed in Sect. II-C that SIR PF contains three steps

where the prediction and update steps are two of the three
of its building blocks. In this work, frequencies, amplitudes,
model order (number of tones), and noise variance (consid-
ered as a nuisance parameter) are predicted using the samples
from the previous time step and are updated based on how
they fit in the PDF calculation, given the new data entering
in the current time step. Prediction step utilizes the transition
equation defined by (18) while the update step is done via
the likelihood function expressed as in (22). SIR scheme, the
third step for generating a set of efficient particles, is used
after the update step for the next arrival time.

IV. TRACKING RESULTS

We first evaluate the filter performance from the tracks
of the DTMF signal recorded from the automatic or modem
dialling. This kind of DTMF signal is considered to be the
cleanest signal and, therefore, the information is expected to
be extracted from it easily. The spectrogram of the signal
obtained via STFT calculation is shown in Fig. 2(a). The
MAP estimates of the frequencies obtained from the PDFs
calculated by the PF are shown in Fig. 2(b) with dots that are
superimposed on the spectrogram. The number of particles
used in this case was 100. PF tracks the frequencies of the
DTMF signal greatly.

We now illustrate how the PF exhibits the PMF of the
model order or the number of tones present at a given time
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Fig. 2. (a) The spectrogram of the modem DTMF signal. (b) Frequency
estimates of the signal superimposed on the spectrogram.

Fig. 3. Tracks of the modem DTMF signal. (a) PMF of the number of
tones. (b) Number of tones estimates.

in Fig. 3(a) and the estimates number of tones in Fig. 3(b).
From the results, The filter provides the PMF of the number
of tones appearing in the signal as shown in Fig. 3(a) without
significant error. This is as what was expected since the signal
does not contain noise (from the nature when the signal was
acquired) or just very low amount if it is present.

We apply our method to the hand-dialled DTMF signal
recorded over the network. This scenario is very practical
since we mostly transmit the signal through the networks,
therefore the transmission channel can be disturbed by noise.
Moreover, we do not assume here that the noise followed
Gaussian distribution. Number of particles used in getting
the results in this case was 200. Fig. 4(a) shows the spec-
trogram of the noisy DTMF signal as mentioned above. The
frequency estimates by our PF are provided in Fig. 4(b). PMF
of the number of tones and order estimates of this signal are
presented in Fig. 5(a) and (b), respectively. As seen from the
resulting estimates with the filter that they are very good,
only few erroneous estimates are present.

To further investigate the performance of our model, we
demonstrate in Fig. 6(a) the frequency estimates super-
imposed on the spectrogram; and the order estimates of

Fig. 4. (a) The spectrogram of the hand-dialled DTMF signal recorded
over the network. (b) Frequency estimates of the signal.

Fig. 5. Tracks of the hand-dialled DTMF signal recorded over the network.
(a) PMF of the number of tones. (b) Number of tones estimates.

the wideband coupling, recorded locally, DTMF signal are
presented in Fig. 6(b). The tracking results are excellent even
the DTMF signal was corrupted by noise and transmitting
media. Again, we used 200 particles in the tracking process.

Fig. 7 shows the results of the frequency estimates for
the scenario that the hand-dialled DTMF signal recorded
locally is considered; while Fig. 8 presents the PMF of the
number of tones and order estimates of this signal, where
in this case 150 particles was used in the process. Next, we
show the validity of our model by demonstrating how close
the estimates obtained from the PF to the received noisy
DTMF signal. In Fig. 9, we show by solid line a slice of
the spectrogram of the hand-dialled DTMF signal at times
step 500 and the corresponding spectrum estimates from
the PF (with ’diamond’). Although there is quite substantial
noise level in the measured data, the match of the two
DTMF frequencies from both spectrums is still excellent as
obviously seen that the MAP spectrum almost coincides with
the informative part of the data spectrum.

In addition to the estimates provided in Figs. 7-9. The
PDFs estimated with the PF for the two frequencies at times
step 150 are displayed in Figs. 10(a) and 10(b). The MAP
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Fig. 6. Tracks of the wideband coupling, recorded locally, DTMF signal.
(a) Frequency estimates. (b) Number of tones estimates.

Fig. 7. (a) The spectrogram of the hand-dialled DTMF signal recorded
locally. (b) Frequency estimates of the signal.

estimates of the PDFs are 852 and 1336 Hz, exactly the
true values. However, the observation from the results is that
the uncertainty of the first tone is larger than the second one.
This stems from the fact that the lower frequency component
from the recorded DTMF is weaker than the higher one, this
leads to the larger variance in the estimated PDF.

Figs. 11(a) and (b) display two spectrograms with super-
imposed frequency MAP estimates for SNRs of 10 and 5 dB,
respectively. As demonstrated, the frequency trajectories can
track most of the DTMF tones even the noise is increased.
However, the filter introduces some erroneous frequency
estimates but these errors are not significant in DTMF
identification since the filter can eventually provide a pair of
tones correctly. This emphasizes the robustness of the filter
to the noise that is present in the received signals.

Finally, we evaluate the reliability and accuracy of the filter
by comparing the RMS error (RMSE) and the number of par-
ticles after adding different noise levels to the DTMF signal.
The RMSE is the L2 norm averaged over R realizations and
M spectrogram slides:

Fig. 8. Tracks of the hand-dialled DTMF signal recorded locally. (a) PMF
of the number of tones. (b) Number of tones estimates.

Fig. 9. A spectrogram slice of the hand-dialled DTMF signal at times step
500 with the estimated spectrum from the PF superimposed.

Fig. 10. The frequency PDFs of the hand-dialled DTMF signal at times
slide 150 (a) first tone and (b) second tone.
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Fig. 11. Frequency tracking for two different noise levels. (a) SNR 10 dB.
(b) SNR 5 dB.

RMSE =

√√√√ 1

RM

M∑
n=1

||f′n − f̂′n||2 (23)

where f
′

n is the vector of true values of the normalized
frequencies and f̂′n is the vector of the normalized frequency
estimates at time step n. Two-hundred realizations were run
for a Monte Carlo performance evaluation. The normalized
quantities were obtained with the sampling frequency of 4000
Hz.

RMS results from PF implementation for identifying the
modem DTMF signal, hand-dialled DTMF signal recorded
over the network, hand-dialled DTMF signal recorded lo-
cally, and wideband coupling DTMF signal recorded locally
are shown in Figs. 12-15, respectively. For each figure, stars
indicate the RMSE for SNR of 15 dB; triangles show the
error for SNR of 10 dB; circles demonstrate the error for
SNR of 5 dB; lines without marker in blue, green, and red
show conventional MAP errors for SNRs of 15, 10, and 5
dB, respectively. These figures confirm that the PF presents
the smaller errors than those from the conventional MAP
estimator. Moreover, as discussed earlier that the filter can
capture the PDF in the support space comprehensively when
higher number of particles is used, therefore, the results
present this as had been observed in the decreasing of the
RMS errors for all SNRs.

V. CONCLUSIONS

In this paper, the Bayesian framework to address the
DTMF signal identification via time-frequency representation
of the signal was presented. The main goal was to identify the
tones of the recorded DTMF signal in various environments.
Although the signal to be tracked was corrupted by unknown
noise PDFs, but DTMF signal was well governed in the fre-
quency domain as described previously, using sophisticated
Bayesian framework with a very low number of particles
was sufficient to successfully extract the required information
from the noisy DTMF signal. Besides, by using MMPF, it
was illustrated that, for a given corrupted DTMF signal, it
was achievable to estimate the tones of the signal. Number

Fig. 12. PF performance for the modem DTMF signal at SNRs of 15, 10,
and 5 dB: RMS errors are plotted vs the number of particles. Conventional
MAP errors are also presented.

Fig. 13. PF performance for the hand-dialled DTMF signal recorded over
the network at SNRs of 15, 10, and 5 dB: RMS errors are plotted vs the
number of particles. Conventional MAP errors are also presented.

Fig. 14. PF performance for the hand-dialled DTMF signal recorded locally
at SNRs of 15, 10, and 5 dB: RMS errors are plotted vs the number of
particles. Conventional MAP errors are also presented.
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Fig. 15. PF performance for the wideband coupling DTMF signal recorded
locally, at SNRs of 15, 10, and 5 dB: RMS errors are plotted vs the number
of particles. Conventional MAP errors are also presented.

of tones present at a time together with the frequencies were
also estimated. Moreover, some PDFs of the estimated fre-
quencies to show how the filter accurately identifies the tones
of the DTMF signal were provided. The results showed that
the method exhibits excellent tracking. The performance of
the approach was validated by comparing the RMS errors of
the filter to the conventional MAP estimator under different
noise levels, the proposed PF was found to be remarkably
superior.
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