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Abstract—For many visual monitoring scenarios, it may
be desired to accurately compute the segment of an object’s
perimeter that is being viewed by a particular camera, e.g.
supporting applications for pattern recognition systems and
coverage optimization. As objects may have different formats,
generic polygon-based approaches may bring inaccurate results,
since some simplifications may be taken. In this context, it is
proposed in this paper an algorithm to accurately calculate
the objects’ contours that can be viewed by a set of cameras,
employing a discretization technique. The proposed algorithm
computes the percentage of an object’s perimeter that is being
viewed, which may be used as a parameter of coverage quality.
Therefore, besides accurately computing effective viewing of
cameras, a visual coverage quality metric for a set of objects
is derived, which can be directly exploited for optimizations in
camera surveillance systems and visual sensor networks.

Index Terms—Camera coverage, objects viewing, objects’
contours, visual sensing.

I. INTRODUCTION

C
AMERA coverage is a relevant topic that has driven

many research efforts in last decades, from the per-

spective of optimal camera placement [1] until sensing

coverage optimizations in modern cameras systems [2], [3].

For some applications, the main optimization problem may

be concerned with the minimum number of cameras to cover

an area of interest, which may be a room, a road, a square

or a generic wide area [4]. On the other hand, for object

(target) coverage, cameras may need to cover segments of

objects or even objects as a whole, regardless the monitored

field [5]. Camera coverage may be then a challenging task,

with different particularities according to the characteristics

of visual coverage applications.

In general, objects of interest may have different formats,

which may be not predicted by a system. Actually, for

some applications, cameras may only need to cover part

of an object to detect presence, as for example in intrusion

detection systems [6]. In a different way, some applications

may consider different perceptions over the same object,

since cameras may view it under different perspectives [7].

With new wireless sensing technologies based on visual

coverage, object viewing has been considered for many

applications, but visual coverage over objects has still been
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commonly processed through simplifications, where they are

usually modeled as circles or 2-D or 3-D polygons.

For objects moving over an area covered by a multi-

camera system, it may be desired to accurately compute the

percentage of objects’ perimeters that are being viewed by

each camera. By doing so, it is possible not only to compute

effective viewing over objects, but also to know if critical

segments of the objects’ perimeters are being viewed, as for

example the plates of moving cars or bar codes on packages

on a conveyor belt.

The viewed segments of an object’s perimeter represents

a percentage of visual coverage over that object, which we

define generically as the Effective Object Viewing (EOV).

This metric can be used to indicate the level of visual

coverage over a set of objects, which may be considered,

for example, when defining coverage quality metrics [8]

in visual sensing systems. Moreover, it might be exploited

to dynamically adjust the orientations of cameras for more

effective viewing over objects.

In this context, it is proposed herein a mathematical model

to accurately calculate objects perimeters captured by cam-

eras, computing the actual contours of objects represented as

simple polygons in a 2-D space. The accurate calculating of

objects’ perimeters and the computing of an Adaptive EOV

(A-EOV) coverage metric are the main contributions of this

papers.

The remainder of this paper is organized as follows.

Section II brings some related works. The proposed approach

is defined in Section III. Practical uses of the A-EOV metric

are discussed in Section IV. Section V presents numerical

results, followed by conclusions and references.

II. RELATED WORKS

Sensing coverage is a major design issue for multi-camera

systems, directly related to the quality of camera-based

monitoring applications. However, many relevant challenging

issues have to be properly addressed, notably in camera

coverage, visual data coding and processing. In such way,

in the last years, many works have proposed promising

approaches for coverage enhancement and assessment for

different scenarios, influencing this paper in different ways.

Generally speaking, efficient visual coverage will be

deeply related to the way cameras are positioned. And

cameras deployment will be typically guided by monitoring

requirements. Actually, cameras may be used to view an area

of interest in different perspectives, but frequently they will

be concerned with area, target or barrier coverage [9]. For all

these cases, cameras may also be deployed in a random or

deterministic way [3]. For random deployment, cameras may

be scattered over a monitored field, with unpredictable posi-

tions and orientations after deployment, which could be more
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common in a wireless visual sensor network context. On

the other hand, deterministic deployment requires previous

knowledge about the characteristics of the monitored field

and targets or areas to be monitored, but optimal coverage

is more feasible in this scenario. Whatever the case, cameras

positioning is a relevant issue that impacts multi-camera

systems [10].

Sometimes, coverage metrics may be desired to assess

the visual monitoring quality of cameras. The work in [11]

proposes a metric to measure the coverage quality of wire-

less visual sensor networks, computing the probability of

a randomly deployed network to be K-Coverage, which is

achieved when every point is covered by at least K sensors.

In this case, for higher values of K, more visual sensors will

be viewing the same area of a monitored field, which may

be beneficial for many applications. In a different way, it is

proposed in [12] a metric to compute the coverage quality

when visual sensors are deployed for target coverage.

When adjustable cameras are employed, the coverage

area may be optimized to better address the monitoring

requirements of applications [13], [14]. The work in [15]

computes an optimal configuration for visual sensors with

changeable orientations, where visual coverage is based on

the definition of non-disjoint cover sets. The work in [16]

adjusts the sensors’ FoV to optimize the overall coverage,

achieving maximized viewing of a monitored field. For that,

sensors are reconfigured to new optimal positions.

Sensing coverage is also relevant when addressing redun-

dancy. In general, sensing redundancy is based on over-

lapping of sensing areas, but the way overlapping will be

processed will depend on monitoring requirements of the

applications [17], [18]. For redundancy computation, target

perspectives may also be considered, providing a more

accurate definition of redundancy [7].

Cameras orientations will define how targets or areas

will be viewed, since coverage perspectives may impact

the quality of visual monitoring systems. The work in [19]

addresses the problem of computing the minimum number

of visual sensors for barrier coverage, taking viewing an-

gles in the optimization process. In that work, objects are

approximated to regular polygons. In [20], an object has to

be viewed under different angles, since cameras may view

different sides of the object. The optimization problem in

[20] is then to compute the minimum set of sensors that

can retrieve images that satisfy the resolution requirements

of the application, assuming objects with cylindrical shapes.

The work in [21] computes the minimum set of cameras to

cover objects satisfying some angle constraint, optimizing

the k-angle problem when the angle of viewing is a key

parameter. In all these works, objects modeling is simplified

for easier computing.

Actually, when performing target coverage, segments of

viewed objects (targets) may have different importance for

the performed tasks. Thus, knowing the viewed segments

of objects’ perimeters potentially allows pre-processing of

retrieved data in different types of multi-camera systems,

e.g. supporting decision procedures and prioritization ap-

proaches [22]. The innovative proposed mathematical com-

putation of viewed segments, without processing image data,

may then bring significant results, specially for resource-

constrained systems.

Original object

Actual Contour

(a)

10 reference points

Constructed contour

(b)

50 reference points

Constructed contour

(c)

1000 reference points

Constructed contour

(d)

Fig. 1: Example of 2-D discretized contours.

III. PROPOSAL

In order to allow that the viewed segments of any kind

of 2-D object can be properly identified and accounted, for

any possible format of objects, it is proposed in this paper a

novel approach that is intended for mathematical processing

of visual coverage. For that, in this paper, objects and targets

are used interchangeably to refer to any static or moving

element that needs to be viewed.

The fundamentals of the proposed approach are stated in

next subsections.

A. Definition of objects contours

In a 2-D space, a discretized contour of an ob-

ject can be described as simple polygon, P , defined

as a vector of Pl connected segments (edges), P =
[P (0), P (1), P (2), . . . , P (Pl − 1)]. Each segment P (i) is

defined as a pair P (i) = (P (i)P0, P (i)P1), where P (i)P0 =
(P (i)P0x , P (i)P0y ) and P (i)P1 = (P (i)P1x , P (i)P1y ) are

the coordinates of the two points describing segment P (i).
Segments are connected through common points in the

closed chain, so that P (Pl − 1)P1 = P (0)P0, P (0)P1 =
P (1)P0, . . . , P (i − 1)P1 = P (i)P0, P (i)P1 = P (i +
1)P0, . . . , P (Pl − 2)P1 = P (Pl − 1)P0. We consider that

the discretized contour is well constructed so it faithfully

follows the edge of the object in the chain, and elements

in P are ideally organized so that segments do not intersect

other edges (definition of a simple polygon), as exemplified

in Figure 1.

The figure shows examples of different contours represent-

ing the original object at the top of Figure 1a. Figures 1b,

1c and 1d show examples of different constructed polygons

describing the geometry of the original object’s contour. It is

clear that, depending on the morphology of the target object,

greater and more uniform-size amounts of segments, in non-

straight sectors, better describe the actual contour (e.g., in

Figure 1, differences between the constructed contour with

1000 segments and the actual contour are almost impercep-

tible).
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△ (P (i), s) =







1 if the segment P (i) is entirely contained in the triangle representing the field of view

of sensor s.
0 otherwise

(1)

ι(P, i, s) =















0 if, considering a triangle determined by segment P (i) and the coordinate of s, there

is no segment P (j), P (j) 6= P (i) that is entirely contained in such a triangle or is

intersected in at least one point with that triangle’s perimeter.

1 otherwise

(2)

B. Coverage metric for object viewing

While some simplifications could be taken for easier pro-

cessing, assuming objects as e.g. circumferences or uniform

polygons, the achieved results might not be accurate. How-

ever, as the contours of an object can be precisely calculated

when employing the proposed approach, and knowing the

configuration of the considered cameras, it is possible to

compute the percentage of any object that is being viewed.

If there is a way to compute all segments that comprise

any object, assuming a defined number of reference points, it

is possible to compute the complete perimeter of the objects.

And this information can be processed in two different ways:

(a) it is possible to know if relevant parts of objects, as for

example people’s faces or cars’ plates, are being viewed by

at least one camera, and (b) we can account the percentage

of the objects’ contours that are being viewed.

Although we initially addressed (a) in [22], a coverage

quality metric is still necessary for issue (b). Actually, for this

particular issue, we propose the Adaptive Effective Object

Viewing (A-EOV) metric as the sum of measures associated

to segments in the field of view of a node camera, divided

by the maximum possible value for this sum. The ”adaptive”

was inserted into the metric name as any format of objects

may be processed by the proposed algorithm, indicating

that the algorithm can inherently adapt to different coverage

scenarios.

Let us define δ(P (i)) as the length of segment P (i), given

by the Euclidean distance between its two describing points,

i.e.:

δ(P (i)) =

√

(P (i)P1x − P (i)P0x)
2
+
(

P (i)P1y − P (i)P0y

)2

(3)

Moreover, let us define △ and ι as a the functions described

by expressions 1 and 2, respectively.

Equation 1 is used to know which blocks are potentially

seen by sensor s. Equation 2 is used to know if there are no

occlusions between a given segment and sensor s. As seen,

it is considered in this work that a given segment (edge) of

a polygon is captured by a sensor node s if and only if it is

entirely contained in the field of view of s and if it can be

entirely viewed by that sensor.

Logical conditions required to know whether a segment

of a polygon is entirely contained or not in a triangle

can be computed as follows: Let TP1 = (TP1x , TP1y ),
TP2 = (TP2x , TP2y ) and TP3 = (TP3x , TP3y ) be the

coordinates of the vertices of a triangle T , and let P (i)P0 =
(P (i)P0x , P (i)P0y ) and P (i)P1 = (P (i)P1x , P (i)P1y ) be

the two points describing a segment of line P (i), then P (i)
is entirely contained in triangle T if and only if there exist

two intersection points with coordinates PI0 = (PI0x, PI0y)
and PI1 = (PI0x, PI0y) of the edges of T and the straight

line described by Equation 8, such that all of the following

conditions are satisfied:

min(PI0x, PI1x) ≤ P (i)P0x ≤ max(PI0x, PI1x) (4)

min(PI0x, PI1x) ≤ P (i)P1x ≤ max(PI0x, PI1x) (5)

min(PI0y, PI1y) ≤ P (i)P0y ≤ max(PI0y, PI1y) (6)

min(PI0y, PI1y) ≤ P (i)P1y ≤ max(PI0y, PI1y) (7)

.

x− P (i)P0x

P (i)P1x − P (i)P0x

=
y − P (i)P0y

P (i)P1y − P (i)P0y

(8)

Additionally, information about the redundancies of the

fields of view of multiple cameras capturing the ob-

ject described by P can be provided, by defining ν =
[ν0, ν1, . . . , νPl−1], where:

νi =

S−1
∑

s=0

∆(P, i, s) (9)

∆(P, i, s) = △ (P (i), s).ι(P, i, s) (10)

thus, each element of ν, νi, contains the number of sensors

entirely capturing segment P (i).
Finally, by defining operation Q(νi) as expressed in Equa-

tion 11,

Q(νi) =

{

1 if νi > 0

0 otherwise
(11)

we can compute a new coverage metric for object viewing.

Actually, as we are considering that objects of any format can

be processed by the proposed approach, and as we already

achieved some initial results for perimeters calculation of

circumference-modelled objects in [23], we reinforce the idea

of the proposed metric as being ”adaptive”.

The A-EOV can finally be calculated as:

A-EOV =

Pl−1
∑

i=0

δ(P (i)).Q(νi)

Pl−1
∑

j=0

δ(P (j))

(12)

IV. ON EXPLOITING OBJECTS’ PERIMETER CALCULATION

When employing the proposed approach, the perimeter

of objects viewed by camera systems can be computed.

And this information can be exploited in different ways.

Next subsections discuss two potential problems that can be

addressed by the proposed approach.
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A. Availability of monitoring applications

In general camera networks, availability will be a function

of different parameters, notably cameras failures, commu-

nication problems and bad (insufficient) visual coverage

[17]. Depending on monitoring requirements, which may

be concerned with targets viewing [18], unavailability may

be resulted when cameras are not viewing at least the

minimum expected number of targets. However, as viewing

perspectives over targets may be also important for some

applications, availability may be also computed as average

percentage of viewed objects’ perimeters, which may be

assessed directly by employing the A-EOV metric.

Objects in camera systems may have different dimensions,

potentially impacting target monitoring quality. While small

targets may be sometimes more likely to be viewed, large

targets may be not satisfactorily covered by deployed visual

sensors. The A-EOV metric can then numerically reflect the

impact of different targets formats and sizes on the overall

monitoring quality.

B. Relevance-based prioritization

In many cases, different regions of an object contour may

have different relevances. For example, in a surveillance and

access control application, it may be more relevant to get an

image of the car number plate than a rear port. To consider

this relevant issue, it is possible to fragment an object edge

into O different non-intersected fragments F (o), o ∈ [0, O),
each one defined as a vector F (o) = [F (o)V , F (o)0, F (o)N ],
where F (o)N is the number segments considered in F (o)
starting at F (o)0, and F (o)V is a S long vector where each

element F (o)Vs
gives:

F (o)Vs
=















1 if





F (o)N+F (o)0−1
∏

q=F (o)0

∆(P, q mod Pl, s)



 = 1

0 otherwise
(13)

Equation (13) states that F (o)Vs
will give 1 (one) if and

only if all segments considered in F (o) are viewed by camera

sensor s.

When designing priority-based optimizations, two differ-

ent characteristics must to be defined [24]: a) the prioritiza-

tion parameter and b) the way it will be exploited. In general,

prioritization may be based on any approach that produces

data with different relevance for applications [25], [24]. After

defining the parameter, an optimization approach may be

defined, which may optimize different procedures related

to sensing, coding and packet transmission (in different

communications layers).

When performing visual monitoring over a set of static or

moving targets, source prioritization may be defined accord-

ing to the way those targets are viewed, as also defined by us

in [22]. If we can know which segments of targets’ perimeters

are being viewed, and if a priority index is associated to

defined segments, different relevances may be associated

to cameras according to the viewed targets. For example,

cameras that view more relevant segments of targets may

transmit prioritized packets (e.g. for routing and congestion

purposes) or even employ high-quality image coding for

more significant data, defining then a mechanism to assure

(a) Front, rear and side cameras

(b) Diagonal cameras

Fig. 2: Case study. Object with eight different camera sensors

(s0, . . . , s7).

TABLE I: Scenarios for experimentation.

Scenario Active camera sensors

S1 s0
S2 s0, s1
S3 s0, s1, s2
S4 s0, s1, s2, s3

S5 s4
S6 s4, s5
S7 s4, s5, s6
S8 s4, s5, s6, s7

some Quality of Service (QoS) [24], [26]. The work in [22]

associates viewed perimeters to priority indexes, but objects

in that work are modeled only as rectangles.

V. RESULTS

In order to validate the proposed approach, concerning

to computing performance and A-EOV calculation, some

experiments were performed, as described in this section.

Experimental results are provided by considering a general

case study in which the vehicle (object) in Figure 1a is

captured by up to eight different sensor nodes. In order to

consider different possible scenarios we define up to eight

camera sensors with fields of view as depicted in Figure 2.

The proposed algorithm was implemented in C++ Lan-

guage with OpenCV v2.4.9 in order to facilitate automatic

contours detection and visualization. The experiments where

executed in a server with Intel Xeon 3.1GHz, 8GB DDR4

RAM and Ubuntu 14.1 system.

A. Precision and execution time results

Without loss of generality, precision results will be pro-

vided by measuring A-EOV over two basic geometric forms

approximated by a variable number of segments: (i) the
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Fig. 3: A-EOV results. Containing circle case.

0.1

(EOVS1) -> 0.1657

0.3
(EOVS2) -> 0.3315

0.6
(EOVS3) -> 0.6337
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0 2000 4000 6000 8000 10000
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S3

S6

S2

S5
S1

Fig. 4: A-EOV results. Containing rectangle case.

smallest circle and (ii) the smallest rectangle entirely contain-

ing the target vehicle (the smallest circle entirely containing a

target object corresponds to the approach presented in [23]).

This aims to provide valuable results to show how well the

polygon-based approximation represents curved shapes (a

circle, in this case) and general straight-line based polygons

(such as a rectangle). We selected these shapes because it is

easy to compute exact values based in elementary geometry

and to compare them with our approximated values. For

results purposes, we define the eight different situations as

summarized in Table I.

The graphics of Figures 3 and 4 show A-EOV results for

the different scenarios when varying the number of segments

approximating both, said circle and rectangle, respectively,

from 10 to 10000 edges (Pl).

We denote EOVSc the EOV calculated with simple ge-

ometry for scenario Sc (the exact reference value). In the

graphics, it is possible to observe a rapid trend of A-EOV

to the EOV, in all cases. For example, in case S1, the

error (absolute difference) between A-EOV and EOVS1 is of

0.0167 when the number of segments describing the circle

is Pl = 100. When increasing Pl, this error decreases to

0.0006967 and 0.0000033, for amounts of Pl = 1000 and

Pl = 10000 segments, respectively. This means that we can

have decently approximated results with some hundreds of

segments, if speed of calculation is a requirement. More

accuracy can be achieved by selecting greater amounts of

segments (increasing Pl) but at expense of higher calcula-
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Fig. 5: Execution times. Containing circle case.
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Fig. 6: Execution times. Containing rectangle case.

tion times. Also, calculation times are increased by bigger

amounts of camera sensors. Figures 5 and 6 show obtained

execution time of our algorithm, for same scenarios and

amounts of segments.

B. Simulation of a scene using the case study

In order to illustrate potential uses of the proposed model,

we summarize results from various simulations, considering

the object of Figure 1a. First tests consider different cases

where the target object is discretized by Pl = 10, Pl =
50, Pl = 100, Pl = 200, Pl = 500, Pl = 1000, Pl =
2000, Pl = 5000, and Pl = 10000 points, and distribution

of sensor nodes of scenario S8. The simulation considers a

vehicle monitoring scenario, in which the four camera nodes

are intended to provide images of the car passing an access

control, with a priority in capturing the car’s plate. To do

so, four non-overlapped fragments F (0) . . . F (3) have been

defined, being F (1) and F (3) the fragments describing an

area in which the car plate should be located, at the rear and

front of the car, respectively. F (1) and F (3) were defined

as a portion of the perimeter equivalent to one third of the

width of the container rectangle described before. Figure 7

illustrates different positions of the target vehicle (object), at

different times, entering and leaving the sensors’ zone.
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(a) t = 30 (b) t = 50 (c) t = 70 (d) t = 90

(e) t = 110

Fig. 7: Simulation of the case study at different times.
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Fig. 8: Simulated A-EOV for the selected case study.

Different values of A-EOV at different times can be seen in

the Figure 8, since we consider a moving object. The graphic

shows the moments in which the car enters the sensor zone

(near t = 30) and leaves (near t = 110). The maximum A-

EOV is allowed at t = 70, when the car is at the center of

the four cameras.

Other simulations allow us to visualize how the calculation

of F (o) vector can be used. For that, we executed same Pl =
2000 points case described before, with simulation scenarios

S4, S8 and S9, being S9 a new scenario where all of the

eight cameras were activated. Results of these applications

are summarized in Table II, where summed of F (o)Vs
values

are graphed. This represents the number of camera sensors

viewing fragments F (o). And this can be useful when we

need to observe particular regions of an image with different

priorities.

The graphics show different quantities of cameras entirely

viewing each different fragment. For example, for scenario

S8, the graphics show that fragment F (3) (front region of the

vehicle) is entirely viewed by two cameras in a window time

between t = 66 and t = 72, approximately. The fragment

F (1) (rear region of the vehicle) is viewed (also by two

cameras) between t = 69 and t = 74, approximately. We

must note that the sums of F (0)Vs
and F (2)Vs

remain zero,

in all cases. This means that no area fragments F (0) and

F (2) are entirely viewed by camera at any time. This is

explained by the fact that the mirrors at both sides of the

car (original object) do not let to observe the little portions

of the doors next to them. If this represents an impediment

for the desired application results, a relaxation of the first

condition of Equation 13 must be considered.

Finally, with the described method, the calculation of

percentages of viewed fragments are trivial. Knowing the

A-EOV along the time, for moving objects, can support

decisions about the number and positions of cameras, with di-

rect application on traffic monitoring, industrial automation,

surveillance, among others. Moreover, as we can also assess

the viewing of particular segments of objects, prioritization-

based approaches can also be proposed [22].

Moreover, the described vectors can be also useful for

visualization. Figure 9 shows an example with simulated

scenario S8, adopting Pl = 2000 Points, and t = 70. In the

figure, vector ν has been used to color different segments

of the contouring perimeter, going from dark red colors (less
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TABLE II: Simulated sums of F (o)Vs
for the selected case study with Pl = 2000.
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cameras viewing that area) to full red (more cameras viewing

that area). Other vectors could be used to enhance visual

information in a simulation environment.

VI. CONCLUSION

Many camera systems will be designed to cover a set of

static of moving objects, with different particularities. For

some applications, it may be desired to compute the effective

viewing over objects, which is related to the percentage of

the objects’ perimeters that are being viewed by cameras.

The proposed approach may be employed for objects of any

format, allowing a more precise modeling of object viewing.

Multi-camera systems, and more recently, wireless visual

sensor networks, will be central in near future integrated
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Fig. 9: Visualization of captured perimeter portion at t = 70.

monitoring systems, from complex smart city environments

to smaller domestic networks [27]. The proposed approach

and the computed A-EOV may then be used for a variety of

functions, supporting efficient processing of visual coverage.

As future works, the proposed approach will be imple-

mented in a real multi-camera system in order to allow

new validation procedures. Moreover, object viewing will be

modeled in 3-D space for more complete results.
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