
 

 
Abstract—In this paper, we consider a popular kind of open 

queueing networks consisting of service stations arranged in 
series configuration with different service rate for each station. 
Poisson arrivals and exponential service times are assumed. We 
apply matrix-geometric method to evaluate steady-state 
probabilities and define performance measures, such as mean 
number in the system, mean waiting time in the system and 
blocking probability. Exact formulae of stability conditions are 
derived. Disposition strategies of service rates for each service 
station are suggested in order to increase working efficiency of 
this queueing system. 
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I. INTRODUCTION 
ncreasing operational efficiency of modern automated 
production systems is a major for reducing operating costs 

in business activities. According to Road Bureau, Ministry of 
Land, Infrastructure, Transport and Tourism, Japan [1], the 
cost due to inefficient operational procedures is approximate 
twelve trillion Yen in Japan every year. If the circumstances 
of the inefficient operational procedures can be improved by 
considering relatively better allocation of the resources, it 
would make us save huge wastes of production costs. In this 
work, we focus on decreasing the cost of production by 
suggesting disposition strategies for manufacturing industries 
utilizing automated production systems. 

Open queueing networks with no immediate waiting 
space are popular in real industrial applications (e.g. 
production line systems and I/O devices). The automated 
production line systems are applied widely in automotive 
industries. In this study, a popular open queueing networks 
with no buffers between each service station is investigated. 
This kind of queuing system is very common in modern 
automotive production line and in manufacturing processes in 
semiconductor industries. We further suggest counterintuitive 
disposition strategies based on the simulation results. 
Intuitively, the disposition strategies for keeping high 
operational performances (i.e. reducing mean waiting time of 
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the system) for this kind of system consisting of the arbitrary 
number of service stations are all the same. However, we 
discover that the disposition strategies for increasing the 
operational efficiency of the system depending on the number 
of service stations are different. Especially, automobile 
companies can benefit from our results to increase their 
operational efficiency in the production line and save related 
time cost.  

The literature on the series configuration queueing 
system with blocking phenomena can be traced back to Hunt 
[2]. He studied four particular cases of service facilities in 
series including infinite storage space between stages, no 
storage space between stages, finite storage space between 
stages, and the case of the unpaced belt-production line. 
Avi-Itzhak et al. [3] investigated a queueing system consisting 
of a sequence of two service stations with infinite queue 
allowable before the first station and no queue allowable 
between the stations. They obtained the moment generating 
functions of the steady-state queueing times and the 
generating functions of the steady numbers of customers in 
the various parts of the system. Avi-Itzhak et al. [4] studied a 
queueing system with sequence stations following an ordered 
service type. They assumed the arrival process is arbitrary and 
the time to serve each customers at the working stations is 
regular. Altiok [5] presented an approximate method for the 
analysis of open networks of queues in tandem and with 
blocking phenomena. He evaluated the steady-state 
probabilities of the number of customers at each station based 
on a specific method of decomposition where the total 
network is broken down into queues. Langaris et al. [6] 
provided a method to analyze the waiting time of a two-stage 
queueing system with blocking phenomena. They further 
considered the separation of the concepts between effective 
service time and the blocked time in the first service station. 
Papadopoulos et al. [7] developed an algorithm to model 
characteristics of production lines with no intermediate 
buffers. The marginal probability distribution of the number 
of units in each machine, the mean queue length and the 
throughput of the system can be obtained by their method. 
Avi-Itzhaket al. [8] assumed the just-in-time input for a 
queueing system with no buffers between servers under the 
communication and the blocking schemes. Akyildiz et al. [9] 
derived the exact equilibrium state probability distributions 
for two-station queueing networks with blocking-after-service 
mechanism. Avi-Itzhaket al. [10] generalized a queueing 
system under k-stage blocking. They discovered a result that 
for k > 1, the waiting times are not order-insensitive while the 
G/D/1 equivalence is maintained. 

Mathematical analysis and related applications of 
matrix-geometric method was systematically studied by Neuts 
[11]. Gomez-Corral [12] applied a general theory on 
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quasi-birth-and-death processes to study a special kind of 
queueing system with blocking and repeated attempts. 
Gomez-Corral [13] investigated a two-stage tandem queue 
with blocking under the presence of a secondary flow of 
disasters. He determined the stationary distribution at 
departure epochs by using spectral analysis and calculated the 
stationary distribution at an arbitrary time. Gomez-Corral 
[14] studied queueing networks with blocking under the 
assumption of input units follow Markovian Arrival Process 
and applied the general theory on Markov renewal processes 
of M/G/1-type in their analysis. Gomez-Corral et al. [15] 
considered a two-stage tandem G-queue with blocking, 
service requirements of phase type and arrivals of units and of 
signals. They further investigated the influence of several 
flows of signals on the performance evaluation of the 
queueing model through various probabilistic descriptors. 
Gomez-Corral et al. [16] studied the influence of the 
dependence between units and signals on the performance 
evaluation of the continuous-time Markov chain describing 
the state of the network at arbitrary times. Bierbooms et al. 
[17] developed approximate methods for fluid flow 
production lines with multi-server workstations and finite 
buffers. Their method is suitable for the estimations of 
characteristics of longer production lines. Bierbooms et al. 
[18] proposed an approximation method to determine the 
throughput and mean sojourn time of single server tandem 
queues with general service times and finite buffers by 
decomposition method. Zhou et al. [19] studied a two-stage 
tandem queueing network with Markovian arrival process 
inputs and buffer sharing. They discovered that the buffer 
sharing policy is more flexible when the inputs have large 
variant and are correlated. Hillier [20] considered the optimal 
design of unpaced assembly lines. He analyzed the joint 
optimization of both the allocation of workload and the 
allocation of buffer spaces simultaneously when the objective 
is to maximize the revenue from throughput minus the cost of 
work-in-process inventory. Sakuma et al. [21] proposed 
Whitt’s approximation to obtain the stationary distribution of 
an assembly-like queueing system with generally distributed 
time-constraint. Shin et al. [22] developed an approximation 
method for throughput in tandem queues with multiple 
independent reliable servers at each stage and finite buffers 
between service stations. Hudson et al. [23] gave complete 
reviews for the topics about unbalanced unpaced serial 
production lines. Several unanswered questions about the 
performance of assembly line are described in this work. Sani 
and Daman [25] studied a M/G/2 queueing system with an 
exponential server and a general server under a controlled 
queue discipline. The steady state distribution for the number 
of customers in the system, mean waiting time, mean queue 
length and blocking probability for the queueing system are 
derived. Ramasamy et al. [26] presented the steady state 
analysis of a heterogeneous server queueing system, Geo/G/2. 
Services containing discrete in nature can be applied through 
their analysis in many areas of communication, 
telecommunications, business and computer systems. Tsai et 
al. [27] discussed series configuration queueing systems with 
four service stations. They proposed general disposition 
strategies of the system based on original inductions of this 
works. Tsai et al. [28] further extended the series 
configuration queueing system by considering the conditions 
of system breakdowns and repairs. The disposition strategies 

of this kind of queueing system are suggested according to 
their theoretical and numerical investigations. 

We further cite surveys and bibliographies in this 
important topic by Perros [29-30], Onvural [31], Balsamo 
[32] and Hall et al. [33], two major monographs by Perros 
[34] and Balsamo et al. [35], and other special collections 
from journals [36-37]. Decomposition methods applied to 
study tandem queueing systems can be referred to Hillier et al. 
[38] and Perros et al. [39]. 

This study is the original works to propose the idea of 
disposition strategies for open queueing networks with 
different service rates in order to increase the operational 
efficiency of this popular kind of queueing systems. Moreover, 
we further discover that disposition strategies depend on the 
number of service stations of the system through numerical 
simulations. The exact results of maximum utilization of the 
system consisting of two and three service stations are also 
successfully explained by numerical results. Other theoretical 
results reveal that if one of the service stations breaks down 
without any repair processes, the utilization of the system 
become useless. We expect that our results can be applied for 
increasing the operational efficiency of production line 
systems in automobile industry. 
Our major contributions are following: 
 Methodological.  
We analyze open queueing networks with blocking 
phenomena, in particular: 
1. Constructing steady-state equations and structured 
generator matrix of the queueing system with two and three 
service stations. 
2. Giving exact formulae of stability conditions for the system 
with two and three service stations. 
3. Solving the steady-state probabilities with different service 
rates. 
4. Proposing disposition strategies for the system with 
different service rates of each service station working in high 
performance ways through simulations. 
5. Observing that the maximum utilization of the system 
decreases as the number of service stations of the system 
increases. 
6. Exact theoretical values of the maximum utilization of the 
system are clearly explained corresponding to numerical 
results. 
7. Suggesting that the management of companies should 
prepare repair processes for the system if there are 
possibilities of happening breakdowns of service stations for 
the series configuration queueing system. 
 Practical.  
We model and analyze the control of service rates for each 
service station of the system from the viewpoint of 
practitioners. 
1. Our model capture important performance measures, such 
as blocking probability of each service station and mean 
waiting in the system which provide theoretical predictions of 
the characteristics of the system. 
2. They yield insights for controlling finite resources to 
increase the operational efficiency in real applications. 
3. Companies in the automobile industry and other industries 
using similar assembly line systems can apply our results to 
improve operational efficiency of production line systems 
through internet of things (IOT) technologies and real-time 
data analytics. 
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Paper Outline: The rest of the paper is organized as 
follows. The formal description of the problem and the 
summary of notations used in our model is introduced in the 
beginning of next section.  

Detailed descriptions of matrix-geometric method 
employed to the system with two and three service stations 
and major performance measures for the system are given in 
section 3. Numerical results and the suggested disposition 
strategies for the case studies of the system are presented in 
section 4. Finally, we conclude with discussions of our works 
and indicate possible directions for future research in section 
5. 

II.  PROBLEM FORMULATION AND NOTATIONS 
In our analysis, we assume a queueing system consisting 

of independent service stations in series configuration and 
operating simultaneously. The series configuration system 
with three service stations is depicted in Figure 1. Each 
customer entering to the system follows Poisson arrival 
process with mean arrival rate  . The time to serve a 
customer in each station is exponentially distributed with 

mean service time 1


. Each customer should enter all of the 

service stations in order to finish complete services. A 
complete service is defined as after finishing all jobs in each 
service station, the customer leaves the queueing system. 
There are no intermediate waiting lines between service 
stations, so another main characteristic in the system is 
blocking. This phenomenon called blocking after service 
happens in the case that a customer completes the service in a 
service station, but another customer in the next station has 
not finished the service yet. The customer who completed the 
service is blocked by the customer who is still receiving the 
service located next station. An infinite capacity queue is 
allowed in front of the first service station. In addition, only 
one customer can enter each service station at a time and the 
service rate is independent of the number of customers. The 
service of the system obeys the first come first serve (FCFS) 
discipline. 

 
Figure 1. Series configuration queueing system with three 
service stations. 
 
 Notations 

In this section, we introduce notations used in our model 
framework. Mean arrival rate of Poisson arrivals is denoted as 
 . We reserve the notations 1  and 2  and 3  for the 
mean service rate of the station-1 and the station-2 and the 
station-3, respectively. We use 

1 2 , 3 4, ,Pn n n n  to denote the 

steady-state probability 
1 2 , 3 4, ,Pn n n n of 1n customer in the 

station-3 and 2n customer in the station-2 and 3n  customer 

in the station-1 and 4n customer in the queue. For instance, 
the steady-state probability 

,0,1 ,6P b means that there is a 

customer who is blocked in the station-1, since the customer 
in the station-2 is still receiving the service. There is no 

customer in the station-3 and 6 customers waiting in the queue. 
Similarly, for the system consisting of two service stations, 
the notation 

1 2, 3,Pn n n  means the steady-state 

probability
1 2, 3,Pn n n of 1n customer in the station-2 and 

2n customer in the station-1 and 3n  customer in the queue. 

III. MODELING FRAMEWORK 
 Matrix-Geometric Method 

We denote [ , , ,...] 0 1 2P P P P as steady-state probability 
vector corresponding to the transition matrix Q. Note that the 
steady-state probability vector comprises steady-state 
probabilities of the quasi-death-birth process. The detailed 
compositions of the sub-matrices of the transition matrix Q 
for the system with two and three service stations are given in 
Appendix. The equilibrium equation of the quasi-birth-death 
process can be described as QP = 0 , while the normalization 
condition of the steady-state probability is 1.P1 = Then, the 
global balance equations of the quasi-birth-death process can 
be written as 
 

0,0 1,0B B , 0 1P P 0                             
(1) 

0,1 1 2 2B A A ,  0 1P P P 0                       
(2) 

i 0 i 1 1 i 2 2A A A ,   P P P 0         i 1 .    
(3) 

 
There exist a rate matrix R, and the following recurrence 
relation can be constructed 
 

i 1
i i 1 1R R ,

 P P P               i 1 .    
(4) 

The unknown rate matrix R can be obtained by substituting   
(4) into (3), and simply to matrix quadratic equation 
 

2
0 1 2A RA R A 0   .                         (5) 

The simplified equations of (1) and (2) can be represented as 
 

0,0 1,0B B , 0 1P P 0                            
(6) 

0,1 1 2B (A RA )  0 1P P 0.                       
(7) 

According to Bloch et al. [24], the normalization condition 
equation that only involves 0P  and 1P  is given by 

1(I R) 1,  0 1P 1 P 1                          (8) 
where I is the identity matrix with same size as the rate matrix 
R. We apply an iterative method by successive substitution, 
described in Neuts [11] to solve the rate matrix R from (5). 
Taking (6), (7) and (8) into account, the steady-state 
probability vector of 0P  and 1P can be obtained by solving 
following matrix equation 

*
0,0 0,1

1*
1,0 1 2

B B
( ) ( ,1)

B (I R)(A RA ) 

 
  

0 1

1
P , P 0 .

1    
(9) 

where *(.)  indicates that the last column of the included 
matrix is removed to avoid linear dependency. 
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 Stability Conditions 
This section provides exact formulae of stability conditions 
for the system consisting of two and three service stations 
with equivalent and different service rates. For the reasons of 
stability and ergodicity, the stability condition is given by 
Neuts [11], 

 
A 0 A 2A A ,P 1 < P 1                             (10) 

where AP is the steady-state probability vector corresponding 

to the generator matrix A. 

The conservative stable matrix is defined to be 
0 1 2A A A A   .                          (11) 

Solving the following system equations with normalization 
condition, we can obtain the steady-state probability AP . 

A ,AP 0                                  (12) 
2

A,i
i 0

P 1


 .
                                

(13) 

Substituting the steady-state probability into (10) and 
employing the content of the matrix 0A and 2A , the exact 
formulae of stability conditions can be derived. 
 
 Exact results of stability conditions 
Theorem 1. The stability conditions of the system consisting 
of two service stations 
(1) For 1 2   ,  

2
1 1 2 2
2 2
1 1 2 2

( )   
 

    
.  

 (2) Special case: 1 2      

                         
2
3

   .
                           

Note that the exact results of the service stations with 
equivalent service rate show how the maximum utilization of 
the queueing system is decreased by removing buffers 
between each service station. The maximum utilization of the 
system with two service stations reduces to 2/3 (i.e. about 
0.667) compared with traditional tandem queuing system 
which contains an infinite queue between service stations. We 
infer this value of maximum utilization comes from the 
blocking probability of the station-1 in the condition of very 
high arrival rate is 1/3 (i.e. about 0.333). The results of the 
blocking probability of the station-1 of the system with two 
service stations can be checked in Section 3.1. 
 
Theorem 2. The stability conditions of the system consisting 
of three service stations 
(1) For 1 2 3      

3

3

N ,
D

 
                             

 

where 
3 1 2 3 1 2 2 3
3 2 2 2 2 3
1 1 2 1 3 1 2 3 1 3 2 3 3

N ( )( )

( 3 3 ),

        

                
 

and 

5 2 2
3 1 2 2 3 3

4 3 2 2 3
1 2 2 3 2 3 3

3 4 3 2 2 3 4
1 2 2 3 2 3 2 3 3

2 4 3 2 2 3 4 5
1 2 3 2 3 2 3 2 3 3

4 2 3 3 2 4 5
1 2 3 2 3 2 3 2 3

4 3 3 4 2 5
2 3 2 3 2 3

D ( )

(2 5 5 3 )

( 5 8 7 3 )

( 5 8 5 )

( 5 5 )

( 2 )

     

         

            

            

          

        .
 

 
(2) Special case: 1 2 3        

22
39

   .  

In the case of the system with three service stations, the 
blocking probability of the first service station in the 
condition of very high arrival is approximate 17/39 (i.e. about 
0.436), this reflect the intuition that the theoretical value of 
maximum utilization of the system with three service stations 
is 22/39 (i.e. about 0.564). Numerical simulations about 
blocking probability of the station-1 of the system with three 
service stations in Section 3.2. confirm our inferences 
regarding the maximum utilization of the system with three 
service stations. 

Next, we study the behavior of the system consisting of 
three service stations. We consider taking the limit of the 
service rate of each service station to zero, respectively 

1

3

0
3

Nlim 0,
D 


2

3

0
3

Nlim 0,
D 


3

3

0
3

Nlim 0
D 

 .
    

The results show that if one of the service rates of the service 
stations approaches to zero, the mean arrival rate also should 
be lowered to zero. This means that if one of the service 
stations is failed, the impact to the whole queueing system is 
fateful. Since the service rate of any service stations down to 
zero, the number of customers in the queue would growth 
rapidly and tend to diverge.

 

 
 Performance metrics 
In this section, we define the performance metrics for the 
series configuration system consisting of two and three 
service stations. Important performance measures include 
mean number in the system, mean number in the queue, mean 
waiting time in the system, mean waiting time in the queue 
and blocking probability of the service stations in front of the 
terminal station. 
Performance measures for the system consisting of two 
service stations are defined by 
(1) Mean number of customers in the system 

1,0,0 0,1,0 1,b,0 1,b,n 1 1,1,n 2 0,1,n 1
n 2

L (P P P ) (P P P ) n


  


       .     

(14) 

(2) Mean number of customers in the queue 

q 1,b,n 1,1,n 0,1,n
n 1

L (P P P ) n




    .
            

(15) 

(3) Mean waiting time in the system (Little’s Law) 

LW 


.                                       (16) 
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(4) Mean waiting time in the queue (Little’s Law) 

q
q

L
W 


.                                     (17) 

(5) Blocking probability of the customer in the station-1 

b 1,b,n
n 0

P P




 .
                               

(18) 

Performance measures for the system consisting of three 

service stations are defined by 

(6) Mean number of customer in the system 

3 0,0,1,0 0,1,0,0 1,0,0,0 1,b,0,0 0,1,b,0

0,0,1,1 0,1,1,0 1,0,1,0 1,1,0,0

0,0,1,n 1 0,1,1,n 2 1,0,1,n 2 1,1,1,n 3
n 3

1,b,1,n 2 0,1,b,n 1 1,1,b,n 2
n 2

1,b,b,n 1
n 1

L (P P P P P )
2(P P P P )

(P P P P ) n

(P P P ) n

(P )



   




  





    

   

    

   

 





n


 .

  (19) 

(7) Mean number of customers in the queue 

q,3 0,0,1,1 0,1,1,1 1,0,1,1 0,1,b,1 0,0,1,2

0,0,1,n 0,1,1,n 1,0,1,n 0,1,b,n
n 3 n 2

1,1,1,n 1,b,1,n 1,b,b,n 1,1,b,n
n 1

L (P P P P ) 2(P )

(P ) n (P P P ) n

(P P P P ) n

 

 





    

     

    

 

 .
         

  

(20) 
(8) Mean waiting time in the system (Little’s Law) 

3
3

LW 


.                                 (21) 

(9) Mean waiting time in the queue (Little’s Law) 

q,3
q,3

L
W 


.
                              

(22) 

(10) Blocking probability of the customer in the station-1 

b,1 1,b,b,n 0,1,b,n 1,1,b,n
n 0

P P P P




   .
          

(23) 

(11) Blocking probability of the customer in the station-2 

b,2 1,b,b,n 1,b,0,n
n 0

P P P




  .
                    

(24) 

(12) Blocking probability of the customer in the station-1 and 

the station-2 

b,12 1,b,b,n
n 0

P P




 .
                       

(25) 

III. NUMERICAL RESULTS 
In this section, we perform numerical experiments for 

the queueing system consisting of two and three service 
stations. In each case, we present performance metrics of the 
system with equivalent service rates (i.e. 1 2 3       ) 

and different service rates. According to the results of 
simulation, we will suggest better disposition strategies to 
increase operational efficiency for the system. 
 
3.1. Two service stations 
 Same service rates for each service station 

We first present how mean number in the system and 
blocking probabilities of the station-1 change as the mean 
arrival rate varies   from 0.01 to 0.66, as shown in Figure 2 
and Figure 3, respectively. We observe that mean number in 
the system increases as increases. This result also verifies 
the stability condition we have derived in the Section 2. The 
trends of blocking probabilities also increase and finally 
approach to about 0.33. 
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Fig 2. Mean number in the system (2 stations) 
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Fig 3. Blocking probability (2 stations) 
 
 Different service rates for each service station 

Next, we study the impact of different rates which result 
in significantly distinct performances for the series 
configuration system. We set 1 22, 1     and 

1 21, 2    , then vary the mean arrival rate   from 0.01 
to 0.60. It is discovered that when we set higher service rate 
for the station-1, the mean waiting time in the system is less 
than that of setting higher service rate for the station-2. Since 
setting higher service rate for the station-1 would advance the 
opportunity for the customers waiting in the queue to enter the 
first service station, it can reduce mean waiting time in the 
queue for customers, as show in Figure 4 and Figure 5, 
respectively. Although setting higher service rate for the 
station-1 may cause relatively higher blocking probability of 
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the station-1 compared with the results of setting higher 
service rate for the station-2, this would not cause significant 
effect since the happening of blocking phenomenon in this 
case is still relatively low, as shown in Figure 6. We suggest 
setting higher service rate for the station-1 of the system with 
two service stations in order to maintain higher operational 
efficiency when the service rate of each service station is 
different. 
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Fig 4. Mean waiting time in the system with different service 
rates (2 stations) 
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Fig 5. Mean waiting time in the queue with different service 
rates (2 stations) 
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Fig 6. Blocking probability with different service rates 
 (2 stations) 
 
 
 

3.2. Three service stations 
 Same service rates for each service station 

The mean number in the system and blocking probability 
of the station-1 and the station-2 as a function of mean arrival 
rate of the system consisting of three service stations are 
shown in Figure 7 and Figure 8, respectively. The numerical 
results of mean number in the system are consistent with the 
exact results of stability conditions we derived in the section 2, 
which shows the upper bound of the stability condition 

approach to 22
39

( 0.564 ). In addition, it is noted that the 

blocking probability of the station-1 is higher than that of the 
station-2. The blocking probability of the station-1 and the 
station-2 happening simultaneously is relatively low in this 
case. 
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Fig 7. Mean number in the system (3 stations) 
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Fig 8. Blocking probability (3 stations) 
 
 Controlling the service rates of the two service stations 

In the case of different service rates, we assume that we 
are able to control the service rates of two service stations and 
the service rates of one service station at one time. Intuitively, 
it is better to set higher service rates for the service stations 
before the terminal service station (i.e. the last service station 
of the series configuration queueing system) according to the 
results of the system with two service stations. In the case of 
controlling service rates of two service stations, we 
set 1 2 32, 2, 1      and 1 2 31, 2, 2       and 

1 2 32, 1, 2      , then vary the mean arrival rate  from 
0.01 to 0.75. The numerical results suggest that setting higher 
service rates for the station-2 and the station-3 result in best 
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operational efficiency, as shown in Figure 9 and Figure 10, 
respectively. Since setting lower service rate for the station-1 
would cause less waiting in the queue, it makes easier for the 
customer to enter service stations to receive their services. 

It is observed that the mean waiting time in the system of 
the case 1 2 32, 2, 1       is higher than that of the case 

1 2 32, 1, 2       when the mean arrival rate is lower 
than 0.56. This result reveals the fact that when the mean 
arrival rate is lower than 0.56, it takes longer time to complete 
services in the service stations for the case 

1 2 32, 2, 1      , since the mean waiting time in the 
queue is almost the same for both cases. The setting of higher 
service rates for the station-1 and the station-2 would increase 
blocking probability of the station-1 and the station-2, so it is 
the major reason that the customers take longer time to 
receive services in the case of 1 2 32, 2, 1      , as 
shown in Figure 11, Figure 12 and Figure 13, respectively. 
When the mean arrival is greater than 0.56, the mean waiting 
time in the queue in the case of 1 2 32, 1, 2       
becomes relatively longer than that of the case 

1 2 32, 2, 1      . We finally observed that the mean 
waiting time in the system in the case of 

1 2 32, 1, 2       is larger than that of the case 

1 2 32, 2, 1      . 
We suggest 1 2 31, 2, 2       as the best 

disposition strategy, when we are able to control service rates 
of two service stations for the system. 
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Fig 9. Mean number in the system with different service rates 
by controlling two service stations 
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Fig 10. Mean number in the queue with different service rates 
by controlling two service stations 
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Fig 11. Blocking probability with different service rates by 
controlling two service stations, 1 2 31, 2, 2       
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Fig 12. Blocking probability with different service rates by 
controlling two service stations, 1 2 32, 2, 1       
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Fig 13. Blocking probability with different service rates by 
controlling two service stations, 1 2 32, 1, 2       
 
 Controlling the service rates of the one service station 

Finally, we study the case of controlling service rate of 
one service station, we set 1 2 32, 1, 1      and 

1 2 31, 2, 1       and 1 2 31, 1, 2      , then vary 

the mean arrival rate   from 0.01 to 0.6. The plots are 
presented in Figure 14 and Figure 15, which shows that in the 
case of 1 2 32, 1, 1      , the mean waiting time is the 
greatest compared with other two cases. In this disposition 
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strategy, the customers in the queue are difficult to enter the 
service stations, because of the high blocking probability of 
the station-1. 

It is noted that the mean waiting time in the system of the 
case 1 2 31, 1, 2       is lower than that of the case 

1 2 31, 2, 1       when the mean arrival rate is lower 
than 0.46. Since the mean waiting time in the queue is almost 
the same for both cases, we discover that the case 

1 2 31, 2, 1       would result in longer time to complete 
the services in the service stations, because of the increasing 
blocking probabilities of the station-1 and the station-2, as 
shown in Figure 16, Figure 17 and Figure 18, respectively. 
The waiting time in the queue in the case of 

1 2 31, 1, 2       becomes relatively longer than that of 
the case 1 2 31, 2, 1      , when the mean arrival is 
greater than 0.46. It is observed that the mean waiting time in 
the system in the case of 1 2 31, 1, 2       is larger than 
that of the case 1 2 31, 2, 1      . The setting of lower 
service rates in the station-1 and the station-2 makes 
customers take longer waiting time in the queue.  

It is suggested that set 1 2 31, 1, 2       as the best 
disposition strategy when the mean arrival rate is lower than 
0.46. Conversely, the case of 1 2 31, 2, 1       is a 
relatively better disposition strategy when the mean arrival 
rate becomes larger than 0.46 in the case that we can control 
only one of the service rates for the system consisting of three 
service stations. 
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Fig 14. Mean waiting time in the system by controlling one 
service station 
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Fig 15. Mean waiting time in the queue by controlling one 
service station 
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Fig 16. Blocking probability with different service rates by 
controlling one service station, 1 2 32, 1, 1       
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Fig 17. Blocking probability with different service rates by 
controlling one service station, 1 2 31, 1, 2       
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Fig 18. Blocking probability with different service rates by 
controlling one service station, 1 2 31, 2, 1       

IV. CONCLUSIONS 
    We have shown that matrix-geometric method is 

useful to evaluate steady-state probability of complex 
quasi-birth-death processes. Therefore, we can further 
understand characteristics of the series configuration 
queueing system by defining important performance 
measures such as mean number in the system, mean number in 
the queue, blocking probabilities, mean waiting time in the 
system and mean waiting time in the queue. We have further 
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suggested disposition strategies for the system consisting of 
two and three service stations through the numerical results of 
these performance measures. 

The numerical results of the system with two service 
stations show that it is better to set higher service rate for the 
station-1 in order to increase the operational efficiency of the 
system. Intuitively, this disposition strategy (i.e. arrange 
higher service rate for the service stations in front of the 
terminal station) can be applied to the series configuration 
queueing system consisting of more than 2 service stations. 
Surprisingly, the simulations presented the opposite results on 
the intuitions. We have also given better disposition strategy 
for the system consisting of three service stations according 
our case studies. If we are able to control two service rates of 
the service stations, the case 1 2 31, 2, 2       is the best 
disposition strategy. On the other hand, when we just can 
control only one of the service rate of the service stations, the 
case 1 2 31, 1, 2       and the case 1 2 31, 2, 1       
would be better depending on the conditions of mean arrival 
rate. 

The simulation results show that the disposition 
strategies for this kind of queueing system with the different 
number of service stations are distinct (i.e. the even number of 
service stations vs. the odd number of service stations). We 
should arrange higher service rate for the service stations near 
the entrance of the system with the even number of service 
stations. On the other hand, it is suggested that setting higher 
service rate for the service stations located before the terminal 
station of the system with the odd number of service stations. 
This proposition is valuable to increase the whole operational 
efficiency of this kind of queueing system in real industrial 
applications. We further suggest that the management of 
companies should prepare repair processes for the system 
with possibility of happening breakdowns of service stations. 

Future research will focus on statistical analysis of the 
real manufacturing systems and compare the results of the 
analysis with our theoretical results developed in this research. 
In addition, suggestions for the cases that the series 
configuration queueing system consisting of n service stations 
with different service rates are worth for future research. 
Transient analysis and the time to serve a customer follows 
general distributions would be considered further. 

APPENDIX 
The structure of the transition matrix Q and its 
sub-matrices for the system with two service stations 
    The transition matrix of the series configuration queueing 
system with two service stations can shown as 
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The following sub-matrices show the composition of the 
transition matrix corresponding to the quasi-birth-death 
process for the system with two service stations. 
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The structure of the transition matrix Q and its 
sub-matrices for the system with three service stations 
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The details of sub-matrices of the composition of the transition 
matrix corresponding to the quasi-birth-death process for the 
system with three service stations are given by 
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   
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 
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