
 

Abstract—Pilot placement allocation is a key factor to 

improve the channel estimation performance in orthogonal 

frequency division multiplexing (OFDM) systems. However, 

conventional pilot optimization scheme is not attractive due to 

its high computational complexity under exhaustive search. To 

address this problem, a novel joint pilot design scheme utilizing 

the stochastic optimization scheme is proposed in this paper. It is 

focused on pilot placement optimization to improve the 

performance of sparse channel estimation. The proposed scheme 

combines the coherence minimization criterion and effective 

feedback of channel state information (CSI) at the receiver to 

jointly optimize the pilot placement to obtain the near-optimal 

pilot pattern, it is a tradeoff between accurate channel 

estimation and computational complexity without affecting the 

systems bandwidth usage. Simulation results show that the 

proposed scheme achieves better bit error rate (BER) 

performance when compared with the known stochastic 

optimization algorithm and random method. 

 
Index Terms—OFDM, sparse channel estimation, compressed 

sensing, pilot design, feedback 

 

I. INTRODUCTION 

S a promising modulation technique for high speed 

communication systems, OFDM technique has been 

widely adopted by various broadband wireless 

communication. However, high peak-to-average power ratio 

(PAPR) [1] and channel estimation accuracy [2] is the major 

task for OFDM systems. Considering the importance of 

channel estimation to the system performance, this paper 

investigates the improvement of channel estimation accuracy. 

Generally, the channel estimation method can be categorized 

into the following three classes: 1) pilot-aided channel 

estimation, e.g., the least square [2], minimum mean square 

error (MMSE) [3]; 2) semiblind channel estimation [4]; 3) 

blind channel estimation [5]. Since the pilot-aided channel 

estimation does not need the underlying multipath channel, 

many investigations employed the channel estimation based 

on pilot-aided.  

In high-speed broadband communication, the wireless 

channel delay spread could be very large, and the number of  

non-zero paths are relatively small, thus the wireless channel  
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can be modeled as a sparse channel [4]. The inherent sparsity 

of the wireless channels can be exploited by using the 

compressed sensing (CS) techniques [6]. Not only a high 

accuracy can be acquired based on CS channel estimation, but 

also the system transmission efficiency can be improved when 

compared with the conventional channel estimation method, 

therefore the CS techniques have been employed in the sparse 

channel estimation.    

Recently, sparse channel estimation methods can be 

summarized as two main branches, one branch is the greedy 

algorithm, e.g., orthogonal matching pursuit (OMP). Another 

branch is the optimization of pilot pattern. Since the 

calculation of an exhaustive search could be huge and large 

memory would be required, it is impractical to select the 

optimal pilot pattern. Hence, the restricted isometry property 

(RIP) criterion is proposed to justify the pilot pattern selection 

[8], [9]. However, there is no standard polynomial time 

criterion to check whether a matrix satisfies RIP, the 

intractability of checking for the RIP of matrix motivated 

researchers to propose other methods to optimize pilot, such 

as the channel estimation based on cross-entropy optimization 

method [7], [10], [11] and the channel estimation based on the 

coherence criterion [12]-[17]. In [7], a cross-entropy 

optimization method to search for optimal pilot positions in 

sparse channel estimation scenarios is introduced. In [10], a 

pilot design method that utilizes convex optimization together 

with the cross entropy (CE) optimization is proposed to 

minimize the channel estimate mean squared error (MSE) of 

frequency selective channel. A novel scheme that utilizes 

constrained cross-entropy optimization to obtain an 

optimized pilot pattern is proposed in [11].   

Unlike the work in [7], [10] and [11], a number of 

approaches based on coherence criterion are proposed. In 

[12], a new method based on lower coherence of the 

submatrix of the unitary discrete fourier transform (DFT) 

matrix associated with the pilot subcarriers is proposed to 

optimize pilot pattern. A modified discrete stochastic 

approximation method has been used to optimize the pilot 

placement in OFDM systems is proposed in [13]. Moreover, a 

fast pilot optimization algorithm based on minimizing the 

cross correlation of the measurement matrix is demonstrated 

in [14]. The [15] presented a deterministic procedure that 

jointly optimized for pattern and power of pilots for OFDM 

sparse channel estimation. The [16] proposed three pilot 

design schemes based on the mutual incoherence property 

(MIP) for sparse channel estimation in OFDM systems to 

obtain a near-optimal pilot pattern. However, the pilot pattern 

with lower coherence does not guarantee a better channel 
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estimation performance compared to the pilot pattern with 

larger coherence [17]. 

In this paper, a novel joint pilot design scheme by using the 

CS techniques to obtain the near-optimal pilot pattern is 

proposed. By combining the coherence minimization 

criterion and the effective feedback of channel state 

information (CSI) at the receiver, the proposed scheme jointly 

optimizes the pilot placement to obtain the near-optimal pilot. 

Meanwhile, the proposed scheme achieves a better channel 

estimation performance and the accepted computational 

complexity. 

This paper is organized as follows. Section II introduces 

the sparse channel model for OFDM systems based on CS 

theory. Section III presents an optimization algorithm for 

pilot pattern design. Simulation and performance evaluation 

are given in Section IV. Conclusions are drawn in Section V. 

The notations used in this paper are defined as follows. A 

bold-face uppercase letter denotes a matrix, and a bold-face 

lowercase letter denotes a vector.  
T

 ,  
H

  , diag  , x , 

 arg  , 0M N ,    and 
2
  denote transpose, conjugate 

transpose (Hermitian), the diagonal matrix, the absolute value 

of x , the argument function, the M N  zero matrix, the 

Kronecker delta function and the 2 -norm,  respectively.   

II. SYSTEM MODEL 

An OFDM system with N subcarriers is considered. 

Among which pN  subcarriers are selected as pilots, other 

subcarriers are used for data transmission. A 

non-equally-spaced comb-type pilot pattern is employed, and 

denote the pilot position as  1 2, , ,
pNP p p p , 

 1 21 ...
pNp p p N     . The corresponding transmitted 

pilot symbols and the received pilot symbols are denoted as 

PX  and 
PY .   

The channel impulse response (CIR) is given by  

   
1

( , )
L

l l
l

h t h t   


                       (1) 

The multipath channel can be modeled as a finite impulse  

 

response (FIR) filter with impulse response 

     
T

= 1 , 2 , ,h h h h L   , where L  is the number of paths, 

 lh t  is the complex-valued channel impulse response, 

and
l  is the delay spread for the thl path.   

The received pilot symbols in OFDM can be expressed as 

 = WP P P L Pdiag X F hY                                 (2) 

where    1 2
= , , ,

N p
P p p pdiag X diag X X X ,

     
T

= 1 , 2 , ,h h h h L   , 
1 2

T

W = , , ,
N p

P p p pW W W 
  

is white 

complex Gaussian noise (AWGN) vector, and 

1 2

T

= , , ,Y
N p

P p p pY Y Y 
 

, and 
P LF 

 is selected from a 

standard N N  DFT sub-matrix, given by 
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,  2 /j Ne    

We assume 

 = P P LA diag X F                                       (3) 

Therefore, the equation (2) can be rewritten as  

                             = WYP PAh                                              (4) 

When matrix A  has more rows than columns, i.e., pN L , 

the channel in (4) can be solved by least squares (LS) 

estimation. However, when matrix A  has more columns than 

rows, i.e., pN L , the problem becomes underdetermined. In 

this case, the LS estimation could not provide an accurate 

solution [7]. Fortunately, it was found that CS theory can be 

used to solve this problem because the wireless channel 

possess the feature of sparsity, i.e., h  is a sparse vector. 

However, the RIP criterion is poor to test whether a matrix 

satisfies RIP in polynomial time [15]. Therefore, a novel joint 

pilot design scheme is proposed and presented in the Section 

III. The OFDM system model is illustrated in Fig.1. 
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Fig. 1.   OFDM system model

Engineering Letters, 25:1, EL_25_1_02

(Advance online publication: 22 February 2017)

 
______________________________________________________________________________________ 



 

III. PROPOSED JOINT PILOT DESIGN SCHEME 

In this section, a novel joint pilot design scheme to obtain 

the near-optimal pilot is given as follows.  

A. Definition 

We define the coherence of the matrix A  is the maximum 

absolute of inner product between two different columns of 

A :    

     H= max
m n

A A m A n


                 (5) 

where  A m  and  A n  are different columns of A , 

respectively. 

Assume that the initial pilot pattern is 

1 2{ , , , }
pNP p p p , where 

1 21 ...
pNp p p N     , then 

(5) can be written as  

     2 1

1
1

max
p

i

N
p j

i
j L

i

A x p w


 


                 (6)                             

where  
2

ix p  is the power of the i th pilot symbol. For 

simplicity, we assume  
2

=ix p E  and 
 1

,
1

=
p

i

N
p j

i j
i

w g




 , then 

(6) can be rewritten as 

  ,
1
max i j

j L
A E g

 
                               (7)                                                  

The objective of pilot design scheme is the minimization of 

( )A , which can be transformed to minimize ,i jg  by using 

the equation (7) to optimize the pilot pattern. Therefore, the 

optimal pilot sequence can be represented as   

 arg min  opt
p

P A                            (8) 

B. Proposed Scheme 

As mentioned above, the key idea of the proposed scheme 

is to search the near-optimal pilot pattern through utilizing the 

stochastic optimization method instead of exhaustive search. 

Since we have known that the pilot sequence with smaller 

 A  does not necessarily generate a better channel 

estimation performance compared to that of pilot sequence 

with larger  A , here the low coherence criterion and the 

effective feedback of the channel state information at the 

receiver is combined to jointly optimize the pilot placement to 

obtain the near-optimal pilot pattern. The detailed procedure 

of the proposed joint pilot design algorithm, namely 

Algorithm 1, was introduced in Table I.  

 

TABLE I 

 OUR PROPOSED ALGORITHM 1  

Input: randomly generate NP , BER threshold th  

Output: the optimized pilot pattern optP   

Initialization: =0 p pN N
 , =0 pM N

  

for 1, 2, ,l M  

if  = optP P  

Return optP  

else  

Perform the next step 

end if 

for =1,2, , pm N  

Denote the set of fixing elements except for the thm   

position element of 
mP  and its candidate set as 

 = \m m mK P P m  and = \m mI N K , respectively; 

          Remove one element from 
mI and place on  mP m ;  

Select one pilot pattern with smallest  A  from all 

placements by using the equation (7), and save the 

result to  ;  

end for  m  

           Select one pilot pattern corresponding to the   

           smallest  A  from the    as the next   

           optimization pilot 
nP ; 

for =1,2, , pn N  

  Denote the set of fixing elements except for the 

 thn position element of 
nP  and its candidate set 

  as   = \n n nK P P n and = \n nI N K , respectively; 

 Remove one element from the 
nI and place on the      

thn  position of 
nP ;  

 Select the pilot corresponding to the smallest  A   

 from all placements as the next pilot 
nP  ; 

 Sequentially optimize other location of 
nP   until      

 all the position elements updated; 

end for  n  

 Select the pilot corresponding to the global    

 minimum as the final result optP ;  

end for  l  

 Select the optP  from  ,  and apply the optP to compute 

the BER at the receiver, and justify whether the generated 

BER satisfies th  until meet the BER condition, output the 

optimized pilot optP . 

 

The set of subcarrier N  is set as 1,...,N , the iteration 

number of outer loop  and inner loop is set as =1,2, ,l M and 
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=1,2 , pm N， , respectively. We start with extracting pN  

elements from the N  to generate a random pilot sequence P , 

i.e., 
1 2, , ,

pNp p p . Assume that   is a zero vector of 

p pN N  length to save each optimized result from the inner 

loop. If the random pilot sequence has the same result as 

optimization of the last inner loop, the inner loop process will 

not perform. Only when the value is different, the inner loop 

begins. Once the optimization of the inner loop is completed, 

the operation for the outer loop starts. 

The detailed procedure of the inner loop can be described 

as follows. For each position of 
mP , i.e., =1,2 , pm N， , fix 

1pN   positions except for the thm  position. Assume the set 

constituted by the fixed elements is 
mK , the candidate set 

mI  

is \ mN K . At each iteration, one element will be selected 

from the candidate set 
mI  and placed on the thm  position of 

mP , then choose the pilot sequence with a smaller  A  

from all placements by using the equation (7)  and save in  . 

After that, search one placement that have the smallest  A  

from the   as the next optimization initial value 
nP . For 

each position of 
nP , i.e., =1,2 , pn N， , similarly, fix on 

1pN   positions except for the thn  position, assume the set 

nK  consist of that have been fixed elements, and denote the 

candidate set 
nI  as \ nN K . We remove one element from the 

nI  and place it on the thn  position of 
nP , search the pilot 

sequence with lower  A  from all placements as the next 

pilot 
nP  , then perform the optimization for other location of 

nP   sequentially until all position elements have been updated, 

which can guarantee the optimization direction towards the 

global optimum value. Finally, the pilot sequence with 

minimum  A  according to the low coherence criterion 

will be selected as the optimization result of the inner loop. 

In the outer loop, M iterations were performed, each 

iteration result will save in  , from which select the pilot 

sequence that have the smallest  A  as the optimal pilot 

sequence optP . Meanwhile, the bit error rate (BER) threshold 

criterion have been introduced to justify whether the BER 

generated at the receiver meet the given BER threshold 

condition 
th . Once the parametric condition meets 

th , the 

pilot sequence will be selected as the near-optimal pilot 

pattern and feed back to the quaternary phase-shift keying 

(QPSK) modulation data, otherwise another optimization 

process will be performed until the result satisfies the given 

th .    

In the next section, the effectiveness of our design scheme 

on BER will be tested via Monte-Carlo simulations. 

IV. SIMULATION AND PERFORMANCE EVALUATION 

A simulation was carried out in this section to evaluate the 

BER performance of the proposed Algorithm 1 and other 

methods. In this paper, the OFDM systems adopted the QPSK 

modulation and a sparse multipath channel h  with 60L   

taps, where the position of 4 non-zero taps are generated 

randomly and the attenuation of each path is independent and 

identically distributed (i.i.d.) complex Gaussian distributed 

with zero mean and unit variance. Furthermore, data symbol 

and pilot symbol set as the same power.  

In our simulation, the proposed Algorithm1 with stochastic 

sequential search (SSS) and stochastic parallel search (SPS) 

scheme which are proposed in [16] and the random method 

were compared. The above mentioned methods were based on 

the convex channel estimation, the BER threshold 
th  was set 

to 
th

-4 -2
5 10 1 10    and the simulation was performed 200 

iterations. Furthermore, four methods were validated under 

different N  and pN . The pilot placements generated from 

four methods corresponding to different N  and pN  were 

presented in Table II, Table III, Table IV and Table V, 

respectively. Since the BER performance is the ultimate 

measurement of the OFDM systems, the BER performance of 

four methods were mainly investigated and the BER 

performance of four methods with different values of N  and 

pN  were given in the Fig. 2, Fig. 3, Fig. 4 and Fig. 5, 

respectively. 

Since the optimization of pilot sequence is generated 

offline before the transmission of OFDM signals, we only 

need to choose the pilot sequence corresponding to the best 

performance from these generated pilot sequences, thus the 

computational complexity of Algorithm 1 is still acceptable. 

 

 TABLE II 

COMPARISON OF PILOT PLACEMENT    ,  = 128, 8pN N  

Method Numbers of pilots ( =8
p

N ) 

Algorithm 1 3       25      45      47      77       81       91      105 

SSS 5       25      45      47      77       81       87      105  

SPS 31     42      46      47      64       87      113     116 

Random 88     96      101    103    107     110    111     112 

 

TABLE III 

COMPARISON OF PILOT PLACEMENT    ,  = 128, 16pN N  

Method Numbers of pilots ( =16
p

N ) 

Algorithm 1 
   12     21     25      33      62      69       75     79    81    

    88    89     103    105    107    113     128  

SSS 
1       3        24      33      59      62       69     75     79     

88     89     103    105   107    113     128 

SPS 
4       5        22      31      41      54        62     79     81    

97    109    112   121    123    125     127 

Random 
4       9       12     15      16      19       23     26     32    

34     35     37     41      43      49       50 

 

TABLE IV 

COMPARISON OF PILOT PLACEMENT    ,  = 256, 16pN N  

Method Numbers of pilots ( =16
p

N ) 

Algorithm 1 
16       69       77      105     110     140   153    165   181   

184   192    196   204    230    251   254 

SSS 
5       25      38     45      47      69     72     77     87       

105   140    153   184    192    196   204  

SPS 
11     51      60     91      92      99     119   123   127    

134   152    170   174    187    190   244 

Random 
7       16       20     23      33     34     46     59     63    

72     93       94     101    106   115   126 
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TABLE V 

COMPARISON OF PILOT PLACEMENT    ,  = 256, 32pN N  

Method Numbers of pilots ( =32
p

N ) 

Algorithm 

1 

24     41      69     78      82     85     90      96    102    

110   125     127    136    148    152   157    160   163   

170   190     201    209    215    218   226    228   229   

    244   248    249    251   252 

SSS 

6       24      41      48     50      81     85     90    95     

    96     102     110    125    127    148   157   160   163    

168   170     190    194    201    208   210   218   228    

229   245    248    250   251 

SPS 

12     28      29     40      48      53     66     73    76      

88     92       96     106    110    113   115   118   122    

126   138    152   156    165   178   181   199   209    

212   216    228   233    236 

Random 

    3       4        7       11      13      15     17     33    36     

40     43   45     51      56      57     69     72   77       

80      84    86      91      92       97     232    233   237 

238   240    242   253    254  

 

The pilot placement generated from four methods are given 

in table II when    ,  = 128, 8
p

N N , and the BER performance 

corresponding to pilot placements obtained from above 

methods are presented in Fig. 2. From Fig. 2, we observe that 

the optimized pilot placements can significantly improve the 

BER performance of OFDM systems compared to random 

method, which means that the proposed Algorithm 1, SSS and 

SPS are superior to random method. Fig. 2 also shows 

Algorithm 1 achieves better performance than SSS and SPS, 

among which SSS performs slightly better than SPS. The 

Algorithm 1 obtains about 1~3 dB gain in signal-to-noise 

ratios (SNR) at the -3BER=5 10  compared to SSS and SPS 

respectively. Besides, the BER value of Algorithm 1 is 

reduced by nearly 0.001 and 0.002 at SNR=30 dB when 

compared with SSS and SPS respectively. 

Table III presents the pilot placement for above methods 

when    ,  = 128, 16
p

N N , Fig. 3 shows the BER performance 

of different methods when    ,  = 128, 16pN N . As shown in Fig. 

3, the Algorithm 1 achieves better performance than other 

methods, and the BER value of the Algorithm 1 is 
-4BER=6 10  at SNR=30 dB.  

Table IV and Table V respectively show comparison of 

pilot placements by employing four methods when 

   ,  = 256, 16
p

N N  and    ,  = 256, 32
p

N N . Fig. 4 and Fig. 5 

respectively plot the BER performance of different pilot 

placements under four channel estimation methods when 

   ,  = 256, 16
p

N N  and    ,  = 256, 32
p

N N . In Fig. 4, the 

Algorithm 1 have similar BER performance with SSS and 

SPS when SNR is lower than 15dB, the advantage of 

Algorithm 1 can be reflected clearly in the following 15dB. In 

Fig. 5, we see that the considerable BER performance 

compared to Fig. 4 can be obtained by using more pilots, this 

is because more pilots can help the receiver more accurately 

estimate the channel, however, it will reduces the spectral 

efficiency. 

From Fig. 2 and Fig. 3, we observe that the BER of the 

Algorithm 1 decreases from  -38 10  to -34 10  at SNR=20 

dB, which demonstrate the considerable BER performance 

can be obtained by using more pilots, this is because the more 

pilots can help the receiver more accurately estimate the 

channel, however , it will reduces the spectral efficiency.  As 

shown in Fig. 3 and Fig. 4, the BER performance of the above 

methods obviously degrades with N  increases when pN  

keep unchanged. 
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Fig. 2.   BER Versus SNR of Different Methods for 
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Fig. 3.   BER Versus SNR of Different Methods for 

   ,  = 128, 16pN N  
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Fig. 5.   BER Versus SNR of Different Methods for 

   ,  = 256, 32pN N  

 

It is seen from the above simulation results that the 

Algorithm1, SSS and SPS have better performance than 

random method, this is due to the Algorithm 1, SSS and SPS 

fully exploits the inherent sparsity of channel. Furthermore, 

the simulation results demonstrated the superior BER 

performance of the Algorithm1 compared to other methods.  

V. CONCLUSIONS 

In this paper, we proposed a novel joint pilot design scheme 

to allocate pilot placement in OFDM systems. By utilizing the 

low coherence minimization criterion in the procedure of pilot 

optimization, a better channel estimation performance can be 

obtained. Meanwhile, the proposed scheme combined the rule 

of effective feedback of optimal pilot placement at the 

receiver to ensure the better channel estimation result. 

Simulation results have validated the BER performance 

improvement of our proposed scheme compared to SSS, SPS 

and random method.   
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