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Abstract—In this paper, the problem of finite-time stabi-
lization by output feedback is investigated for a class of
high order nonholonomic systems in power chained form
with uncertainties. By skilly using finite-time stability theorem
and homogeneous domination approach, a constructive design
procedure for output feedback control is given. Together with a
novel switching control strategy, the designed controller renders
that the states of closed-loop system are regulated to zero in a
finite time. A simulation example is provided to illustrate the
effectiveness of the proposed approach.

Index Terms—high order nonholonomic systems, output feed-
back, homogeneous domination approach, sign function, finite-
time stabilization.

I. INTRODUCTION

IN the past decade, nonholonomic systems have attracted
much attention because they can be used to model many

real systems, such as mobile robots, car-like vehicle and
under-actuated satellites, see, e.g., [1-3] and the references
therein. However, due to the limitation imposed by Brockett’s
necessary condition [4], this class of nonlinear systems
cannot be stabilized by stationary continuous state feedback,
although it is controllable. As a consequence, the well-
developed smooth nonlinear control theory and methodology
cannot be directly used to such systems. To overcome this
obstruction, with the effort of many researchers a number
of intelligent approaches have been proposed,with the effort
of many researchers a number of intelligent approaches
have been proposed, which mainly include into discontin-
uous feedback [5,6], time-varying feedback [7,8] and hybrid
stabilization [9]. Using there valid approaches, the robust-
ness issue of nonholonomic systems with drift uncertainties
has been extensively studied [10-15]. In particular, as the
extension of the classical nonholonomic systems, the high
order nonholonomic systems in power chained form have
been recently achieved investigation [16-19]. Nevertheless,
it should be noted that most of the existing works only
consider the feedback stabilizer that makes the trajectories
of the systems converge to the equilibrium as the time goes
to infinity.

Manuscript received May 25th, 2016; revised September 19th, 2016.
This work is partially supported by National Nature Science Foundation
of China under Grants 61403003, 61073065, the Key Program of Science
Technology Research of Education Department of Henan Province under
Grants 13A120016, 14A520003 and the Scientific and Technological Project
of Anyang City under Grant 2015310.

Yanling Shang and Deheng Hou are with School of Software En-
gineering, Anyang Normal University, Anyang 455000, P. R. China
hnnhsyl@126.com

Fangzheng Gao is with School of Mathematics and Statistics, Anyang
Normal University, Anyang 455000, P. R. China gaofz@126.com

Compared to the asymptotic stabilization or exponential
regulation, the finite-time stabilization, which renders the
trajectories of the closed-loop systems convergent to the
origin in a finite time, has many advantages such as fast
response, high tracking precision, and disturbance-rejection
properties [20]. Hence it is more meaningful to investi-
gate the finite-time stabilization problem than the classical
asymptotic stabilization. In recent years, the problem of
finite-time stabilization of nonholonomic systems has been
studied and some interesting results have been obtained [21-
27]. Particularly, in the case when only parts of the states
are measurable, [28] studied the finite-time stabilization
by output feedback for a class of nonholonomic systems
with nonlinearities. However, due to some intrinsic features
of high order nonholonomic systems, such as its Jacobian
linearization being neither controllable nor feedback lineariz-
able, lead to the existing finite-time control methods highly
difficult to this kind of systems or even inapplicable. To the
best of the authors knowledge, there is no result referred
to the finite-time stabilization of high order nonholonomic
systems by output feedback.

Motivated the above discussion, by introducing a com-
bined homogeneous domination and sign function approach,
and overcoming some essential difficulties such as the weak-
er assumption on the system growth, the appearance of the
sign function and the construction of a continuously differen-
tiable, positive-definite and proper Lyapunov function, in this
paper we will focus on providing a solution to the problem
of finite-time output feedback stabilization for nonholonomic
systems with uncertainties.

The rest of this paper is organized as follows. Section
2 introduces some preliminaries and formulates the control
problem. Section 3 presents the control design procedure
and the main results. Section 4 gives a simulation example
to illustrate the theoretical finding of this paper. Finally,
concluding remarks are proposed in Section 5.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

The following preliminaries are to be used throughout the
paper.

Notations. Throughout this paper, the following notations
are adopted. R+ denotes the set of all nonnegative real num-
bers and Rn denotes the real n-dimensional space. For any
vector x = (x1, · · · , xn)

T ∈ Rn denotes |x| = (
∑n

i=1 x
2
i )

1
2 .

K denotes the set of all functions: R+ → R+, which are
continuous, strictly increasing and vanishing at zero; K∞
denotes the set of all functions which are of class K and
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unbounded. A sign function sign(x) is defined as follows:
sign(x) = 1, if x > 0; sign(x) = 0, if x = 0 and
sign(x) = −1, if x < 0. For any a ∈ R+ and x ∈ R,
the function [x]a is defined as [x]a = sign(x)|x|a. Besides,
the arguments of the functions will be omitted or simplified,
whenever no confusion can arise from the context. For
instance, we sometimes denote a function f(x(t)) by simply
f(x), f(·) or f .

Definition 1. [29] Weighted Homogeneity: For fixed co-
ordinates (x1, · · · , xn) ∈ Rn and real numbers ri > 0, i =
1, · · · , n.
• the dilation ∆ε(x) is defined by ∆ε(x) =

(εr1x1, · · · , εrnxn) for any ε > 0, where ri is called the
weights of the coordinates. For simplicity, we define dilation
weight ∆ = (r1, · · · , rn).
• a function V ∈ (Rn, R) is said to be homogeneous

of degree τ if there is a real number τ ∈ R such that
V (∆ε(x)) = ετV (x1, · · · , xn) for any x ∈ Rn \ {0}, ε > 0.
• a vector field f ∈ (Rn, Rn) is said to be homogeneous

of degree τ if there is a real number τ ∈ R such that
fi(∆ε(x)) = ετ+rifi(x), for any x ∈ Rn \ {0}, ε > 0,
i = 1, · · · , n.
• a homogeneous p-norm is defined as ∥x∥△,p =

(
∑n

i=1 |xi|p/ri)1/p for all x ∈ Rn, for a constant p ≥ 1.
For simplicity, in this paper, we choose p = 2 and write
∥x∥△ for ∥x∥△,2.

Lemma 1. [29] Given a dilation weight ∆ = (r1, · · · , rn),
suppose V1(x) and V2(x) are homogeneous functions of
degree τ1 and τ2, respectively. Then V1(x)V2(x) is also
homogeneous with respect to the same dilation weight ∆.
Moreover, the homogeneous degree of V1(x)V2(x) is τ1+τ2.

Lemma 2. [29] Suppose V : Rn → R is a homogeneous
function of degree τ with respect to the dilation weight ∆.
Then the following holds:

(i) ∂V/∂xi is homogeneous of degree τ−ri with ri being
the homogeneous weight of xi.

(ii) There is a constant c such that V (x) ≤ c∥x∥τ△.
Moreover, if V (x) is positive definite, then c∥x∥τ△ ≤ V (x),
where c is a constant.

In the remainder of this section, we present the following
lemmas which play an important role in the design process.

Lemma 3. [25] Consider the nonlinear system

ẋ = f(x, t) with f(0, t) = 0, x ∈ Rn, (1)

where f : U0 × R+ → Rn is continuous with respect to x
on an open neighborhood U0 of the origin x = 0. Suppose
there is a C1 function V (x, t) (V (x, t) = 0 if and only
if x = 0 ) defined Û ∈ Rn × R, where Û ∈ U0 ∈ Rn

is a neighborhood of the origin, real numbers c > 0 and
0 < α < 1, such that (i)V (x, t) is positive definite on Û ;
(ii)V̇ (x, t) + cV α(x, t) ≤ 0, ∀x ∈ Û . Then, the origin of
(1) is finite-time stable with T ≤ V 1−α(x(t0),t0)

c(1−α) for initial
condition x(t0) in some open neighborhood U ∈ Û of the
origin at initial time t0. If U = Rn and V (x, t) → +∞
as |x| → ∞, the origin of system (1) is globally finite-time
stable.

Lemma 4. [30] For x ∈ R, y ∈ R, p ≥ 1 and
c > 0 are constants, the following inequalities hold: (i)
|x+y|p ≤ 2p−1|xp+yp|, (ii) (|x|+|y|)1/p ≤ |x|1/p+|y|1/p ≤
2(p−1)/p(|x| + |y|)1/p, (iii) ||x| − |y||p ≤ ||x|p − |y|p|, (iv)

|x|p + |y|p ≤ (|x|+ |y|)p, (v) |[x]1/p − [y]1/p| ≤ 21−1/p|x−
y|1/p, (vi) |[x]p − [y]p| ≤ c|x− y||(x− y)p−1 + yp−1|.

Lemma 5. [30] Let x, y be real variables, then for any
positive real numbers a, m and n, one has

a|x|m|y|n ≤ b|x|m+n

+
n

m+ n

(m+ n

m

)−m
n

a
m+n

n b−
m
n |y|m+n

where b > 0 is any real number.

B. Problem formulation
In this paper, we consider the following high order non-

holonomic systems:

ẋ0 = up0

0 + ϕd
0(t, x0)

ẋi = xpi

i+1u
qi
0 + ϕd

i (t, x0, x, u0), i = 1, · · · , n− 1
ẋn = upn

1 + ϕd
n(t, x0, x, u0)

y = (x0, x1)
T

(2)

where (x0, x)
T = (x0, x1, · · · , xn)

T ∈ Rn+1, u =
(u0, u1)

T ∈ R2, y ∈ R2 are the system state, control input
and system output, respectively; pi ≥ 1, i = 0, 1, · · · , n are
odd integers; qk, k = 1, · · · , n−1 are integers,; and ϕd

i ’s are
unknown continuous functions, referred as input and state-
driven uncertainties.

The objective of this paper is to design an output feedback
controller in the form:

˙̂x = ϑ(x̂, y), u0 = u0(x0), u1 = u1(x̂, y) (3)

such that the finite-time regulation of the states are achieved;
i.e., lim

t→T
(|x0(t)|+ |x(t)|) = 0 and (x0(t), x(t)) = (0, 0) for

any t ≥ T , where T is a finite settling time.
To this end, the following assumption regarding system

(2) is imposed.
Assumption 1. For i = 0, 1, · · · , n, there is constants

a, b > 0 and τ ∈ (− 1∑n
l=1 p1···pl−1

, 0)

|ϕ0(t, x0)| ≤ a|x0|

|ϕi(t, x0, x, u0)| ≤ b(|x1|(ri+τ)/r1 + · · ·+ |xi|(ri+τ)/ri),

where r1 = 1, ri+1 = ri+τ
pi

> 0, i = 1, · · · , n and∑n
l=1 p1 · · · pl−1 = 1 for the case of l = 1.
Remark 1. It is worth pointing out that Assumption 1

encompasses the assumption in the closely related paper
[28]. Specifically, when pi = 1 and τ is some ratios of odd
integers, it becomes the condition used in [28]. Therefore,
an interesting problem is how to design a finite-time output
feedback controller for high order nonholonomic system (2)
under the weaker assumption of τ and ri being arbitrary real
numbers in some interval. In this paper, we will ingeniously
combine homogeneous domination theory and sign function
approach to solve this problem.

III. FINITE-TIME OUTPUT FEEDBACK CONTROLLER
DESIGN

In this section, we give a constructive procedure for the
finite-time stabilizer of system (2) by output feedback. The
design of finite-time output feedback controller is divided
into the following two steps:
• We first stabilize the x-subsystem in a finite time by

output feedback.
• Then we design a controller such that the x0-subsystem

is finite-time stable.
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A. Finite-time output feedback stabilization of the x-
subsystem

For the x0-subsystem, we choose the control u0 as

u0 ≡ u∗
0 (4)

where u∗
0 is a positive constant. In this case, the x0-subsystem

becomes
ẋ0 = u∗p0

0 + ϕ0(t, x0) (5)

Noting that ϕ0(t, x0) satisfies the linear growth condition,
it is easy to obtain that the solution of x0-subsystem is
bounded, for any given finite time ts > 0. Hence, x0 is well-
defined on [0, ts]. Under the control law (5), the x-subsystem
can be written as

ẋi = xpi

i+1u
∗qi
0 + ϕd

i (t, x0, x, u0), i = 1, · · · , n− 1
ẋn = upn

1 + ϕd
n(t, x0, x, u0)

(6)

Next we consider the finite-time output feedback stabilize
for system (6). For convenience, we introduce an equivalent
coordinates transformation:

z1 = x1, zi =
d̃ixi

Lκi
, i = 2, · · · , n

υpn =
upn

1

Lκn+1

(7)

where d̃i =
∏i−1

j=1 u

qj
pj ···pi−1

0 , qn = 0, κ1 = 0, κi+1 = κi+1
pi

,
i = 1, · · · , n− 1 and L > 1 is a constant to be determined.
Then, under (7), system (6) is transformed into:

żi = Lzpi

i+1 +
fi
Lκi

, i = 1, · · · , n− 1

żn = Ld̃nυ
pn +

fn
Lκn

(8)

where fi = d̃iϕi and the state z1 = x1 is measurable.
1) Homogeneous output feedback control of the nominal

system : In this subsection, we will construct an output
feedback stabilizer for the following nominal system

żi = Lzpi

i+1, i = 1, · · · , n− 1

żn = Ld̃nυ
pn

(9)

The design of output feedback controller is divided into
two steps. In Step A, we suppose that all the states are mea-
surable, and develop a recursive design method to explicitly
construct a state feedback control law for system (9). Then in
step B, by constructing a nonsmooth reduced-order observer,
we design an output feedback controller.

A. State feedback controller design
Step 1. Let ξ1 = [z1]

1/r1 and choose the Lyapunov
function

V1 = W1 =

∫ z1

z∗
1

[
[s]1/r1 − [z∗1 ]

1/r1
]2−τ−r1

ds (10)

with z∗1 = 0. From (9), it follows that

V̇1 ≤ −nLξ21 + L[ξ1]
2−τ−r1(zp1

2 − z∗p1

2 ) (11)

where the virtual controller is chosen as

z∗2 = −n1/p1 [ξ1]
(r1+τ)/p1 := −βr2

1 [ξ1]
r2 (12)

Step i (i = 2, · · · , n). In this step, we can obtain the
following property, whose similar proof can be found in [27]
and hence is omitted here.

Proposition 1. Assume that at step i−1, there is a contin-
uously differentiable, positive-definite and proper Lyapunov
function Vi−1, and a set of virtual controllers z∗1 , · · · , z∗i
defined by

z∗1 = 0, ξ1 = [z1]
1/r1 − [z∗1 ]

1/r1

z∗2 = −βr2
1 [ξ1]

r2 , ξ2 = [z2]
1/r2 − [z∗2 ]

1/r2

...
...

z∗i = −βri
i−1[ξi−1]

ri , ξi = [zi]
1/ri − [z∗i ]

1/ri

(13)
with constants β1 > 0, · · · , βi−1 > 0 such that

V̇i−1 ≤ −(n− i+ 2)L

i−1∑
j=1

ξ2j

+[ξi−1]
(2σ−τ−ri−1)(z

pi−1

i − z
∗pi−1

i )

(14)

Then the ith Lyapunov function defined by

Vi = Vi−1 +

∫ zi

z∗
i

[
[s]1/ri − [z∗i ]

1/ri
]2−τ−ri

ds (15)

is continuously differentiable, positive-definite and proper,
and there is z∗i+1 = −β

ri+1

i [ξi]
ri+1 such that

V̇i ≤ −(n− i+ 1)L
i∑

j=1

ξ2j + L[ξi]
2−τ−ri(zpi

i+1 − z∗pi

i+1)

(16)
Hence at step n, choosing

Vn =

n∑
i=1

∫ zi

z∗
i

[
[s]1/ri − [z∗i ]

1/ri
]2−τ−ri

ds

z∗n+1 = −βrn+1
n [ξn]

rn+1 = −
[ n∑

i=1

β̄i[zi]
1/ri

]rn+1
(17)

with β̄i = βn · · ·βi, from Proposition 1, we arrive at

V̇n ≤ −Ld̃n

n∑
j=1

ξ2j + L[ξn]
2−τ−rn(vpn − z∗pn

n+1) (18)

B. Output feedback controller design
Since z2, · · · , zn are unmeasurable, we construct a homo-

geneous observer

η̇i = −Lli−1ẑ
pi−1

i , ẑi = [ηi + li−1ẑi−1]
ri/ri−1

i = 2, · · · , n (19)

where ẑ1 = z1 and ls > 0; s = 1, · · · , n − 1 are the gains
to be determined. By the certainty equivalence principle, we
can replace zi with ẑi in (17) and obtain an output feedback
controller

v(ẑ) = −
[ n∑

i=1

β̄i[ẑi]
1/ri

]rn+1

(20)

where ẑ = (ẑ1, ẑ2, · · · , ẑn) and ẑ1 = z1. Considering

Ui =

∫ [zi]
(2−τ−ri−1)/ri

[γi]
(2−τ−ri−1)/ri−1

([s]ri−1/(2−τ−ri−1) − γi)ds

(21)
where γi = ηi + li−1zi−1 and setting the observation error
ei = [z

pi−1

i − ẑ
pi−1

i ]1/(ripi−1), for i = 2, · · · , n, from (9),
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(19) and (21), it follows that

U̇i = L
∂Ui

∂zi
zpi

i+1 + L
∂Ui

∂zi−1
z
pi−1

i − L
∂Ui

∂ηi
li−1ẑ

pi−1

i

=
2− τ − ri−1

ri
L|zi|(2−τ−ri−1−ri)/ri

×([zi]
ri−1/ri − γi)z

pi

i+1 − Lli−1(z
pi−1

i − ẑ
pi−1

i )

×
(
[zi]

(2−τ−ri−1)/ri − [ẑi]
(2−τ−ri−1)/ri

)
−Lli−1(z

pi−1

i − ẑ
pi−1

i )

×
(
[ẑi]

(2−τ−ri−1)/ri − [γi]
(2−τ−ri−1)/ri−1

)
(22)

where zn+1 = v(ẑ).
Each term on the right-hand side of (22) can be estimated

by the following propositions whose proofs are given in
Appendix.

Proposition 2. There exists a positive constant λi such
that

−li−1(z
pi−1

i − ẑ
pi−1

i )

×
(
[zi]

(2−τ−ri−1)/ri − [ẑi]
(2−τ−ri−1)/ri

)
≤ −li−1λie

2
i

(23)

Proposition 3. For i = 2, · · · , n− 1,

2− τ − ri−1

ri
|zi|(2−τ−ri−1−ri)/ri([zi]

ri−1/ri − γi)z
pi

i+1

≤ 1

12

i+1∑
j=i−1

ξ2j + αie
2
i + gi(li−1)e

2
i−1

(24)
where gi is a continuous function of li−1, αi > 0 is a
constant, and g2 = 0.

Proposition 4. For the controller v(ẑ), we obtain

2− τ − rn−1

rn
|zn|(2−τ−rn−1−rn)/rn

×([zn]
rn−1/rn − γn)υ

pn

≤ 1

8

n∑
j=1

ξ2j + ᾱ
n∑

i=2

e2i + gn(ln−1)e
2
n−1

(25)

where gn is a continuous function of ln−1, ᾱ > 0 is a
constant.

Proposition 5. For i = 3, · · · , n,

−li−1(z
pi−1

i − ẑ
pi−1

i )

×
(
[ẑi]

(2−τ−ri−1)/ri − [γi]
(2−τ−ri−1)/ri−1

)
≤ 1

16
(ξ2i−1 + ξ2i ) + e2i + θi(li−1)e

2
i−1

(26)

where θi is a continuous function of li−1.
Choosing U =

∑n
i=2 Ui, by Propositions 2-5, we get

U̇ =
L

2

n∑
i=1

ξ2i

+L
(
− l1λ2 + α2 + ᾱ+ g3(l2) + θ3(l2)

)
e22

+
n−1∑
i=3

(
− li−1λi + αi + 1 + ᾱ+ gi+1(li)

+θi+1(li)
)
e2i + (−ln−1λn + 1 + ᾱ)e2n

(27)

By (17) and (20), we can estimate d̃n[ξn]
(2−τ−rn)/σ(vpn −

z∗pn

n+1) in (18) by the following proposition, whose proof is
given in Appendix.

Proposition 6. There exists a positive constant α̃ such that

d̃n[ξn]
2−τ−rn(vpn − z∗pn

n+1) ≤
1

4

n∑
i=1

ξ2i + α̃

n∑
i=2

e2i (28)

With the help of Proposition 6, defining Ψ = Vn + U ,
combining (18) and (27), and recursively choosing

ln−1 ≥ λ−1
n

(1
4
+ 1 + ᾱ+ α̃

)
li−1 ≥ λ−1

i

(1
4
+ αi + 1 + ᾱ+ α̃+ gi+1(li) + θi+1(li)

)
i = n− 1, · · · , 3

l1 ≥ λ−1
2

(1
4
+ α2 + ᾱ+ α̃+ g3(l2) + θ3(l2)

)
(29)

we obtain

Ψ̇ = −L

4

n∑
i=1

ξ2i − L

4

n∑
i=2

e2i (30)

2) Homogeneous output feedback control of system (8) :
Noting that from the construction of Ψ, it can be verified
that Ψ is positive definite and proper with respect to Z =
(z1, · · · , zn, η2, · · · , ηn)T . Denoting the dilation weight

∆ = (r1, · · · , rn︸ ︷︷ ︸
for z1,···,zn

, r1, · · · , rn−1︸ ︷︷ ︸
for η2···,ηn

)
(31)

the closed-loop system can be rewritten as

Ż = LE(Z) + F (Z) (32)

where E(Z) = (zp1

2 , · · · , zpn−1
n , υpn , η̇2 · · · , η̇n)T and

F (Z) = (f1,
f2
Lκ2

, · · · , fn
Lκn , 0, · · · , 0)T . Furthermore, from

Definition 1, it can be shown that Ψ(Z) and E(Z) are
homogeneous of degree 2− τ and τ with respect to ∆. By
Lemmas 1 and 2, there is constants c1, c2 and c3, such that

c1||Z(t)||2−τ
∆ ≤ Ψ(Z) ≤ c2||Z(t)||2−τ

∆ (33)

∂Ψ(Z)

∂Z
LE(Z) ≤ −c3L||Z(t)||2∆ (34)

By (7), Assumption 1 and L > 1, we can find constants
δi > 0 and 0 < νi ≤ 1 such that∣∣∣fi(·)

Lκi

∣∣∣ ≤ bu∗q1
0 · · ·u∗qi

0

Lκi

i∑
j=1

|xj(t)|(ri+τ)/rj

≤ δi||Z(t)||ri+τ
∆

(35)

Noting that for i = 1, · · · , n, ∂Ψ(Z)/∂Zi is homogeneous
of degree 2− τ − ri, from Lemma 5, we obtain∣∣∣∂Ψ(Z)

∂Z
F (Z)

∣∣∣ ≤ n∑
i=1

∣∣∣∂Ψ(Z)

∂Zi

∣∣∣∣∣∣fi(·)
Lκi

∣∣∣
≤ ρ1||Z(t)||2∆

(36)

where ρ1 is a positive constant.
According to (30), (33), (34) and (36), we get

Ψ̇ ≤ −(c3L− ρ1)||Z(t)||2∆ ≤ − (c3L− ρ1)

c
2/(2−τ)
1

T 2/(2−τ)

(37)
Hence, by choosing L > max{ρ1/c3, 1} there exists a

constant c̄3 such that

Ψ̇ ≤ −c̄3T
2/(2−τ) (38)

By Lemma 1, (38) leads to the conclusion that the closed-
loop system (8), (19) and (20) is globally finite-time stable,
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which yields that system (6) can be globally finite-time
stabilized by the output feedback. In addition, the settling
time T1 satisfying

T1 ≤ −(2− τ)Ψ(−τ)/(2−τ)(0)

c̄3τ
(39)

B. Finite-time output feedback stabilization of the x0-
subsystem

From Section A, we know that x(t) ≡ 0 when t ≥ T1.
Therefore, we just need to stabilize the x0-subsystem in a
finite time. When t ≥ T1, for the x0-subsystem, we can take
the following control law

up0

0 = −(k0 + ϕ0(x0))[x0]
α0 , 0 < α0 < 1 (40)

where α0, k0 are positive constants and ϕ0(x0) ≥
a|x0|1−α0 ≥ 0 is a smooth function. For instance, we can
simply choose ϕ0(x0) = a(1 + x2

0).
Taking the Lyapunov function V0 = x2

0/2, a simple
computation gives

V̇0 ≤ −k0x
1+α0
0 ≤ −k0V

(1+α0)/2
0

(41)

Thus by Lemma 1, x0 tends to 0 within a settling time
denoted by T2 and

T2 ≤ 2V
(1−α0)/2
0 (0)

k0(1− α0)
(42)

Up to now, we have finished the finite-time output feed-
back stabilizing controller design of the system (2). Conse-
quently, the following theorem can be obtained to summarize
the main results of the paper.

Theorem 1. Under Assumption 1, if the proposed control
design procedure together with the above switching control
strategy is applied to system (2), then the states of closed-
loop system are regulated to zero in a finite time.

Remark 2. It should be pointed out that the Z(0)-
dependent switching time T1 leads to the proposed controller
being a initial-value-dependent one and unavailable for the
system with unknown initial values. However, for any given
compact subset U ∈ R2n−1, Z(0) ∈ U ⇒ Ψ ≤ ρ, where ρ
is a positive constant. This leads to

T1 ≤ −(2− τ)ρ(−τ)/(2−τ)(0)

c̄3τ
:= T

′

1

In this case, we can use T
′

1 to replace T1 in the above
controller design procedure and achieve the semi-global
control objective.

IV. SIMULATION EXAMPLE

To illustrate the effectiveness of the proposed approach,
we consider the following low-dimensional system

ẋ0 = u5
0 +

1
4θ0(t)x0

ẋ1 = x3
2u

3
0 +

1
8 ln(1 + (θ1(t)x1)

2)

ẋ2 = u1 +
1
8θ2(t)x

1/6
2 sinx2

y = (x0, x1)
T

(43)

where θi(t), i = 0, 1, 2 are unknown functions satisfying
|θi(t)| ≤ 1. Choose τ = − 1

13 ∈ (− 1
4 ,+∞), then r1 = 1,

r2 = r1+τ
p1

= 4
13 and r3 = r2+τ

p2
= 3

13 . By Lemma 5, it
can be verified that |f1| ≤ 1

4 |x0|, |f1| ≤ 1
8 |x1|

12
13 and |f2| ≤
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(b) x1

Fig. 1. The responses of system states x0 and x1 .

1
10 (|x1|3/13 + |x2|3/4) satisfy Assumption 1 with a = 1

4 and
b = 1

8 .
Firstly, we define the control law u0 = 1 and introduce

the change of coordinates

z1 = x1, z2 =
x2

L1/3
, υ =

u1

L4/3
(44)

under which, the x-subsystem of (43) is transformed into:

ż1 = Lz32 + f1

żn = Lυ +
f2
L1/3

(45)

According to the design procedure shown in Section III,
we can explicitly construct an output feedback controller for
system (45). Specifically, we can choose

η̇2 = −Ll1[η2 + l1z1]
12/13

u = −L4/3
[
β2[η2 + l1z1]

13/4 + β2β1[z1]
]3/13 (46)

with appropriate positive constants l1, β1, β2 and a large
enough gain L such that output feedback controller (46)
renders the system (45)( that is, the x-subsystem of (43)
globally finite-time stable with a settling time T1.

Then, when t ≥ T1, for the x0-subsystem, we switch the
control input u0 to

u0 = −(k0 +
1
4 + 1

4x
2
0)

1/5[x0]
1/15 (47)

where k0 > 0 is a constant.
In the simulation, we assume θ0(t) = θ1(t) = θ2(t) =

sint. When (x0(0), x1(0), x2(0), η2(0))= (0,−1, 1, 1), by
choosing the gains for the output laws as L = 2, β1 = 2.2,
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Fig. 2. The responses of system states x2 and η2.
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Fig. 3. The responses of control inputs u0 and u1.

β2 = 20, l1 = 18 and k0 = 1, the simulation results are
shown in Figs. 1-3, respectively. Fig. 1 shows the system
states x0 and x1. Fig. 2 depicts the response of the system
states x2 and η2. Fig. 3 illustrates the trajectories of control
inputs. From Figs. 1 and 2, it can be seen that all the closed-
loop system states indeed converge to zero in a finite time,
which accords with the main results established in Theorem 1
and also demonstrates the effectiveness of the control method
proposed in this paper.

V. CONCLUSION

In this paper, an output feedback stabilizing controller is
presented for a class of high order nonholonomic systems
in power chained form with uncertainties. The controller
designed regulates the original system states to zero in a finite
time. There are some related problems to investigate, e.g.,
for system (2) with unknown parameters, can an adaptive
stabilizing controller be given under a similar assumption? In
recent years, many results on stochastic nonholonomic sys-
tems have been achieved[31,32], however these works only
consider the feedback stabilizer that makes the trajectories of
the systems converge asymptotically to the equilibrium as the
time goes to infinity. Therefore, how to design a finite time
controller for stochastic nonholonomic systems is naturally
regarded as an interesting research topic.

APPENDIX

Proof of Proposition 2. Noting that (2 − τ −
ri−1)/ripi−1 ≥ 1, by using Lemma 5 with p = 1, a =
b = (2− τ − ri−1)/ripi−1 and ei = [z

pi−1

i − ẑ
pi−1

i ]1/ripi−1 ,
one leads to

−li−1(z
pi−1

i − ẑ
pi−1

i )

×
(
[zi]

(2−τ−ri−1)/ri − [ẑi]
(2−τ−ri−1)/ri

)
≤ −li−1λi|ei|1/ripi−1 |ei|(2−τ−ri−1)/ripi−1

= −li−1λie
2
i

(A1)

where λi = 2(2ripi−1−2)/(2−τ−ri−1) > 0 is a constant.
Proof of Proposition 3. Using γi = ηi + li−1zi−1, (10),

(16) and Lemmas 4-6, it follows that

2− τ − ri−1

ri
|zi|(2−τ−ri−1−ri)/ri([zi]

ri−1/ri − γi)z
pi

i+1

=
2− τ − ri−1

ri
|zi|(2−τ−ri−1−ri)/ri

×
(
[zi]

ri−1/ri − [ẑi]
ri−1/ri + [ẑi]

ri−1/ri − γi

)
zpi

i+1

≤ 2− τ − ri−1

ri
|ξi+1 − βiξi|ri+1pi

×|ξi − βi−1ξi−1|(2−τ−ri−1−ri)

×
(
|zpi−1

i − ẑ
pi−1

i |ri−1/pi−1ri + li−1|zi−1 − ẑi−1|)
)

≤ ki3

(
|ξi+1|ri+1pi + |ξi|ri+1pi

)
×
(
|ξi|2−τ−ri−1−ri + |ξi−1|2−τ−ri−1−ri

)
×(|ei|ri−1 + li−1|ei−1|ri−1)

≤ 1

12

i+1∑
j=i−1

ξ2j + αie
2
i + gi(li−1)e

2
i−1

(A2)
where ki3 > 0, αi > 0 are constants and gi is a continuous
function of li−1.
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Proof of Proposition 4. By (10), (17) and the definition
of ei, one gets

|vpn(ẑ)| =
∣∣∣ n∑
i=1

β̄i[ẑi]
σ/ri

∣∣∣pnrn+1/σ

≤ ki4

( n∑
i=1

|ξi|(rn+τ)/σ +
n∑

i=1

|ei|(rn+τ)/σ
)
(A3)

where ki4 is a positive constant.
Similar to (A2), with the use of Assumption 1, Lemmas

4-6 and (A3), (22) holds immediately.
Proof of Proposition 5. According to γi = ηi+ li−1zi−1,

(10), Lemmas 3-5 and the definition of ei, one obtains

li−1(z
pi−1

i − ẑ
pi−1

i )

×
(
[ẑi]

(2−τ−ri−1)/ri − [γi]
(2−τ−ri−1)/ri−1

)
≤ kn5|ei|ripi−1 |ei−1|ri−1

(
|ei−1|2−τ−2ri−1

+|ξi−1|2−τ−2ri−1 + |ξi|2−τ−2ri−1 + |ei|2−τ−2ri−1

)
≤ 1

16
(ξ2i−1 + ξ2i ) + e2i + θi(li−1)e

2
i−1

(A4)
where kn5 is a positive constant and θi is a continuous
function of li−1.

Proof of Proposition 6. By (10), (22) and Lemmas 4-6,
it follows that

d̃n[ξn]
(2σ−τ−rn)/σ(vpn − z∗pn

n+1)

≤ |ξn|2−τ−rn
∣∣∣ n∑
i=2

β̄i([zi]
1/ri − [ẑi]

1/ri)
∣∣∣rn+τ

≤ kn6|ξn|2−τ−rn
( n∑

i=2

|zi − ẑi|

×(|zi − ẑi|(1−ri)/ri + |zi|(1−ri)/ri)
)rn+τ

≤ k̄n6|ξn|2−τ−rn
( n∑

i=2

|ei|ri

×(|ei|1−ri + |ξi−1|1−ri + |ξi|1−ri)
)rn+τ

≤ 1

4

n∑
i=1

ξ2i + α̃

n∑
i=2

e2i

(A5)

where kn6, k̄n6 and α̃ are positive constants.
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