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Abstract—The vast majority of researches about the shortest
component path algorithm in software architecture, nowadays,
focus just on the case from the beginning component to the
stopping component. When the shortest component path is
constrained to the specified number of components, the current
technologies will no longer be applied. Based on the research
on the present the shortest path algorithm, we propose an
algorithm to solve the nodes-constrained shortest component
path (πNCSCP ) problem in software architecture. The proposed
algorithm based on inverse adjacency list of the Component
Interaction Graph (CIG) is developed for finding πNCSCP of
C2-style architecture. The time complexity of the proposed
algorithm is O((m-2)w) (m is the number of nodes-constrained,
w is the total number of edges in CIG). Since the inverse
adjacency list is used to the graphic storage structure, this
algorithm is much simpler and easy to be fulfilled, and reduces
the time complexity as well.

Index Terms—software architecture, C2-style, shortest com-
ponent path, nodes-constrained, inverse adjacency list.

I. INTRODUCTION

THE shortest path problem is a basis and important
problem in software architecture [1], which is relatively

simple. We often encounter the shortest path problem in soft-
ware architecture design. Many software architectures can be
used as the shortest path, or the shortest path algorithm is
used as a sub-problem. So, in software architecture design,
it has a very practical significance for solving the shortest
path algorithm.

The shortest path problems are divided into four classical
algorithms: (1) Algorithms based on graph theory, such as
Dijkstra [2], Floyd [3] and its improved algorithms etc., (2)
Mathematical planning algorithms based on optimization the-
ory [4], (3) Search algorithms based on traditional artificial
intelligence, such as blind search, heuristic A* [5] and its
improved algorithms, (4) Search algorithms based on modern
computational intelligence, such as artificial neural network,
genetic algorithm, immune algorithm and ant colony algo-
rithm [6], [7], [8] etc.

Software architecture has many new characteristics, such
as component, connector and so on [9]. All of these charac-
teristics have an impact on interactions among component,
connector [10] and finding the shortest component path. In
many cases, there are some additional constraints on the
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shortest path selection, which is often required to find the
shortest component path and the shortest component path to
meet the additional constraints.

Many previous studies have investigated the shortest path
problem. Demetrescu and Italiano presented a new algorithm
that achieves nearly-quadratic update bounds for fully dy-
namic all-pairs shortest paths on graphs with non-negative
real edge weights [11]. The techniques are described not
only asymptotically efficient, but can yield very fast imple-
mentations in many practical scenarios. Chuang and Kung
proposed a heuristic procedure to find the fuzzy shortest
path length among all possible paths in a network [12]. It is
based on the idea that a crisp number is a minimum number
if and only if any other number is larger than or equal to
it. It owns a firm theoretic base in fuzzy sets theory and
can be implemented effectively. Meanwhile, they proposed a
method to measure the similarity degree between the fuzzy
shortest path length and each fuzzy path lengths. Idwan and
Etaiwi studied the improvement of Dijkstra algorithm by
using heuristic algorithm [13], and applied it to the shortest
path for large graph. Li et al. studied the optimization of
the Dijkstra algorithm using the restricted direction method
and the binary heap technology, and applied it to the We-
bGIS [14]. Xu and Ke divided the designated-points shortest
paths problem into three categories [15], such as isolated
designated-points shortest paths, grouped designated-points
shortest paths, and grouped and order-preserving designated-
points shortest paths, and established their mathematics
models. They presented improved genetic algorithm for
the grouped and order-preserving designated-points shortest
paths problem. And proposed order-preserving operation to
ensure that some particular points are connected based on
the determined order, improved the global search capability
and convergence. Feng et al. focused on the solving of the
shortest paths in the conditions of complicated constraints for
network analysis and application [16], geometric algebra is
used to develop the network analysis algorithms. A network
model and bilateral search algorithms are built based on the
multivector representation and multidimensional operators of
geometric algebra. The algorithm is proposed to find the
shortest paths passing through specified necessary nodes and
the least segments.

It should be noted that the traditional ideas on shortest path
have difficulty in identifying parts from the framework of
software architectures. In particular, there are few researches
on the shortest path at the architectural level. Gao et al.
proposed an adequate test model and test coverage criteria for
component validation [17]. A set of component API-based
test coverage criteria is defined based on the test models,
and a dynamic test coverage analysis approach is provided.
Where minimum-set path coverage from Ei to Ej in G for
component C is, if and only if there exists a path set from Ei
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to Ej which covers all nodes and links reachable from Ei and
to Ej and have been traversed by test scripts in component
C’s test script set. Lun et al. presented an approach of
the shortest component path for software architecture [18].
The technique made full use of their advantages and used
the improved A* algorithm to do a global search for the
beginning of the stage. It improves greatly the efficiency of
the convergence of the C2-style architecture, and decreases
greatly the computation time of the shortest component path.

This paper focuses on the nodes-constrained shortest
component path for C2-style architecture. We propose an
algorithm based on the inverse adjacency list of the C2-style
architecture model to search the nodes-constrained shortest
component path in software architecture. The characteristic
of this algorithm is that it is very simple and very easy to
be described, fulfilled and understood.

The paper is organized as follows. In Section II, some
preliminaries including C2-style architecture model, shortest
component path, and nodes-constrained shortest component
path are introduced and briefly are discussed. The algorithm
based on the inverse adjacency list and the particle encoding
mechanism to solve the nodes-constrained shortest compo-
nent path problem in the C2-style architecture is presented
in Section III. And the results from computer simulation
experiments are discussed. In Section IV, the conclusion is
given.

II. C2-STYLE ARCHITECTURE MODEL

This section first introduces the related concepts of the
C2-style architecture, and then gives the definition of the
shortest component path and the nodes-constrained shortest
component path according to the shortest component path.

A. C2-Style Architecture Representation

We have selected the C2-style architecture as a vehicle
for exploring our ideas because it provides a number of
useful rules for high-level system composition, demonstrated
in numerous applications across several domains [19]; at the
same time, the rules of the C2-style are broad enough to
render it widely applicable [20].

The C2-style architecture [20] consists of components,
connectors, and their constraints. All components and con-
nectors have two interfaces, “top” and “bottom”. The top
(bottom) of a component can only be attached to the bottom
(top) of one connector. It is not possible for components to
be attached directly to each other. Each connector always
has to act as intermediaries between them. Furthermore, a
component cannot be attached to itself. However, connector
can be attached together. In this case, each connector consid-
ers the other as a component with regard to the publication
and forwarding of events. Component communicates by
exchanging two types of events: service requests to top of the
component and notifications of completed services to bottom
of the component.

We define our intermediate representation Component In-
teraction Graph (CIG) model [21] and discuss how a C2-style
architecture can be represented using our notation. CIG is
used to depict the interaction relationships between interface
of component and interface of connector.

Let CIG = (V, E, Vstart, Vend) be a component in-
teraction graph, where V = Comp ∪ Conn is the set of
nodes, Comp is a finite set of components, each component
Compi ∈ Comp has four interfaces, they are top output
interface Compi.Ipt o, top input interface Compi.Ipt i,
bottom output interface Compi.Ipb o, and bottom input
interface Compi.Ipb i. Conn is a finite set of connectors,
each connector Connj ∈ Conn has four interfaces too, they
are top output interface Connj .Int o, top input interface
Connj .Int i, bottom output interface Conni.Inb o, and
bottom input interface Conni.Inb i. E = eComp−Conn ∪
eConn−Comp ∪ eConn−Conn is a finite set of edges, where
eComp−Conn = {e | e ∈ (Compi.Ipt o, Connj .Inb i) ∨
(Compi.Ipb o, Connj .Int i)} represents the set of edges
from top (bottom) output interface of component Compi
to the bottom (top) input interface of connector Connj .
eConn−Comp = {e | e ∈ (Conni.Int o, Compj .Ipb i) ∨
(Conni.Inb o, Compj .Ipt i)} represents the set of edges
from the top (bottom) output interface of connector Conni
to the bottom (top) input interface of component Compj .
eConn−Conn = {e | e ∈ (Conni.Int o, Connj .Inb i) ∨
(Conni.Inb o, Connj .Int i)} represents the set of edges
from the top (bottom) output interface of connector Conni
to the bottom (top) input interface of connector Connj .
Vstart ⊆ Comp is the set of initial component nodes,
these components transmit messages only. That is Vstart =
{Compi | Compi.Ipb i = ∅ ∧ Compi.Ipb o = ∅, Compi
∈ Comp}. Vend ⊆ Comp is the set of terminal component
nodes, these components receive messages only. That is Vend
= {Compi | Compi.Ipt o = ∅ ∧ Compi.Ipt i = ∅, Compi
∈ Comp}.

In C2-style architecture, a component (connector) can
interact with the other component (connector) in several
ways, i.e., from component to connector, from connector
to component, and from connector to connector. The CIG
for C2-style architecture should be able to represent these
interactions between components and connectors.

In order to construct a representation for the CIG, we
carry out static analysis of the C2-style specification. First,
we identify all components and connectors and represent
the nodes. Then we identify all interaction relationships
between components and connectors and represent the edges.
If there exists a information flow from component Compi to
connector Connj , in such a case, an edge e ∈ eComp−Conn
is added to connect from the top (bottom) output interface of
Compi to the bottom (top) input interface of Connj of CIG.
If there exists a information flow from connector Conni to
component Compj , in such a case, an edge e ∈ eConn−Comp
is added to connect from the top (bottom) output interface of
Conni to the bottom (top) input interface of Compj of CIG.
If there exists a information flow from connector Conni to
connector Connj , in such a case, an edge e ∈ eConn−Conn
is added to connect from the top (bottom) output interface
of Conni to the bottom (top) input interface of Connj of
CIG.

In order to illustrate our approach in a better way, we
used an example KLAX video game application [19]. For
this application C2-style architecture has been used. KLAX
system includes 16 components and 6 connectors, which
is depicted in Fig. 1. Where the rectangle node represents
component, such as GraphicsBinding and TileArtist etc. The
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Fig. 1. KLAX Architecture in the C2-Style

long rectangle with shadow node represents connector, such
as LAConn and TAConn etc. The edge between compo-
nent and connector, and between connectors represents that
there exists messages transmission between component and
connector, such as the edge between GraphicsBinding and
GLConn represents that there exists messages transmission
between GraphicsBinding and GLConn, and the edge be-
tween LTConn and TAConn represents that there exists
messages transmission between LTConn and TAConn.

According to the construction method of CIG, Fig. 2 shows
the corresponding CIG for the example KLAX system of
Fig. 1 according to C2-style architecture specification [20].
In order to simplify the representation, the name of the
component and the connector are abbreviated. Where nodes
represent the interface of the component and the connector,
and component interface with a hollow circle, connector
interface with a solid circle represents. GB.Ipt o, SL.Ipt o,
and NTPL.Ipt o are initial nodes. CL.Ipb i, PADT.Ipb i
and so on are terminal nodes.

B. Shortest Component Path

Let CIG = (V, E, Vstart, Vend) be a component interaction
graph, Ci, Ci+1, . . ., Ck ∈ V = Comp ∪ Conn. A path is a
finite sequence of nodes πP (Ci, Ck) = Ci → Ci+1 → . . .
→ Ck in V such that for all i ≤ j ≤ k - 1, (Cj , Cj+1) ∈
eConn−Comp ∨ eComp−Conn ∨ eConn−Conn. The length of
πP (Ci, Ck) is the number of edges from Ci to Ck, called
ω(πP (Ci, Ck)) for short.

In order to simplify the path representation, we ignore
the interfaces of the components and connectors in the path,
so that the same component and the same connector appear
only once in the path. For example in Fig. 2, LayoutManager
→ LTConn → TileArtist → TAConn → StatusArtist →
ALAConn→ LAConn→WellADT is a πP from component
LayoutManager to component WellADT, and its length is 7.
And StatusArtist → TAConn → LTConn → LayoutMnager
→ GLConn is a πP from component StatusArtist to connec-
tor GLConn, and its length is 4.

Let CIG = (V, E, Vstart, Vend) be a component interaction
graph. If there exists a path πP (Ci, Ck) in CIG, and Ci
∈ Comp ∧ Ck ∈ Comp, then the path πP (Ci, Ck) is a

component path, called πCP (Ci, Ck) for short. The length of
πCP (Ci, Ck) is the number of edges from Ci to Ck, called
ω(πCP (Ci, Ck)) for short.
πCP describes the messages transfer between components

in C2-style architecture. In fact, a πCP is just a series of pairs
of components and its response component and connector
sequences. It starts from a message that activates a corre-
sponding component to execute, and ends on a component
that does not issue any messages from its own.

Note, the πCP has two forms according to the type of
edges, one is all of edges from the beginning of top interface
of component and connector to the stopping of bottom
interface of component and connector, the other is all of
edges from the beginning of bottom interface of component
and connector to the stopping of top interface of component
and connector.

For example in Fig. 2, there are eight component paths
from LayoutManager to WellADT are given as follows,
where, the length of the first four component paths is 6,
the length of the following four component paths is 7.

• LayoutManager → LTConn → TAConn → StatusArtist
→ ALAConn → LAConn → WellADT

• LayoutManager → LTConn → TAConn → ChuteArtist
→ ALAConn → LAConn → WellADT

• LayoutManager → LTConn → TAConn → WellArtist
→ ALAConn → LAConn → WellADT

• LayoutManager→ LTConn→ TAConn→ PaletteArtist
→ ALAConn → LAConn → WellADT

• LayoutManager → LTConn → TileArtist → TAConn
→ StatusArtist → ALAConn → LAConn → WellADT

• LayoutManager → LTConn → TileArtist → TAConn
→ ChuteArtist → ALAConn → LAConn → WellADT

• LayoutManager → LTConn → TileArtist → TAConn
→ WellArtist → ALAConn → LAConn → WellADT

• LayoutManager → LTConn → TileArtist → TAConn
→ PaletteArtist→ ALAConn→ LAConn→ WellADT

Let CIG = (V, E, Vstart, Vend) be a component interaction
graph and there exists a component path πCP (Ci, Ck) in
CIG. The shortest component path from Ci to Ck is called
πSCP (Ci, Ck) for short, the length of πSCP (Ci, Ck) is called
ω(πSCP (Ci, Ck)) for short and is defined as:

ω(πSCP (Ci, Ck)) = min
πCP (Ci,Ck)

ω(πCP (Ci, Ck)) (1)

where min
πCP (Ci,Ck)

ω(πCP (Ci, Ck)) represents the minimum

length of component path from Ci to Ck.
For example in Fig. 2, there are four shortest compo-

nent paths πSCP (LayoutManager,WellADT ) given as
follows, where, the length of each shortest component path
is 6.

• LayoutManager → LTConn → TAConn → StatusArtist
→ ALAConn → LAConn → WellADT

• LayoutManager → LTConn → TAConn → ChuteArtist
→ ALAConn → LAConn → WellADT

• LayoutManager → LTConn → TAConn → WellArtist
→ ALAConn → LAConn → WellADT

• LayoutManager→ LTConn→ TAConn→ PaletteArtist
→ ALAConn → LAConn → WellADT

It is clear that a shortest component path between compo-
nents contains other shortest component paths within it.
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Fig. 2. CIG of KLAX System

Let CIG = (V, E, Vstart, Vend) be a component inter-
action graph and there exists a shortest component path
πSCP (Ci, Ck) in CIG, a set of nodes VπSCP (Ci,Ck) of
πSCP (Ci, Ck) is VπSCP (Ci,Ck) = {Vpj | Vpj ∈ Comp ∪
Conn ∧ Vpj 6= Ci ∧ Vpj 6= Ck, j = 1, 2, . . ., l, l <
ω(πSCP (Ci, Ck))}. If there exists constrained:

|VπSCP (Ci,Ck)| ≤ k (k ∈ N+) (2)

then corresponding shortest component path is called
nodes-constrained shortest component path, called
πNCSCP (Ci, Ck) for short, the length of πNCSCP (Ci, Ck)
is called ω(πNCSCP (Ci, Ck)) for short, where N+ is a
positive integer set.

For example in Fig. 2, there exists four shortest component
paths πSCP (LayoutManager,WellADT ), but if the re-
quest that the total number of nodes required to pass through
this shortest component path is no more than 6, the shortest
component paths πNCSCP (LayoutManager,WellADT )
are given as follows, where, the number of nodes of the
first four shortest component paths is 7, their length is 6, the
number of nodes of the following four shortest component
paths is 8, their length is 7.

• LayoutManager → LTConn → TAConn → StatusArtist
→ ALAConn → LAConn → WellADT

• LayoutManager → LTConn → TAConn → ChuteArtist
→ ALAConn → LAConn → WellADT

• LayoutManager → LTConn → TAConn → WellArtist
→ ALAConn → LAConn → WellADT

• LayoutManager→ LTConn→ TAConn→ PaletteArtist
→ ALAConn → LAConn → WellADT

• LayoutManager → LTConn → TileArtist → TAConn
→ StatusArtist → ALAConn → LAConn → WellADT

• LayoutManager → LTConn → TileArtist → TAConn
→ ChuteArtist → ALAConn → LAConn → WellADT

• LayoutManager → LTConn → TileArtist → TAConn
→ WellArtist → ALAConn → LAConn → WellADT

• LayoutManager → LTConn → TileArtist → TAConn
→ PaletteArtist→ ALAConn→ LAConn→ WellADT

We will present the algorithm for solving nodes-
constrained shortest component path in the next section.

III. APPROACH FOR FINDING πNCSCP

It is found that, for any one node, the node is not directly
connected to its neighboring nodes, that is, in the CIG of
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software architecture, for any one node Ci, which has path
with a small number of nodes, that is only a few nodes Cj to
meet the distance between two nodes ω(πP (Ci, Ck)) < ∞ .
We propose an algorithm NCSCP to generate the πNCSCP
set.

A. Inverse Adjacency List
In NCSCP algorithm, we use the inverse adjacency list

as the storage structure, the core operation of the NCSCP
algorithm is built on the node based on path.

The inverse adjacency list is a linked list. In the inverse
adjacency list, a single linked list of each node of the CIG is
established. The inverse adjacency list representation of CIG
consists of two parts: the header nodes and single linked list
for each node in CIG. For each header node Ci, the single
linked list consists of all the nodes and each node exists an
edge to Ci.

TABLE I
NUMBER OF COMPONENT AND CONNECTOR

No. Node No. Node

1 GraphicsBinding 12 ClockLogic

2 LayoutManager 13 StatusADT

3 TileArtist 14 ChuteADT

4 StatusArtist 15 WellADT

5 ChuteArtist 16 PaletteADT

6 WellArtist 17 GLConn

7 PaletteArtist 18 LTConn

8 StatusLogic 19 TAConn

9 TileMatchLogic 20 ALAConn

10 NextTilePlacingLogic 21 LLConn

11 RelativePosLogic 22 LAConn

In order to illustrate the correctness of NCSCP algorithm,
we choose KLAX system as the application under test.
When we choose the beginning component and the stopping
component with nodes-constrained, it is necessary to ensure
that there exists the shortest component path meets the
conditions. At the same time, in order to make the sequence
of intermediate results not too long and the influence to
visually verify the result is correct, here components and
connectors in the CIG are numbered as Table I so as to
simplify the representation of inverse adjacency list, and the
number of the component GraphicsBinding is 1, the number
of the connector LTConn is 18.

Fig. 3 illustrates the inverse adjacency list from the begin-
ning component GraphicsBinding to the stopping component
WellADT in Fig. 2, where the number of node represents
component and connector. In Fig. 2, component StatusArtist
is connected to connector ALAConn, component ChuteArtist
is connected to connector ALAConn, component WellArtist
is connected to connector ALAConn, and component Palet-
teArtis is connected to connector ALAConn. Hence, in Fig.
3, there exists 20 → 4 → 5 → 6 → 7 where nodes in a
single linked list are arranged in no particular order.

B. Data Structure in NCSCP Algorithm
Let there are n nodes C1, C2, . . ., Cn ∈ V = Comp ∪

Conn, where Cs ∈ Comp (1 ≤ s ≤ n) is a beginning node,

Ct ∈ Comp (1 ≤ t ≤ n) is a stopping node, k is the number
of nodes-constrained (1 ≤ k ≤ n).

• Pointer array adjlist[] of length n: It is a inverse adja-
cency list, where, each element of adjlist[i] (1 ≤ i ≤ n)
points to a list, there is a path from each element of list
to Ct, and all of nodes in list that there is path from
these nodes to Ci.

• Array dist[]: Each of element of dist[j] (1 ≤ j ≤ n) saves
the current shortest length from Cs to Cj , initialize the
direct distance Cs to Cj .

• Array pdist[]: Saves each element value of dist[] in
previous cycle, in order to compare whether the cor-
responding elements of the dist[] is modified in next
cycle.

• Two dimensional array path[][]: Each element of
path[k][r] (0 ≤ k ≤ m - 2, 1 ≤ r ≤ n) represents the
number of direct predecessor nodes Cs to Cr of current
shortest path passing through most k nodes.

C. NCSCP Algorithm

This subsection presents our NCSCP algorithm in pseudo-
code form. The NCSCP algorithm uses the inverse adjacency
list as the storage structure, the core operation of the NCSCP
algorithm is based on the nodes of the direct path, and the
similar algorithm mostly builded the core operation of the
algorithm on all nodes.

The input to the NCSCP algorithm is the CIG, beginning
component, stopping component, and the number of nodes-
constrained and the output is the corresponding to the nodes-
constrained shortest component path. The NCSCP algorithm
of our proposed technique to generate the nodes-constrained
shortest component path is illustrated as follows.

1. for (k=1; k ≤ m-2; k++) do
2. for (j=1; j ≤ n; j++) do
3. for each Ci in V do
4. if dist[i] > pdist[adjlist[i] -> node] + adjlist[i] ->

ω then
5. dist[i] = pdist[adjlist[i] -> node] + adjlist[i] ->

ω;
6. path[k][i] = adjlist[i] -> node;
7. end if
8. if adjlist[i] -> next ! = NULL then
9. adjlist[i] = adjlist[i] -> next;
10. else
11. if pdist[i] = = dist[i] then
12. path[k][i] = path[k-l][i];
13. end if
14. end if
15. end for
16. pdist[j] = dist[j];
17. end for
18. i = 1;
19. end for
20. Output the shortest component path from Cs to Ct,

that is to output the every node in the shortest component
path.

According to the description above, there are three nested
loops in NCSCP algorithm. The outermost loop takes m - 2
times, the middle loop takes n times, and the number of the
innermost loops is related to the Ci nodes. If the number of
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Fig. 3. Inverse Adjacency List Structure of CIG for KLAX System

nodes in the CIG to Ci is ei, then the loop takes ei times.

Because,
n∑
i=1

ei = w (w is the total number of edges in CIG).

Thus, the time complexity of NCSCP algorithm is O((m-
2)w).

D. Case Study

In order to examine the validity of the NCSCP algorithm,
we illustrate the working of NCSCP algorithm by using the
example KLAX system. Let the beginning component is Cs
= 1, stopping component is Ct = 15, and the number of
nodes-constrained is m = 9. First, the establishment of CIG’s
inverse adjacency list is stored as shown in Fig. 3.

The concrete shortest component path solving process is
shown in Table II and Table III.

TABLE II
SHORTEST COMPONENT PATH SEARCH PROCESS ON DIST[J]

K
Dist[j]

1 17 2 18 3 19 4 5 6 7 20 22 15

0 0 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

1 0 1 2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

2 0 1 2 3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

3 0 1 2 3 4 4 ∞ ∞ ∞ ∞ ∞ ∞ ∞

4 0 1 2 3 4 4 5 5 5 5 ∞ ∞ ∞

5 0 1 2 3 4 4 5 5 5 5 6 ∞ ∞

6 0 1 2 3 4 4 5 5 5 5 6 7 ∞

7 0 1 2 3 4 4 5 5 5 5 6 7 8

It is can be seen in Table II and Table III, the length of
shortest component path from GraphicsBinding to WellADT
is 8, this moment path[7][13] = 22, forwards search
path[6][12] = 20, forwards search again path[5][11] = 4, 5,
6, 7 to represent the shortest path length is same as 4, 5, 6,
7. Forwards search again path[4][6] = 19, forwards search

TABLE III
SHORTEST COMPONENT PATH SEARCH PROCESS ON PATH[K][J]

K
Path[k][j]

1 17 2 18 3 19 4 5 6 7 20 22 15

0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 17 1 1 1 1 1 1 1 1 1 1

2 1 1 17 2 1 1 1 1 1 1 1 1 1

3 1 1 17 2 18 18 1 1 1 1 1 1 1

4 1 1 17 2 18 18 19 19 19 19 1 1 1

5 1 1 17 2 18 18 19 19 19 19 4,5,6,7 1 1

6 1 1 17 2 18 18 19 19 19 19 4,5,6,7 20 1

7 1 1 17 2 18 18 19 19 19 19 4,5,6,7 20 22

again path[3][4] = 18, forwards search again path[2][3] = 2,
forwards search again path[1][2] = 17, forwards search again
path[0][1] = 1. Thus, the shortest component path set is:

1 → 17 → 2 → 18 → 19 → 7 → 20 → 22 → 15
1 → 17 → 2 → 18 → 19 → 6 → 20 → 22 → 15
1 → 17 → 2 → 18 → 19 → 5 → 20 → 22 → 15
1 → 17 → 2 → 18 → 19 → 4 → 20 → 22 → 15
Finally, the numbers are replaced with the component

name and the connector name, we obtain following the set
of shortest component paths:

GraphicsBinding → GLConn → LayoutManager → LT-
Conn → TAConn → StatusArtist → ALAConn → LAConn
→ WellADT

GraphicsBinding → GLConn → LayoutManager → LT-
Conn → TAConn → ChuteArtist → ALAConn → LAConn
→ WellADT

GraphicsBinding → GLConn → LayoutManager → LT-
Conn → TAConn → WellArtist → ALAConn → LAConn
→ WellADT

GraphicsBinding → GLConn → LayoutManager → LT-
Conn → TAConn → PaletteArtist → ALAConn → LAConn
→ WellADT
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TABLE IV
COMPARISON OF STATISTICAL RESULTS BETWEEN DIJKSTRA ALGORITHM AND OUR ALGORITHM

Instance of πNCSCP Passing through nodes
Dijkstra Our Percentage
algorithm algorithm reduction

πNCSCP (GraphicsBinding, T ileArtist)

LayoutManager 6 4 33.33%
LayoutManager, GLConn 5 4 20.00%
LayoutManager, GLConn, LTConn 4 4 0.00%

πNCSCP (GraphicsBinding, ClockLogic)

StatusArtist 31 10 67.74%
StatusArtist, TileArtist 19 9 52.63%
StatusArtist, TileArtist, LTConn 16 9 43.75%
StatusArtist, TileArtist, LTConn, LAConn 14 9 35.71%

πNCSCP (WellADT, StatusLogic)

RelativePosLogic 6 5 16.67%
RelativePosLogic, LLConn 5 3 40.00%
RelativePosLogic, LLConn, LAConn 4 3 25.00%

πNCSCP (WellADT,LayoutManager)

ChuteArtist 17 8 52.94%
ChuteArtist, TileArtist 12 7 41.67%
ChuteArtist, TileArtist, ALAConn 10 7 30.00%
ChuteArtist, TileArtist, ALAConn, LTConn 9 7 22.22%

πNCSCP (LayoutManager, ChuteADT )

ChuteArtist 17 8 52.94%
ChuteArtist, TileArtist 12 7 41.67%
ChuteArtist, TileArtist, ALAConn 10 7 30.00%
ChuteArtist, TileArtist, ALAConn, LTConn 9 7 22.22%

πNCSCP (PaletteArtist,GraphicsBinding)

LayoutManager 12 7 41.67%
LayoutManager, TileArtist 9 6 33.33%
LayoutManager, TileArtist, LTConn 8 6 25.00%
LayoutManager, TileArtist, LTConn, GLConn 7 6 14.29%

πNCSCP (PaletteADT,GraphicsBinding)

StatusArtist 31 10 67.74%
StatusArtist, TileArtist 19 9 52.63%
StatusArtist, TileArtist, LTConn 16 9 43.75%
StatusArtist, TileArtist, LTConn, LAConn 14 9 35.71%

IV. DISCUSSION

Because, it is difficult to effectively monitor the time effi-
ciency and the space efficiency of the NCSCP algorithm. We
choose some beginning component and stopping component
for KLAX system, and the method is verified by experiment.
Table IV gives part of the statistical results obtained by
the Dijkstra algorithm and the NCSCP algorithm. In Table
IV, the first column represents the instance of the shortest
component path between components. Because, the statistics
the number of shortest component paths passing through
nodes are very complicated, so, the second column represents
the passing through specified nodes, we choose the number
of the passing through specified nodes as 1, 2, 3, and 4. The
third column represents the number of nodes in the search
for Dijkstra algorithm on passing through specified nodes.
The fourth column represents the number of nodes in the
search for our algorithm on passing through specified nodes.
The fifth column represents the percentage reduction of every
shortest component path passing through specified nodes for
the Dijkstra algorithm and our algorithm.

For example, the number of nodes in the search for Di-
jkstra algorithm from GraphicsBinding to TileArtist passing
through LayoutManager is 6, the number of nodes in the
search for our algorithm from GraphicsBinding to TileArtist
passing through LayoutManager is 4, the percentage reduc-
tion is 33.33%. The number of nodes in the search for Di-
jkstra algorithm from GraphicsBinding to TileArtist passing
through LayoutManager and GLConn is 5, the number of
nodes in the search for our algorithm from GraphicsBinding

to TileArtist passing through LayoutManager and GLConnis
4, the percentage reduction is 20.00%. The number of nodes
in the search for Dijkstra algorithm from GraphicsBinding
to TileArtist passing through LayoutManager, GLConn, and
LTConn is 4, the number of nodes in the search for our al-
gorithm from GraphicsBinding to TileArtist passing through
LayoutManager, GLConn, and LTConn is 4, the percentage
reduction is 0%. The number of nodes in the search for
Dijkstra algorithm from WellADT to LayoutManager passing
through ChuteArtist is 17, the number of nodes in the
search for our algorithm from WellADT to LayoutManager
passing through ChuteArtist is 8, the percentage reduction
is 52.94%. The number of nodes in the search for Dijkstra
algorithm from WellADT to LayoutManager passing through
ChuteArtist and TileArtist is 12, the number of nodes in
the search for our algorithm from WellADT to LayoutMan-
ager passing through ChuteArtist and TileArtist is 7, the
percentage reduction is 41.67%. The number of nodes in
the search for Dijkstra algorithm from WellADT to Layout-
Manager passing through ChuteArtist, TileArtist, ALAConn,
and LTConn is 9, the number of nodes in the search for our
algorithm from WellADT to LayoutManager passing through
ChuteArtist, TileArtist, ALAConn, and LTConn is 7, the
percentage reduction is 22.22%.

From Table IV, we can see that, the number of nodes in the
search for our algorithm on passing through specified nodes
listed in the fourth column is smaller than that the number of
nodes in the search for Dijkstra algorithm on passing through
specified nodes in the third column. These comparison results
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TABLE V
STATISTICS RESULTS OF NUMBER OF SHORTEST COMPONENT PATHS AND ITS LENGTH BETWEEN DIJKSTRA ALGORITHM AND OUR ALGORITHM

Instance of πNCSCP Passing through nodes
Dijkstra algorthm Our algorithm
#NCSCP ω(πNCSCP ) #NCSCP ω(πNCSCP )

πNCSCP (GraphicsBinding, T ileArtist)

LayoutManager 1 4 1 4
LayoutManager, GLConn 1 4 1 4
LayoutManager, GLConn, LTConn 1 4 1 4

πNCSCP (GraphicsBinding, ClockLogic)

TAConn 4 8 4 8
StatusArtist, TileArtist 1 8 1 8
StatusArtist, TileArtist, LTConn 1 8 1 8
StatusArtist, TileArtist, LTConn, LAConn 1 8 1 8

πNCSCP (WellADT, StatusLogic)

LLConn 1 3 1 3
RelativePosLogic, LLConn 1 4 1 4
RelativePosLogic, LLConn, LAConn 1 4 1 4

πNCSCP (WellADT,LayoutManager)

ALAConn 4 6 4 6
ChuteArtist, TileArtist 1 7 1 7
ChuteArtist, TileArtist, ALAConn 1 7 1 7
ChuteArtist, TileArtist, ALAConn, LTConn 1 7 1 7

πNCSCP (LayoutManager, ChuteADT )

LTConn 4 6 4 6
ChuteArtist, TileArtist 1 7 1 7
ChuteArtist, TileArtist, ALAConn 1 7 1 7
ChuteArtist, TileArtist, ALAConn, LTConn 1 7 1 7

πNCSCP (PaletteArtist,GraphicsBinding)

LTConn 1 5 1 5
LayoutManager, TileArtist 1 6 1 6
LayoutManager, TileArtist, LTConn 1 6 1 6
LayoutManager, TileArtist, LTConn, GLConn 1 6 1 6

πNCSCP (PaletteADT,GraphicsBinding)

LTConn 4 8 4 8
StatusArtist, TileArtist 1 9 1 9
StatusArtist, TileArtist, LTConn 1 9 1 9
StatusArtist, TileArtist, LTConn, LAConn 1 9 1 9

mean that our algorithm is superior to the Dijkstra algorithm.
Meanwhile, as we can see, with the increase of number of
shortest component path passing through specified nodes,
the number of nodes in the search for Dijkstra algorithm
and our algorithm is decreasing, and the number of nodes in
the search our algorithm has small variations. If there exists
only shortest component path from beginning component to
stopping component, the efficiency of our algorithm will not
decrease.

One of the interesting comment for evaluating our algorith-
m is that, for beginning (stopping) component on the same
level and stopping (beginning) component on the same level,
the number of nodes in the search passing through specified
nodes for Dijkstra algorithm are same as the number of
nodes in the search passing through specified nodes for our
algorithm. For example in Table IV, for two shortest compo-
nent paths πNCSCP (GraphicsBinding, ClockLogic) and
πNCSCP (PaletteADT,GraphicsBinding) in Fig. 2, al-
though the direction of the two shortest component paths
are different, but the beginning component and stopping
component are the same level, so, the number of nodes in
the search passing through specified nodes as 1, 2, 3, and 4
for Dijkstra algorithm are same as the number of nodes in
the search passing through specified nodes as 1, 2, 3, and 4
for our algorithm.

Table V gives part of the statistical results obtained by
the Dijkstra algorithm and the NCSCP algorithm. In Table
V, the first column represents the instance of the shortest
component path between components. The second column

represents the passing through specified nodes, we choose
the number of the passing through specified nodes as 1,
2, 3, and 4. The third column #NCSCP represents the
number of the shortest component paths passing through
specified nodes for Dijkstra algorithm. The fourth column
ω(πNCSCP ) represents the length of the shortest component
path passing through specified nodes for Dijkstra algorithm.
The fifth column #NCSCP represents the number of the
shortest component paths passing through specified nodes
for our algorithm. The sixth column ω(πNCSCP ) represents
the length of the shortest component path passing through
specified nodes for our algorithm.

In general, it is easy to make sense that, after passing
through specified nodes are introduced, the length of the
shortest component path is increased, the number of the
shortest component path is decreased, and with the increase
of number of passing through specified components and con-
nectors, the length of shortest component path is increased,
the number of the shortest component path is decreased.
The number of the shortest component paths and its length
for our algorithm are same as the number of the shortest
component paths and its length for our algorithm, the results
show that the accuracy of the NCSCP algorithm in computing
the shortest component path is 100%.

V. CONCLUSION

This paper proposes an approach to solve the nodes-
constrained shortest component path problem in software ar-
chitecture. Firstly, it describes software architecture through
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C2-style, then represents software architecture through com-
ponent interaction graph CIG, and abstracted the behavior
of interaction between components and connectors. Sec-
ondly, formalized the shortest component path and nodes-
constrained shortest component path, and generated the
nodes-constrained shortest component path set according to
the NCSCP algorithm. The NCSCP algorithm is proposed
based on the research of the shortest component path prob-
lem, and it is not affected by the storage structure. By using
the inverse adjacency list, the nodes-constrained shortest
component path can be realized more easily. How to improve
the algorithm, in order to improve the efficiency of the
algorithm in the case of larger number of components and
connectors and large number of intermediate nodes, it needs
further research and exploration.
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