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Abstract—We derive the properties of transcomplex arith-
metic from the usual definition of transcomplex numbers as a
fraction of complex numbers, whose denominator may be zero.
This is equivalent to giving an axiomatisation.

In particular we characterise the partial associativity of
transcomplex addition and the partial distributivity. We de-
scribe specifically how the transcomplex numbers depart from
field structure and relate this to earlier work on transfields.

We review the transcomplex elementary functions and the
topology of transcomplex numbers. Thus armed we extend
several functional properties of the complex numbers to the
transcomplex numbers.

Index Terms—Transcomplex number, transcomplex topology,
transcomplex function, non-finite angle.

I. INTRODUCTION

Transmathematics is the mathematics which arises from
the transnumbers – numbers which extend the usual numbers
and allow division by zero. The first, and so far most
developed of the transnumbers, is the set of transreal num-
bers. Other sets are also studied in transmathematics such
as, for example, the transnaturals and transcomplexes. The
latter being the focus of this work. The set of transreals,
denominated by RT , and their arithmetic, is an extension of
real numbers and real arithmetic.

Transreal numbers were introduced by James Anderson at
the turn of the millennium [3]. Anderson’s motivation was
to enable division by zero and to apply these new num-
bers to computer programming. The absence of exceptions
is extremely powerful in computing. It makes it possible
to construct computational systems where all syntactically
correct expressions are semantically correct. This means that
infinitely many exceptional states are removed from math-
ematics and from computer programs. This is of practical
importance because it makes it possible to guarantee that
if a program compiles then it does not terminate due to a
logical exception. This is of very wide utility. In particular,
meta-programs, such as genetic algorithms, can combine sub-
programs arbitrarily in the search for optimal solutions. The
application of transarithmetic in both novel and conventional
computer hardware and software is discussed in, among other
places, [5] [1].

In RT , the four basic, arithmetical operations (addition,
subtraction, multiplication and division) are closed, that
is, the result of any of these operations between transreal
numbers is a transreal number. In particular, division by
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zero is allowed. The set RT is formed by all real num-
bers and three new elements, −∞, ∞ and Φ, respectively
denominated by minus infinity, infinity and nullity. Thus,
RT = R ∪ {∞,∞,Φ}. By definition: −k0 = −1

0 := −∞
and k

0 = 1
0 :=∞ for all k ∈ R and 0

0 := Φ [7].

Fig. 1. Transreal line.

In [10] we introduce the set of transcomplex numbers,
CT , and proved that transcomplex arithmetic is consistent.
We construct this new set from the real numbers by means of
equivalence classes of ordered pairs. The set of transcomplex
numbers contains the ordinary set of complex numbers and
the set of transreal numbers as proper subsets. Transcomplex
numbers are a new system of numbers which is total, with
respect to the four elementary, arithmetical operations. In
particular, division by zero is allowed. In [8] we set up a
topology for the set of transcomplex numbers.

In [6] [11] [12] we introduce transreal calculus with a
transreal topology that extends real topology. In the same
way we extend complex topology to the transcomplex plane
and establish some results about limits and continuity of
transcomplex functions, analogous to complex functions [9].
In [13] we extend every real, elementary function to the
transreal domain and in [8] we extend every complex,
elementary function to the transcomplex domain. This covers
a lot of ground. An elementary function is defined so that
every polynomial, root, exponential, logarithm, trigonometric
and inverse trigonometric function is an elementary func-
tion; any finite composition of elementary functions is an
elementary function; and any finite combination, using the
four, elementary arithmetical operations, between elementary
functions is an elementary function.

In the present paper we derive transcomplex arithmetic
from the definition of transcomplex numbers as fractions
of complex numbers, whose denominator may be zero. In
particular we characterise the partial associativity and partial
distributivity of transcomplex arithmetic. This identifies all
of the assertions that would form an axiomatisation, thereby
isolating the axioms that might be made the subject of a
machine proof of consistency. The characterisation of the
partialities also sharply defines how transcomplex arithmetic
departs from field structure, though transcomplex arithmetic
is already known to be a transfield [9].
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II. TRANSCOMPLEX ARITHMETIC

In [10] we define fractions so that they allow a denomi-
nator of zero and we prove that transcomplex arithmetic is
consistent. The set of transcomplex numbers is given byß

x

y
; x, y ∈ C

™
.

Since any usual fraction x
y (where x and y are complex

numbers with y 6= 0) can be represented by the equivalent
fraction

x
y

1 , every transcomplex number can be written as a
fraction, x

y , where x is an ordinary complex number and y
is either one or zero.

Definition 1: Let CT denote the set of transcomplex num-
bers, which is defined by

CT :=

ß
x

y
; x ∈ C and y ∈ {0, 1}

™
.

Next we establish an equivalence rule between fractions
of this new kind that allow a denominator of zero.

Definition 2: Given arbitrary x
y ,

w
z ∈ CT , that is, x,w ∈ C

and y, z ∈ {0, 1}, we say that x
y = w

z if and only if there is
a positive α ∈ R such that x = αw and y = αz.

Next we define the arithmetical operations between
transcomplex numbers.

Definition 3: Given arbitrary x
y ,

w
z ∈ CT , that is, x,w ∈ C

and y, z ∈ {0, 1}, it follows that:

a) (Adition) If y = z = 0, x 6= 0 and w 6= 0 then x
y + w

z =
x
|x|+

w
|w|

0 otherwise, x
y + w

z = xz+wy
yz .

b) (Opposite) −xy = −x
y

c) (Subtraction) x
y −

w
z = x

y +
(
−wz

)
.

d) (Multiplication) x
y ×

w
z = xw

yz .

e) (Reciprocal) If x 6= 0 then
Ä
x
y

ä−1
=

y
x

1 , otherwiseÄ
x
y

ä−1
= y

x .

f) (Division) x
y ÷

w
z = x

y ×
(
w
z

)−1.

Notice that with these definitions, when operations are
performed between the usual complex numbers (fractions
with denominator 1), the results obtained are exactly the
same as the usual arithmetical results. This means that
arithmetic in this new set of transcomplex numbers respects
the arithmetic of the old set of complex numbers. Note, also,
that the above rules are analogous to the usual rules.

As a consequence of the equivalence rule, given in Defi-
nition 2, it follows that

CT =C ∪
{x

0
; x ∈ C, |x| = 1

}
∪
ß

0

0

™
.

Indeed, if x
y ∈ CT then y = 1 or y = 0. If y = 1 then

x
y ∈ C. On the other hand, if y = 0 then either x 6= 0 or

else x = 0. In the first case, x 6= 0 implies α = |x| is a
positive real number such that x = α x

|x| , whence x
y =

x
|x|
0 .

Further
∣∣∣ x|x| ∣∣∣ = 1, whence x

y =
x
|x|
0 ∈

{
x
0 ; x ∈ C, |x| = 1

}
.

In the second case, x = 0, whence x
y = 0

0 . Note that for
each x, z ∈ C, where |z| = 1, the elements x, z

0 and 0
0 are

pairwise distinct.
We name two special, transcomplex numbers: infinity,

∞ := 1
0 , and nullity, Φ := 0

0 .
The transcomplex plane is shown in figure 2. The usual

complex plane is shown as a grey disk. It has no real bound
but, after a gap, it is surrounded by a circle at infinity. The
point at nullity, Φ, lies off the plane containing the complex
plane and the circle at infinity. The transreal number line is
shown as the x-axis, together with the point at nullity, Φ.
Thus the transcomplex plane is obtained by a revolution of
the transreal line.

Fig. 2. The transreal numbers are shown as the extended x-axis, together
with the point at nullity, Φ, as a subset of the transcomplex numbers.

Any complex number can be represented, in polar form,
by an ordered pair (r, θ), where r ∈ [0,∞) and θ ∈ (−π, π].
Note that zero does not have a unique description because
(0, θ) describes zero for all θ ∈ (−π, π]. Now we describe
Φ by the ordered pair (Φ, θ), where θ is arbitrary in (−π, π].
We represent all transcomplex numbers in the form u

0 where
u 6= 0, by the ordered pair (∞, θ), where θ = Arg(u). In
this way all transcomplex numbers can be represented by
an ordered pair, in the form (r, θ), where r ∈ [0,∞] ∪ {Φ}
and θ ∈ (−π, π], observing that (0, θ) represents zero for
all θ ∈ (−π, π] and (Φ, θ) represents Φ for all θ ∈ (−π, π].
Thus we can write

CT = C ∪
{

(∞, θ); θ ∈ (−π, π]
}
∪ {Φ}.

Though, later, we shall incorporate the non-finite angles θ ∈
{−∞,∞,Φ}.

Figure 3 shows that any point in the complex plane and
the circle at infinity can be described in polar co-ordinates.
The system of polar co-ordinates also describes the point at
nullity which lies at nullity distance and nullity angle. Thus
every point in the transcomplex plane, including the point at
nullity, is described by polar co-ordinates.

Let us refer to the elements of C as finite transcomplex
numbers, to the elements of

{
(∞, θ); θ ∈ (−π, π]

}⋃
{Φ}

as non-finite transcomplex numbers and, particularly, to the
elements of

{
(∞, θ); θ ∈ (−π, π]

}
as infinite transcomplex
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numbers, then the elements of
{

(∞, θ); θ ∈ (−π, π]
}⋃
{Φ}

are strictly transcomplex numbers.

Fig. 3. Entire transcomplex plane described by polar co-ordinates: z =
(r, θ) and w = (∞, θ) and Φ = (Φ,Φ) with r, θ finite.

Remark 4: Let us denote the set of infinite transcomplex
numbers by CT∞. That is,

CT∞ :=
{x

0
; x ∈ C, |x| = 1

}
.

The reader should note that no restriction has been im-
posed on division. In this way, any transcomplex number,
including complex numbers, can be divided by zero. Note
that zero divided by zero results in nullity. Indeed,

0÷ 0 =
0

1
÷ 0

1
=

0

1
×
Å

0

1

ã−1

=
0

1
× 1

0
=

0× 1

1× 0
=

0

0
= Φ.

And any non-zero, complex number, z, divided by zero,
results in the transcomplex number of infinite radius, which
has the same argument (angle) as z. Indeed,

z ÷ 0 =
z

1
÷ 0

1
=
z

1
× 1

0
=
z × 1

1× 0
=
z

0
= (∞,Arg(z)).

Transcomplex arithmetic can be understood geometrically
[4]. Multiplication and division are a generalisation of the
usual rotation and dilatation, where dilatation of a finite,
non-zero radius by ∞ is ∞, dilatation of a zero radius by
∞ is Φ, and dilatation of any radius by Φ is Φ. Addition is
performed using a generalisation of the usual parallelogram
rule, such that addition of an infinite number and a finite
number involves a parallelogram whose one side has infinite
length and whose other side has finite length, such that the
diagonal has infinite length and lies at the same angle as the
infinite side. The sum of two, non-opposite, infinite numbers
involves a parallelogram with sides of equal and infinite
length, such that the sum is the infinitely long diagonal. The
sum of two, opposite, infinite numbers is Φ. The sum of any
number with Φ is a diagonal of length Φ. The sum of finite
numbers is given by the ordinary parallelogram rule.

III. PROPERTIES OF TRANSCOMPLEX ARITHMETIC

In this section we develop some elementary results of
transcomplex arithmetic.

Proposition 5:

a) The sum of nullity with any transcomplex is nullity:
Φ + z = z + Φ = Φ for all z ∈ CT .

b) The sum of any non-opposite, infinite transcomplexes
is an infinite transcomplex: If z, w ∈ CT∞ and z 6= −w
then z + w,w + z ∈ CT∞.

c) The sum of opposite, infinite transcomplexes is nullity:
If z, w ∈ CT∞ and z = −w then z + w = w + z = Φ.

d) The sum of an infinite transcomplex with a finite
transcomplex is the infinite transcomplex: If z ∈ CT∞
and w ∈ C then z + w = w + z = z.

e) The opposite of nullity is nullity: −Φ = Φ.

f) Subtraction of a non-finite transcomplex from itself is
nullity: If z ∈ CT \ C then z − z = Φ.

g) The product of nullity with any transcomplex is nullity:
Φ× z = z × Φ = Φ for all z ∈ CT .

h) The product of any infinite transcomplexes is an infinite
transcomplex: If z, w ∈ CT∞ then z × w,w × z ∈ CT∞.

i) The product of an infinite transcomplex with a non-
zero, finite transcomplex is an infinite transcomplex: If
z ∈ CT∞ and w ∈ C \ {0} then z × w,w × z ∈ CT∞.

j) The product of an infinite transcomplex with zero is
nullity: If z ∈ CT∞ then z × 0 = 0× z = Φ.

k) The reciprocal of nullity is nullity: Φ−1 = Φ.

l) The reciprocal of zero is infinity: 0−1 =∞.

m) The reciprocal of any infinite transcomplex is zero: If
z ∈ CT∞ then z−1 = 0.

n) Division of non-finite transcomplexes is nullity: If z, w∪
CT \ C then z ÷ w = Φ.

o) Zero divided by zero is nullity: 0÷ 0 = Φ.

Proof: Let z, w ∈ CT and denote z = x
y and w = u

t

where x, u ∈ C and y, t ∈ {0, 1}.

a) Φ + z = 0
0 + x

y = 0×y+x×0
0×y = 0

0 = Φ.

b) If z, w ∈ CT∞ and z 6= −w then x 6= 0, u 6= 0, y = 0,
t = 0 and x

|x| 6= −
u
|u| whence z + w = x

0 + u
0 =

x
|x|+

u
|u|

0 ∈ CT∞.

c) If z, w ∈ CT∞ and z = −w then x 6= 0, u 6= 0, y = 0,
t = 0 and x

|x| =6= − u
|u| whence z + w = x

0 + u
0 =

x
|x|+

u
|u|

0 = 0
0 = Φ.
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d) If z ∈ CT∞ and w ∈ C then x 6= 0, y = 0, t 6= 0 whence
z + w = x

0 + u
1 = x×1+u×0

0×1 = x
0 = z.

e) −Φ = − 0
0 = −0

0 = 0
0 = Φ.

f) The result follows from items (a), (c) and (e).

g) Φ× z = 0
0 ×

x
y = 0×x

0×y = 0
0 = Φ.

h) If z, w ∈ CT∞ then x 6= 0, u 6= 0, y = 0, t = 0 whence
z × w = x

0 ×
u
0 = xu

0×0 = xu
0 ∈ CT∞.

i) If z ∈ CT∞ and w ∈ C \ {0} then x 6= 0, y = 0, u 6= 0,
t 6= 0 whence z × w = x

0 ×
u
t = x×u

0×t = xu
0 ∈ CT∞.

j) If z ∈ CT∞ then y = 0 whence z×0 = x
0 ×

0
1 = x×0

0×1 =
0
0 = Φ.

k) Φ−1 =
(

0
0

)−1
= 0

0 = Φ.

l) 0−1 =
(

0
1

)−1
= 1

0 =∞.

m) If z ∈ CT∞ then z−1 =
(
x
0

)−1
=

0
x

1 = 0
1 = 0.

n) The result follows from items (g), (j), (k) and (l).

o) The result follows from items (j) and (l).

The commutativity of addition and multiplication is proved
at Proposition 21, below.

In what follows we establish, in CT , some definitions and
properties that are similar in C.

Definition 6: Given z ∈ CT take x ∈ C and y ∈ {0, 1}
such that z = x

y and define z := x
y . We call z the conjugate

of the transcomplex number z.

We are abusing notation when we reuse the symbol for
the conjugate of complex numbers to define conjugate in
CT . However, this is not a problem because the context
distinguishes the set to which the symbols refer. When we
say that z = x

y it is clear that the symbol “ · ” on the left
hand side of the equality refers to conjugate in CT while the
symbols “ · ” on the right hand side of the equality refer to
conjugate in C. Moreover, when the operation of taking the
conjugate in CT is restricted to C it coincides with the usual
conjugate in C.

Proposition 7: The conjugate of a transcomplex number
is well defined. That is, the conjugate is independent of
the choice of the fraction which represents the transcomplex
number. In other words, if x,w ∈ C and y, t ∈ {0, 1} and
x
y = w

t then
Ä
x
y

ä
=
(
w
t

)
.

Proof: Let x,w ∈ C and y, t ∈ {0, 1} such that x
y =

w
t . If y = 1 then t = 1 whence x = w and the result is

immediate. If y = 0 and x = 0 then t = 0 and w = 0
whence the result is also immediate. If y = 0 and x 6= 0

then t = 0 and w 6= 0 and x
|x| = w

|w| ∈ C whence x
|x| = w

|w| .

Thus,
Ä
x
y

ä
=
(
x
0

)
= x

0 =
x
|x|
0 =

w
|w|
0 = w

0 =
(
w
0

)
=
(
w
t

)
.

Of course, when z ∈ CT , x ∈ C and y ∈ {0, 1} such that
z = x

y , it follows that z = x
y .

Proposition 8: Given arbitrary z, w ∈ CT it follows that:
a) z = z
b) z + w = z + w
c) −w = −w
d) z − w = z − w
e) zw = zw
f) w−1 = w−1

g) z ÷ w = z ÷ w

Proof: Consider arbitrary z, w ∈ CT . Suppose z = x
y

and w = u
t where x, u ∈ C and y, t ∈ {0, 1}.

a) z =
Ä
x
y

ä
=
Ä
x
y

ä
= x

y = x
y = z.

b) If y = t = 0, x 6= 0 and u 6= 0 then z + w = x
0 + u

0 =( x
|x|+

u
|u|

0

)
=

x
|x|+

u
|u|

0 =

(
x
|x|

)
+
(
u
|u|

)
0 =

x

|x|
+ u

|u|
0 =

x
|x|+

u
|u|

0 = x
0 + u

0 =
(
x
0

)
+
(
u
0

)
= z + w. Otherwise

z + w = x
y + u

t =
Ä
xt+uy
yt

ä
= xt+uy

yt = xt+u y
yt =

xt+uy
yt = x

y + u
t =
Ä
x
y

ä
+
(
u
t

)
= z + w.

c) −w =
(
−ut
)

=
(−u
t

)
= −u

t = −u
t = −ut = −

(
u
t

)
=

−w.

d) This case follows from i(b) and (c).

e) zw = x
y
u
t =

Ä
xu
yt

ä
= xu

yt = xu
yt = x

y
u
t =

Ä
x
y

ä(
u
t

)
=

zw

f) If u 6= 0 then w−1 =
(
u
t

)−1
=
(
t
u

1

)
=

( tu )
1 =

t
u

1 =

Å
t
u

1

ã
=
Ä
u
t

ä−1
=
(
u
t

)−1
= w−1. Otherwise

w−1 =
(
u
t

)−1
=
(
t
u

)
= t

u = t
u =

(
u
t

)−1
=
Ä
u
t

ä−1
=(

u
t

)−1
= w−1.

g) This case follows from items (e) and (f).

Definition 9: Given z ∈ CT , take x ∈ C and y ∈ {0, 1},
such that z = x

y , and define |z| := |x|
|y| . We call |z| the

modulus or absolute value of the transcomplex number z.

Once more we are abusing notation when we reuse the
symbol for modulus. However, again, when we say that |z| =
|x|
|y| it is clear that the symbol “| · |” on the left hand side of
the equality refers to modulus in CT , while the symbol “|· |”,
on the right hand side of the equality, refers to modulus in
C. Thus when the operation of taking the modulus in CT is
restricted to C it coincides with the usual modulus on C.

Proposition 10: The modulus of a transcomplex number
is well defined. That is, the modulus is independent of the
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choice of the fraction which represents the transcomplex
number. In other words, if x,w ∈ C and y, t ∈ {0, 1} and
x
y = w

t then |xy | = |
w
t |.

Proof: Let x,w ∈ C and y, t ∈ {0, 1} such that xy = w
t .

If y = 1 then t = 1, whence x = w and the result is
immediate. If y = 0 and x = 0 then t = 0 and w = 0,
whence the result is also immediate. If y = 0 and x 6= 0

then t = 0 and w 6= 0, whence
∣∣∣xy ∣∣∣ =∞ =

∣∣w
t

∣∣.
Again, let z ∈ CT , x ∈ C and y ∈ {0, 1}, such that z = x

y .
It follows that |z| = |x|

y .

Proposition 11: Given arbitrary z, w ∈ CT it follows that:
a) |z|2 = zz
b) |z| = |z|
c) |zw| = |z||w|
d) |w−1| = |w|−1

e) |z ÷ w| = |z| ÷ |w|
f) |z + w| 6> |z|+ |w|

Proof: Consider arbitrary z, w ∈ CT . Suppose z = x
y

and w = u
t where x, u ∈ C and y, t ∈ {0, 1}.

a) zz = x
y

Ä
x
y

ä
= x

y
x
y = xx

y2 = xx
y2 = |x|2

y2 = |x|
y
|x|
y =

|z||z| = |z|2.

b) |z| =
∣∣∣Äxyä∣∣∣ =

∣∣∣xy ∣∣∣ = |x|
y = |x|

y = |z|.

c) |zw| =
∣∣∣xy ut ∣∣∣ =

∣∣∣xuyt ∣∣∣ = |xu|
yt

= |x||u|
yt = |x|

y
|u|
t = |z||w|

d) If u 6= 0 then |w−1| =
∣∣∣(ut )−1

∣∣∣ =
∣∣∣ tu1 ∣∣∣ =

| tu |
1 =

|t|
|u|
1 =

Ä
|u|
|t|

ä−1
=
∣∣u
t

∣∣−1
= |w|−1. Otherwise, |w−1| =∣∣∣(ut )−1

∣∣∣ =
∣∣ t
u

∣∣ = |t|
|u| =

Ä
|u|
|t|

ä−1
=
∣∣u
t

∣∣−1
= |w|−1.

e) This case follows from (c) and (d).

f) (I) If z = Φ or w = Φ, say z = Φ, then |z+w| = |Φ +
w| = |Φ| = Φ 6> Φ = Φ + |w| = |Φ|+ |w| = |z|+ |w|.

(II) If z ∈ C and w ∈ C the result follows from the
ordinary Triangular Inequality of complex numbers.

(III) If either z ∈ C and w ∈
{
x
0 ; |x| = 1

}
or

z ∈
{
x
0 ; |x| = 1

}
and w ∈ C, say z ∈ C and

w ∈
{
x
0 ; |x| = 1

}
, then z+w ∈

{
x
0 ; |x| = 1

}
, whence

|z + w| =∞ 6>∞ = |z|+∞ = |z|+ |w|.
(IV) If z, w ∈

{
x
0 ; |x| = 1

}
and z 6= −w then z+w ∈{

x
0 ; |x| = 1

}
whence |z +w| =∞ 6>∞ =∞+∞ =

|z| + |w|. (V) If z, w ∈
{
x
0 ; |x| = 1

}
and z = −w

then z + w = Φ whence |z + w| = |Φ| = Φ 6> ∞ =
∞+∞ = |z|+ |w|.

Definition 12: Given z ∈ CT , take x ∈ C and y ∈ {0, 1},
such that z = x

y and define Arg(z) := Arg(x). We call
Arg(z) the principal argument of the transcomplex number
z.

Remark 13: We adopt the convention Arg(0) := 0.

Again we are abusing notation but, at this point, the reader
can identify the correct use of the argument.

Proposition 14: The argument of a transcomplex number
is well defined. That is, the argument is independent of the
choice of the fraction which represents the transcomplex
number. In other words, if x,w ∈ C and y, t ∈ {0, 1} and
x
y = w

t then Arg
Ä
x
y

ä
= Arg

(
w
t

)
.

Proof: Let x,w ∈ C and y, t ∈ {0, 1}, such that x
y =

w
t . There is a positive α ∈ R such that x = αw, whence

Arg
Ä
x
y

ä
= Arg(x) = Arg(αw) = Arg(w) = Arg

(
w
t

)
.

Now let x
y ∈ CT . When y 6= 0 we have x

y ∈ C, whence
x
y = reiθ for some r ∈ [0,∞) and θ ∈ R. When y = 0,
x
y = x

0 . If x = 0 then x
y = 0

0 = Φ = Φ×eiθ for any θ ∈ R. If
x 6= 0 then x

y = x
0 = x/|x|

0 = 1
0×

x/|x|
1 =∞× x

|x| =∞×eiθ

for some θ ∈ R. From now on we write Φeiθ := 0
0 , where

θ ∈ R is arbitrary, and∞eiθ := x
0 where θ = Arg(x). Hence

every transcomplex number z can be written as

z = |z|eiArg(z).

Since, for each α ∈ R, eiα = ei(α+k2π) for all k ∈
Z, it follows that every transcomplex number z can be
written as z = |z|ei(Arg(z)+k2π) for all k ∈ Z. Thus
CT ⊂

{
reiθ; r ∈ [0,∞] ∪ {Φ}, θ ∈ R

}
. Furthermore,

clearly,
{
reiθ; r ∈ [0,∞] ∪ {Φ}, θ ∈ R

}
⊂ CT . Therefore

CT =
{
reiθ; r ∈ [0,∞] ∪ {Φ}, θ ∈ R

}
.

Since for every α ∈ R there is θ ∈ (−π, π] and k ∈ Z such
that α = θ + k2π whence eiα = eiθ, we can write

CT =
{
reiθ; r ∈ [0,∞] ∪ {Φ}, θ ∈ (−π, π]

}
.

Remark 15: Let reiθ, seiα ∈ CT . Notice that reiθ = seiα

if and only if r = s and α = θ + k2π for some k ∈ Z.

Proposition 16: If z, w ∈ CT then it is the case that zw =
|z||w|ei(Arg(z)+Arg(w)).

Proof: Let z, w ∈ CT and x, u ∈ C and y, t ∈
{0, 1}, such that z = x

y and w = u
t . It fol-

lows that, for all k ∈ Z, zw = x
y
u
t = xu

yt =∣∣∣xuyt ∣∣∣ eiArg( xuyt ) = |xu|
yt e

iArg(xu) = |x||u|
yt ei(Arg(xu)+k2π) =

|x|
y
|u|
t e

i(Arg(x)+Arg(u)) = |z||w|ei(Arg(z)+Arg(w)).

Corollary 17: If z ∈ CT then zn = |z|neinArg(z).

Proposition 18: If z, w ∈ CT and n ∈ N then (zw)n =
znwn.

Proof: Let z, w ∈ CT and n ∈ N. It fol-
lows that (zw)n = (zw)× (zw)× · · · × (zw)× (zw)︸ ︷︷ ︸

n times

.
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Since transcomplex multiplication is associative and com-
mutative (as proved in the Proposition 21), it fol-
lows that (zw)n = (zw)× (zw)× · · · × (zw)× (zw)︸ ︷︷ ︸

n times

=

z × z × · · · × z × z︸ ︷︷ ︸
n times

×w × w × · · · × w × w︸ ︷︷ ︸
n times

= znwn.

Definition 19: Given z ∈ CT and n ∈ N, we say that
w ∈ CT is an nth root of z if and only if wn = z.

We define the transreal, non-negative, nth root of a non-
negative, transreal number, a, in the following way: n

√
Φ :=

Φ; n
√
∞ := ∞, and, for all a ∈ R, n

√
a is the ordinary real

positive nth root of a.

Notice that, for all n ∈ N, zero is the only nth root of
zero and nullity is the only nth root of nullity.

Proposition 20: Given z ∈ CT \ {0,Φ} and n ∈ N, z has
exactly n different nth roots, namely,

n

»
|z|ei

(
Arg(z)+k2π

n

)
for each k ∈ {0, . . . , n−1} where n

√
|z| denotes the transreal

nth root of |z|.

Proof: Let z ∈ CT \ {0,Φ} and n ∈ N. An reiθ ∈ CT
is the nth root of z if and only if z =

(
reiθ

)n, whence
|z|eiArg(z) = z =

(
reiθ

)n
= rn

(
eiθ
)n

= rneinθ. Hence
|z| = rn and Arg(z) = nθ + k2π where k ∈ Z, whence
r = n

√
|z| and θ = Arg(z)+k2π

n where k ∈ Z. Thus
the nth roots of z are the transcomplex numbers of the
form n

√
|z|ei

(
Arg(z)+k2π

n

)
where k ∈ Z. Now notice that,

reciprocally, for each k ∈ Z, n
√
|z|ei

(
Arg(z)+k2π

n

)
is an nth

root of z. Notice also if k, l ∈ {0, . . . , n−1} and k 6= l then
n
√
|z|ei

(
Arg(z)+k2π

n

)
6= n
√
|z|ei

(
Arg(z)+l2π

n

)
and, furthermore,

for all l ∈ Z there is k ∈ {0, . . . , n − 1} such that
n
√
|z|ei

(
Arg(z)+l2π

n

)
= n
√
|z|ei

(
Arg(z)+k2π

n

)
. Therefore, for all

k ∈ {0, . . . , n − 1}, n
√
|z|ei

(
Arg(z)+k2π

n

)
are the n different

nth roots of z.

Since Φ + z = Φ for every z ∈ CT , there is no z ∈
CT such that Φ + z = 0. The fact that Φ does not have
an additive inverse is sufficient to show that CT is not a
field, though it is a transfield [9]. In the next theorem we
establish which field properties do hold in CT and for all
field properties that do not hold, we indicate the necessary
restrictions. Thus we sharply delimit the field properties of
CT and obtain statements that could be taken as axioms in
an axiomatic development of the transcomplex numbers.

Proposition 21: Let a, b, c ∈ CT . It follows that:

a) (Additive Commutativity) a+ b = b+ a.

b) (Additive Associativity) (a+ b) + c = a+ (b+ c) if and
only if one of the five following conditions holds:
(I) either a /∈ CT∞ or b /∈ CT∞ or c /∈ CT∞ or
(II) a = c or
(III) a = −c and b = a or

(IV) a = −c and b = c or
(V) there is z ∈ CT∞ such that a, b and c are all cube
roots of z.

c) (Additive Identity) a+ 0 = 0 + a = a.

d) (Additive Inverse) a− a = 0 if and only if a /∈ CT \C.

e) (Multiplicative Commutativity) a× b = b× a.

f) (Multiplicative Associativity) (a× b)× c = a× (b× c).

g) (Multiplicative Identity) a× 1 = 1× a = a.

h) (Multiplicative Inverse) a ÷ a = 1 if and only if a /∈
{0} ∪ (CT \ C).

i) (Distributivity) a × (b + c) = (a × b) + (a × c) and
(b + c) × a = (b × a) + (c × a) if and only if one of
five following conditions holds:
(I) either a = Φ or b = Φ or c = Φ or
(II) a /∈ CT∞ or
(III) a, b, c ∈ CT \ C or
(IV) |b| = |c| or
(V) Arg(b) = Arg(c) and bc 6= 0.

The proof of this Proposition 21 is in the Appendix.

In Proposition 21 we looked at what arithmetical proper-
ties of complex numbers are valid in the transcomplexes. As
we have said, transcomplex numbers make a transfield. A
transfield is a generalisation of a field – not in the sense that
every transfield is a field, but in the sense that a field is a
system of axioms that establishes properties of addition and
multiplication which are extended by the special axioms of
a transfield so that addition, multiplication, subtraction and
division are total operations. Thus a transfield contains a field
and supplies total operations.

We define a transfield so that the smallest number of
axioms are used to admit the maximum possible structure
of real arithmetic, subject to the constraint that a transfield
describes both the transreals and the transcomplexes. A
transfield is a set, T , provided with two binary operations, +
and ×, and two unary operations, − and −1, such that: T is
closed for +, ×, − and −1; + and × are commutative, each
has an identity element and × is associative; there is F ⊂ T
such that F is a field, with respect to + and ×, and F and T
have common additive and multiplicative identities; and for
each x ∈ F , −x coincides with the additive inverse of x in
F and, for each x ∈ F , different from the additive identity,
x−1 coincides with the multiplicative inverse of x in F . The
reader can find more about transfields in [9].

IV. TOPOLOGY, LIMITS AND CONTINUITY

Henceforth we take θ ∈ (−π, π] in every reiθ ∈ CT .

Let D := {z ∈ C; |z| < 1}, D := {z ∈ C; |z| ≤ 1} and

ϕ : CT \ {Φ} → D ⊂ CT
reiθ 7→ 1

1+ 1
r

eiθ . (1)
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Note that ϕ|C is an homeomorphism between C and D with
respect to the usual topology on C.

Proposition 22: Define d : CT × CT → R where

d(z, w) =

 0, if z = w = Φ
2, if z = Φ or else w = Φ.

|ϕ(z)− ϕ(w)|, otherwise

We have that d is a metric on CT and, therefore, CT is a
metric space.

Proof: Clearly, for all z, w ∈ CT , d(z, w) = 0 if and
only if z = w, d(z, w) = d(w, z) and d(z, w) ≥ 0. If
z, w, u ∈ CT \ {Φ} then d(z, u) = |ϕ(z)−ϕ(u)| = |ϕ(z)−
ϕ(w) + ϕ(w)− ϕ(u)| ≤ |ϕ(z)− ϕ(w)|+ |ϕ(w)− ϕ(u)| =
d(z, w) + d(w, u). The reader can verify that the triangular
inequality is also true when z, w, u ∈ CT \ {Φ} does not
hold.

Proposition 23: The topology on C, induced by the topol-
ogy of CT , is the usual topology of C. That is, if U ⊂ CT
is open on CT then U ∩ C is open (in the usual sense) on
C and if U ⊂ C is open (in the usual sense) on C then U is
open on CT .

Proof: Let us denote the ball of centre z and radius ρ on
CT as BCT (z, ρ), that is, BCT (z, ρ) = {w ∈ CT ; |ϕ(z) −
ϕ(w)| < ρ}, and denote the ball of centre z and radius ρ on
C as BC(z, ρ), that is, BC(z, ρ) = {w ∈ C; |z − w| < ρ}.

Let U ⊂ CT be open on CT and let z ∈ U ∩ C. As U is
open on CT , there is a positive ε ∈ R such that BCT (z, ε) ⊂
U . As ϕ|C is continuous, there is a positive δ ∈ R such that
if w ∈ CT \ {Φ} and |z − w| < δ then |ϕ(z)− ϕ(w)| < ε.
Thus BC(z, δ) ⊂ BCT (z, ε) ∩C ⊂ U ∩C, whence U ∩C is
open (in the usual sense) on C.

Now, let U ⊂ C be open (in the usual sense) on C and
let z ∈ U . Notice that z = reiθ for some r ∈ [0,∞) and
some θ ∈ (−π, π]. As U is open (in the usual sense) on
C, there is a positive ε ∈ R such that BC(z, ε) ⊂ U . As
ϕ−1
|D is continuous, there is a positive δ ∈ R such that δ <
|ϕ(z) − eiθ| and if ϕ(w) ∈ D and |ϕ(z) − ϕ(w)| < δ then
w ∈ C and |z − w| < ε. Thus BCT (z, δ) ⊂ BC(z, ε) ⊂ U ,
whence U is open on CT .

Corollary 24: If A ⊂ CT is closed on CT then A ∩ C is
closed (in the usual sense) on C.

The next Remark 25 gives more details about our obser-
vations in Remark 4 of [8].

Remark 25: Note that ϕ is an homeomorphism. Indeed,
let us show that ϕ is continuous. The proof that ϕ−1 is con-
tinuous is analogous. Let z ∈ CT \{Φ} be arbitrary. If z ∈ C
then the result holds from the Proposition 23 and the fact of
ϕ|C being continuous. If z ∈ CT∞ let ε ∈ R be positive arbi-
trary. Let θz ∈ (−π, π] such that z =∞eiθz . As the function
[0,∞] 3 r 7→ 1

1+ 1
r

∈ [0, 1] is continuous, there is a positive
M ∈ R such that 1

2 −
1

1+ 1
1

1+ 1
r

< ε
2 whenever r ∈ (M,∞].

As the function R 3 θ 7→ eiθ ∈ C is continuous, there is a
positive δ ∈ R such that |eiθ−eiθz | < ε whenever θ ∈ R and
|θ − θz| < δ. Thus if reiθ ∈ CT and r ∈ (M,∞] and |θ −

θz| < δ then d(ϕ(reiθ), ϕ(∞eiθz )) ≤ d(ϕ(reiθ), ϕ(reiθz ))+
d(ϕ(reiθz ), ϕ(∞eiθz )) = |ϕ(ϕ(reiθ)) − ϕ(ϕ(reiθz ))| +
|ϕ(ϕ(reiθz )) − ϕ(ϕ(∞eiθz ))| = 1

1+ 1
1

1+ 1
r

|eiθ − eiθz | +Ñ
1
2 −

1
1+ 1

1

1+ 1
r

é
< 1

2ε+ ε
2 < ε. Therefore ϕ is continuous.

Remark 26: Because of Proposition 23:
i) Let (xn)n∈N ⊂ C and let L ∈ C, it follows that

limn→∞ xn = L on CT if and only if limn→∞ xn = L,
in the usual, sense on C.

ii) Let A ⊂ C, f : A → C, x ∈ A′ and L ∈ C, it
follows that limx→x f(z) = L on CT if and only if
limx→x f(z) = L, in the usual sense, on C.

iii) Given x ∈ A, it follows that f is continuous in x on CT
if and only if f is continuous in x, in the usual sense,
on C.

Proposition 27: CT is disconnected.
Proof: CT =

{
reiθ; r ∈ [0,∞], θ ∈ (−π, π]

}
∪ {Φ}

and the sets
{
reiθ; r ∈ [0,∞], θ ∈ (−π, π]

}
and {Φ} are

open.

Notice that Φ is the unique isolated point of CT .

Remark 28:
i) Let (xn)n∈N ⊂ CT . Notice that limn→∞ xn = Φ if and

only if there is k ∈ N such that xn = Φ for all n ≥ k.
ii) Let A ⊂ C, f : A → CT and x ∈ A′, it follows that

limx→x f(z) = Φ if and only if there is a neighbour-
hood U of x such that f(z) = Φ for all x ∈ U \ {x}.

iii) If Φ ∈ A then f is continuous in Φ.

Proposition 29: CT is a separable space.

Proof: (Q + Qi) ∪ {Φ} is countable and dense in CT .

Proposition 30: Every sequence of transcomplex numbers
has a convergent subsequence.

Proof: Let (xn)n∈N ⊂ CT . If {n; xn 6= Φ} is a
finite set then clearly limn→∞ xn = Φ. If {n; xn 6= Φ}
is an infinite set then denote, by (yk)k∈N, the subsequence
of (xn)n∈N of all elements of (xn)n∈N that are distinct
from Φ. Note that (ϕ(yk))k∈N (ϕ defined in (1)) is a
bounded sequence of complex numbers, whence it has a
convergent subsequence, denoted (ϕ(ykm))m∈N. As ϕ is an
homeomorphism, (ykm)m∈N is convergent.

Proposition 31: CT is compact.

Proof: As CT is a metric space and every sequence from
CT has a convergent subsequence, CT is compact.

Corollary 32: Let A ⊂ CT . It follows that A is compact
if and only if A is closed.

Proposition 33: CT is complete.

Proof: Every compact, metric space is complete and CT
is compact and metric.
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V. ELEMENTARY FUNCTIONS

A. Polynomial Functions

A function, f , is a complex, polynomial function if and
only if there is n ∈ N and a, . . . , an ∈ C such that
f(z) = anx

n + · · ·+ a1x+ a for all x ∈ C. As every arith-
metical operation is well-defined in transcomplex numbers,
we extend the function f to CT naturally. In the complex
domain, 0 × xk = 0 for all complex x but 0 × xk = 0
does not hold for all transcomplex x. In order to avoid this
problem we adopt the following definition.

Definition 34: A function, f , is a transcomplex, polyno-
mial function if and only if there is n, k ∈ N; n1, . . . , nk ∈
{1, . . . , n − 1} and a, an1

. . . , ank , an ∈ C such that
an1

. . . , ank , an are different from zero and

f : CT −→ CT
z 7−→ anx

n + ankx
nk + · · ·+ an1

xn1 + a
.

Remark 35: For every non-constant, transcomplex, poly-
nomial function, f , we have that f(Φ) = Φ.

B. Exponential Functions

In [13] we defined the transreal, exponential function. We
have that e−∞ = 0, e∞ =∞ and eΦ = Φ.

For every ordinary, complex number, z = reiθ, we have

exp(z) = exp
(
reiθ

)
= exp (r cos(θ) + ir sin(θ))
= er cos(θ)(cos(r sin(θ)) + i sin(r sin(θ))).

In particular, when θ ∈ {0, π}, we have that sin(θ) = 0
whence

exp
(
reiθ

)
= er cos(θ)(cos(r sin(θ)) + i sin(r sin(θ)))
= er cos(θ)(cos(0) + i sin(0))
= er cos(θ).

Motivated by this, we extend the exponential function to the
transcomplex domain in the following way.

Definition 36: A function, f , is a transcomplex, natural,
exponential function if and only if

f : CT −→ CT
reiθ 7−→ exp

(
reiθ

)
where exp

(
reiθ

)
= er cos(θ) if θ ∈ {0, π} and exp

(
reiθ

)
=

er cos(θ)(cos(∞ sin(θ)) + i sin(∞ sin(θ))) if θ /∈ {0, π}.

Notice that exp (∞) = exp
(
∞ei0

)
= e∞ cos(0) = e∞ and

exp (−∞) = exp
(
∞eiπ

)
= e∞ cos(π) = e−∞. Furthermore,

if θ ∈ (−π, π] \ {0, π} then

exp
(
∞eiθ

)
= e∞ cos(θ)(cos(∞ sin(θ)) + i sin(∞ sin(θ)))
= e∞ cos(θ)(Φ + iΦ)
= e∞ cos(θ)Φ
= Φ.

Therefore:
i) exp(z) = ez for every z ∈ C.

ii) exp(−∞) = 0.
iii) exp(∞) =∞.
iv) exp

(
∞eiθ

)
= Φ for all θ ∈ (−π, π] \ {0, π}.

v) exp(Φ) = Φ.

Remark 37: Notice that exp is discontinuous in all infini-
ties.

Remark 38: Unfortunately, the property exp(z + w) =
exp(z) exp(w) does not hold for all z, w ∈ CT . For example,

let z =
1√
2

+ 1√
2
i

0 and w =
1√
2
− 1√

2
i

0 . We have that z + w =
1√
2

+ 1√
2
i

0 +
1√
2
− 1√

2
i

0 =
1√
2

+ 1√
2
i + 1√

2
− 1√

2
i

0 =
√

2
0 = 1

0 = ∞
whence exp(z + w) = e∞ = ∞. But z = ∞eπ4 i and w =
∞e−π4 i whence exp(z) = exp(∞eπ4 i) = Φ and exp(w) =

exp(∞e−π4 i) = Φ. Thus exp(z) exp(w) = Φ × Φ = Φ.
Therefore exp(z+w) 6= exp(z) exp(w). Another example is
when z =∞ and w = i. We have that z+w =∞+ i =∞
whence exp(z+w) = exp(∞) =∞ but exp(z) = e∞ =∞
and exp(w) = ei whence exp(z) exp(w) = ∞ei. Thus
exp(z + w) 6= exp(z) exp(w).

C. Logarithmic Functions

In [13] we defined the transreal, logarithmic function. We
have that ln(0) = −∞, ln(∞) =∞ and ln(Φ) = Φ.

A function, f , is the complex, logarithmic function if
and only if f(reiθ) = ln(r) + iθ for all r ∈ (0,∞) and
θ ∈ (−π, π]. Motivated by this, we extend the logarithmic
function to the transcomplex domain in the following way.

Definition 39: A function, f , is a transcomplex, natural,
logarithmic function if and only if

f : CT −→ CT
reiθ 7−→ ln(r) + iθ

.

Remark 40: Notice that, for every θ ∈ (−π, π], we have
ln(∞eiθ) = ln(∞) + iθ =∞+ iθ =∞. So ln(z) =∞ for
every transcomplex infinity z.

Remark 41: The property ln(exp(z)) = z does not hold
for all z ∈ CT . If θ ∈ (−π, π]\{0, π} then ln(exp(∞eiθ)) =
ln(Φ) = Φ 6= ∞eiθ. But ln(exp(z)) = z holds in the other
cases. Indeed:
• if z = a + bi ∈ C, where a, b ∈ R and b ∈ (−π, π],

then we already know that ln(exp(z)) = z,
• if z = Φ then ln(exp(z)) = ln(exp(Φ)) = ln(Φ) =

Φ = z,
• if z = −∞ then ln(exp(z)) = ln(exp(−∞)) =

ln(0) = −∞ = z, and
• if z = ∞ then ln(exp(z)) = ln(exp(∞)) = ln(∞) =
∞ = z.

In the same way exp(ln(z)) = z does not hold for all z ∈
CT . If θ ∈ (−π, π] \ {0} then exp(ln(∞eiθ)) = exp(∞) =
∞ 6= ∞eiθ. But exp(ln(z)) = z holds in the other cases.
Indeed:
• if z ∈ C \ {0} then we already know that exp(ln(z)) =
z,

• if z = 0 then exp(ln(z)) = exp(ln(0)) = exp(−∞) =
0 = z,

• if z = Φ then exp(ln(z)) = exp(ln(Φ)) = exp(Φ) =
Φ = z and

• if z =∞ then exp(ln(z)) = exp(ln(∞)) = exp(∞) =
∞ = z.
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Remark 42: We know that, for all z, w ∈ C \ {0},
ln(zw) = ln(z) + ln(w) +ki2π for some k ∈ Z. Fortunately
this property also holds in transcomplex domain. That is,
for all z, w ∈ CT , ln(zw) = ln(z) + ln(w) + ki2π for
some k ∈ Z. In particular if the two conditions z ∈
C \ {0} and w ∈ C \ {0} do not hold simultaneously then
ln(zw) = ln(z) + ln(w). The reader can prove this with
simple calculations.

Remark 43: Definition 39 can give us powers of every
transcomplex base so we define zw := exp(w ln(z)) for all
z, w ∈ CT .

D. Trigonometric Functions

In [13] we defined the transreal trigonometric functions.
We have that sin(−∞) = cos(−∞) = tan(−∞) =
csc(−∞) = sec(−∞) = cot(−∞) = sin(∞) = cos(∞) =
tan(∞) = csc(∞) = sec(∞) = cot(∞) = sin(Φ) =
cos(Φ) = tan(Φ) = csc(Φ) = sec(Φ) = cot(Φ) = Φ.

A function, f , is the complex, sine function if and only
f(z) = exp(iz)−exp(−iz)

2i for all z ∈ C and f is the complex,
cosine function if and only f(z) = exp(iz)+exp(−iz)

2 for all
z ∈ C. Furthermore, for all k ∈ Z, it is the case that sin(z)

cos(z) ,
1

sin(z) , 1
cos(z) and cos(z)

sin(z) are lexically well-defined at π
2 +

kπ and kπ in the transcomplex domain. Because of this we
extend the trigonometric functions to CT in the following
way.

Definition 44: A function is a transcomplex, trigonometric
function if and only if it is one of:

a)
sin : CT −→ CT

z 7−→ sin(z) = exp(iz)−exp(−iz)
2i

,

b)
cos : CT −→ CT

z 7−→ cos(z) = exp(iz)+exp(−iz)
2

,

c)
tan : CT −→ CT

z 7−→ tan(z) = sin(z)
cos(z)

,

d)
csc : CT −→ CT

z 7−→ csc(z) = 1
sin(z)

,

e)
sec : CT −→ CT

z 7−→ sec(z) = 1
cos(z)

and

f)
cot : CT −→ CT

z 7−→ cot(z) = cos(z)
sin(z)

.

Remark 45: In [13] we show that sin2(x)+cos2(x) = 1x

for all x ∈ RT . Unfortunately this property does not hold for
all transcomplex numbers. We have that sin2(z)+cos2(z) =
1z if and only if z ∈ CT \{−i∞, i∞}. Note that, by Remark
43, 1z = Φ if z ∈ CT \ C.

VI. TOTALISATION

A. Recursive Totalisation

The work, above, develops the elementary, transcomplex
functions as functions of transcomplex numbers, which
numbers are expressible as tuples, 〈r, θ〉, of a transreal
radius, r, and a transreal angle, θ. This is adequate from
a mathematical point of view but it is not sufficient for
computer science where total functions are wanted whose
domain can be recursively decomposed into the entire do-
main of transreal numbers so that, here, r and θ could

be any transreals. As usual when a negative r occurs, we
map r to its modulus and increment the angle by π so
that all transreal radii are admitted. We observe that for
all non-finite angles, θ ∈ {−∞,∞,Φ}, it is the case that
reiθ = r(cos(θ) + i sin(θ)) = r(Φ + Φ) = rΦ = Φ so
that the exponential, logarithmic and trigonometric functions
admit all transreal angles. The totalisation of the remaining
elementary functions is immediate.

It is well known that the trigonometric functions can be
defined, equivalently, by power series or by geometrical
constructions. The totalisation of angle, just given, relies on
power series. We now give a geometrical construction of the
transreal angles.

B. Geometrical Construction of the Transreal Angles

Fig. 4. Transreal cone

Let us explore both finite and non-finite angles in a
geometrical construction before settling on a definition of
transreal angle.

Consider a transreal cone with apex A, as shown in Figure
4. A right cross-section of the cone is a circle on which a
radius, r, may be drawn. On the circle at unit radius, r = 1,
mark off, not necessarily distinct, points P and Q. Project
the lines AP and AQ, taking a point P ′ anywhere on AP ,
including the point P ′0 at A, the point P ′∞ on the circle at
infinity and the point P ′Φ at the point at nullity, shown as Φ
in the figure. Similarly take Q′ on AQ.

At r = 1 the angle from P to Q is defined to be the arc
length P̃Q taken zero, positive or negative according to the
usual sign convention. It is then shown that identical plane
rotations arise for all non-negative, finite radii, 0 < r <∞,
when the angle is given by P̃Q = P̆ ′Q′/r when P ′ and Q′

lie on the circle with radius r. We now consider the cases
r ∈ {0,∞,Φ}. The reader is free to construct negative radii
in a double cone.

At r = Φ we have Ṗ ′ΦQ
′
Φ/rΦ = Φ̂Φ/0 = 0/0 = Φ,

which is to say that the angle nullity occurs at r = Φ. Now
reiΦ = r(cos(Φ) + i sin(Φ)) = r(Φ + Φ) = rΦ = Φ for all
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transreal r. Thus the nullity rotation, by angle nullity, θ = Φ,
maps the whole of its domain onto the point at nullity, Φ.

At r = 0 we have P̆ ′0Q
′
0/r0 = ÃA/0 = 0/0 = Φ, which

is to say that the angle nullity also occurs at r = 0. This is
a redundancy which we shall presently resolve.

At r = ∞ the zero angle, θ = 0, arises when P ′∞ and
Q′∞ are co-punctal but when P ′∞ and Q′∞ are distinct we
have θ = ˚�P ′∞Q′∞/r∞ =∞/∞ = Φ so that only the angles
zero and nullity can arise, from this geometrical construction,
in the circle at infinity. This computed angle of nullity is
degenerate in the sense that it hides the true value of any
non-zero, finite angle in the circle at infinity. That is it hides
all points ∞eiθ with θ 6= 0. Information hiding is discussed
in [2]. We shall presently avoid this degeneracy.

We now construct the infinite angle via a winding on the
ordinary, unit cone.

By definition P and Q lie in the unit circle, separated by
an angle θ = P̃Q. When P and Q are distinct we take an arc
length α = P̃Q and when P and Q are co-punctal we take
α = 2π. We now take the arc at a smaller radius and wind
it from P ′, once fully round the cone, and continue exactly
to Q′. This winding marks off the angle θ1 = θ + 2π. We
continue in this way, recursively winding at smaller radii, to
produce the family of angles θk = θ + k2π. We suppose
that the winding process is continuous to that at r = 0 we
produce the winding θ∞ = θ+ 2∞π =∞. But this rotation
is identically the rotation at r = 0 so the infinite angle is
equivalent to the nullity angle. This agrees with the result
obtained from power series.

Notice that all transreal angles are given uniquely when
we define a zero angle at a fixed point, Z, on the base of
the cone. Let us take Z = Q in Figure 4. Now all angles,
θ, in the principle range −π < θ ≤ π are given uniquely
by a point in the unit circle with radius r = 1. All finite
angles, −∞ < θ < ∞, are given uniquely by windings
on the cone at all positive radii, 0 < r ≤ 1. And the
equivalence class of all non-finite angles is given uniquely
by the apex of the cone at r = 0. Hence the apex of the unit
cone uniquely defines the non-finite angle and the unit cone,
with the apex punctured and a zero point identified, defines
each finite angle uniquely. Thus there is an injection from
transreal angles to points on the unit cone, with the zero
point identified. This being the case we accept the winding
construction in the unit cone as our definition of transreal
angle and simply note the extraneous behaviour in the circle
at infinity and the point at nullity.

In the definition we have just adopted, we assume continu-
ity of the winding process to obtain the infinite angle equal to
the nullity angle, which is what we wanted to achieve. This
commits us to continuity of winding everywhere, including
all applications of winding in topology, in complex analysis
and in mathematical physics.

VII. DISCUSSION

We have established several properties on transcomplex
numbers which are similar to the properties in C. The finite,
transcomplex numbers are identical to the complex numbers
but that their field structure is generalised to a transfield to
account for the non-finite transcomplexes. The properties of
the complement, modulus, exponential, logarithm and n’th

root generalise in a natural way. In particular, we have proved
that:

• Transcomplex addition is commutative, is partially as-
sociative, has an identity element and every finite, non-
zero, transcomplex number has an inverse element; and
transcomplex multiplication is commutative, is associa-
tive, is partially distributive with respect to transcomplex
addition, has identity element and every finite, non zero,
transcomplex number has an inverse element.

• z = z; z + w = z + w; −w = −w; z − w = z − w;
zw = zw; w−1 = w−1 and z ÷ w = z ÷ w; for all
z, w ∈ CT .

• |z|2 = zz; |z| = |z|; |zw| = |z||w|; |w−1| = |w|−1;
|z ÷ w| = |z| ÷ |w| and |z + w| 6> |z| + |w|; for all
z, w ∈ CT .

• zw = |z||w|ei(Arg(z)+Arg(w)) and zn = |z|neinArg(z)

for all z, w ∈ CT and given z ∈ CT \ {0,Φ} and
n ∈ N, z has exactly n different nth roots, namely,
n
√
|z|ei

(
Arg(z)+k2π

n

)
for each k ∈ {0, . . . , n− 1}.

We have equipped the set of transcomplex numbers with a
topology, given by a metric, that contains the usual topology
of the complex numbers. This preserves many properties of
complex numbers and leads to consistent generalisations of
them. In particular it extends the usual geometrical con-
structions of the real trigonometric functions to their tran-
sreal counterparts, from which we obtain the transcomplex,
trigonometric functions. Thus the topology provides a firm
foundation for our work. As CT is a metric space, all usual
results of that space follow. For example: CT is a Hausdorff
space; the limit of a sequence, when it exists, is unique;
when A ⊂ CT , f : A→ CT , x ∈ A′ and L ∈ CT , we have
that limx→x f(z) = L if and only if limn→∞ f(xn) = L
for all (xn)n∈N ⊂ A \ {x} such that limn→∞ xn = x; and
when A ⊂ CT , f : A → CT and x ∈ A, we have that f is
continuous in x if and only if limn→∞ f(xn) = f(z) for all
(xn)n∈N ⊂ A and limn→∞ xn = x.

In [12] we adopted the following procedure to extend an
elementary function from the real to the transreal domain.
If the usual expression of the function is lexically well-
defined, at a transreal number, then we define the function
by simply applying its expression at that transreal number.
If the function, f , is not lexically well-defined at a transreal
number, x, but there is a limit, limx→x f(z), then we choose
to define the function at x by limx→x f(z). Otherwise we
choose to define the function by way of its power series
if it converges. And if, nevertheless, its power series does
not converge, we keep the function undefined. But the
transcomplex space is more complicated than transreal space.
Transreal space has only two infinite numbers and there is
only one path, one direction, to each one of these infinities
but there are several (infinite) paths and directions to each
infinite transcomplex number. Hence many limits do not exist
at infinite transcomplexes.

Now let us address some remarks to why we did not
adopt other ways to define the exponential function on the
transcomplex plane.

i) We cannot define the transcomplex, exponential func-
tion by a lexical expression because the exponential is
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not defined by finitely many arithmetical operations. In
particular we cannot take the usual algebraic definition
that if z = a + bi then exp(z) = ea(cos(b) + i sin(b))
because the infinite transcomplex numbers do not have
any algebraic representation.

ii) We cannot define the transcomplex, exponential
function by limits because, for every r ∈ [0,∞),
exp

(
reiθ

)
= exp (r cos(θ) + ir sin(θ)) =

er cos(θ)(cos(r sin(θ)) + i sin(r sin(θ))), whence there
is no limr→∞ exp

(
reiθ

)
for every θ ∈ (−π, π]\{0, π}.

iii) We cannot define the transcomplex, exponential func-

tion by power series because 1 +
∑∞
n=1

(∞eiθ)
n

n! =

1+
∑∞
n=1

∞einθ
n! = 1+

∑∞
n=1∞einθ diverges for every

θ ∈ (−π, π] \ {0, π}.
iv) We could think about the homeomorphism ϕ. Notice

that the circle at infinity, {∞eiθ; θ ∈ (−π, π]}, is a
homeomorphic copy, by the function ϕ, of the unitary
circle, ∂D := {eiθ; θ ∈ (−π, π]}. So, in order to
define exp at an infinite transcomplex number ∞eiθ,
we could transform ∞eiθ to ϕ(∞eiθ) = eiθ, then we
would take exp

(
eiθ
)

= exp (cos(θ) + i sin(θ)) =
ecos(θ)(cos(sin(θ)) + i sin(sin(θ))), after that
we would transform ecos(θ)(cos(sin(θ)) +

i sin(sin(θ))) to ecos(θ)(cos(sin(θ))+i sin(sin(θ)))
|ecos(θ)(cos(sin(θ))+i sin(sin(θ)))| =

cos(sin(θ)) + i sin(sin(θ)) and, finally, we
would transform cos(sin(θ)) + i sin(sin(θ)) to
ϕ−1 (cos(sin(θ)) + i sin(sin(θ))). In this way, denoting
the function C \ {0} 3 z 7→ z

|z| ∈ ∂D by h, we would
define exp

(
∞eiθ

)
:= (ϕ−1 ◦ h ◦ exp ◦ϕ)

(
∞eiθ

)
.

This would define the exponential of all transcomplex
infinities but the transcomplex exponential, expCT ,
would not be an extension of the transreal exponential,
expRT . In fact expCT (−∞) = expCT (∞eiπ) = (ϕ−1 ◦
h ◦ exp ◦ϕ)

(
∞eiπ

)
= (ϕ−1 ◦ h ◦ exp)

(
ϕ
(
∞eiπ

))
=

(ϕ−1 ◦h ◦ exp)
(
eiπ
)

= (ϕ−1 ◦h ◦ exp) (−1) = (ϕ−1 ◦
h)(exp(−1)) = (ϕ−1 ◦ h)(e−1) = ϕ−1(h(e−1)) =

ϕ−1
Ä
e−1

|e−1|

ä
= ϕ−1(1) =∞ 6= 0 = expRT (−∞).

In future we intend to extend the differential and integral
calculi from the complex to the transcomplex domain, open-
ing up the way to extend our generalisation of Newtonian
Physics [2] to both relativistic and quantum physics.

VIII. CONCLUSION

The transcomplex numbers, introduced elsewhere, contain
the complex, transreal and real numbers and support division
by zero, consistently, in all of their arithmetics.

Here we show that the transcomplex complement and
modulus are well defined and we supply the set of transcom-
plex numbers with a topology that contains the usual topol-
ogy of both the complex and real numbers. It is easy to
see that our transcomplex topology also contains transreal
topology. Thus we maintain all of these topologies within a
single number system.

We extend the exponential from the complex to the
transcomplex domain so that it contains the complex, tran-
sreal and real exponentials. Hence we obtain the transcom-
plex logarithm and the transcomplex, trigonometric functions
and all transcomplex, elementary functions, such that they
contain their complex, transreal and real counterparts. This
gives us the n’th roots of a transcomplex number.

We give a geometrical construction of transreal angle,
including the non-finite angles. Thus the equivalence of
geometrical and power series definitions of the trigonometric
functions is maintained. We stress that our geometrical con-
struction of angle assumes continuity of the winding process
so we are committed to this continuity wherever winding
occurs, for example in topology, in complex analysis and in
mathematical physics.

All of the transarithmetics are total. This removes infinitely
many exceptions from mathematics and from computer pro-
grams. Thus our corpus of work continues to offer both
theoretical and practical advantages.

APPENDIX A
PROOF OF PROPOSITION 21

Proof: Let a, b, c ∈ CT . Let us denote a = a1
a2

, b = b1
b2

and c = c1
c2

where a1, b1, c1 ∈ C and a2, b2, c2 ∈ {0, 1}.
a) If a2 = b2 = 0, a1 6= 0 and b1 6= 0 then a + b =

a1
a2

+ b1
b2

=
a1
|a1|

+
b1
|b1|

0 =
b1
|b1|

+
a1
|a1|

0 = b1
b2

+ a1
a2

= b + a.
Otherwise a+ b = a1

a2
+ b1
b2

= a1b2+b1a2
a2b2

= b1a2+a1b2
b2a2

=
b1
b2

+ a1
a2

= b+ a.

b) (I) Suppose a /∈ CT∞ (the cases b /∈ CT∞ and c /∈ CT∞ are
analogous). Having a /∈ CT∞, we have two possibilities:
• b, c ∈ CT∞. In this case: If a2 = 0 then a = Φ

whence (a + b) + c = (Φ + b) + c = Φ + c =
Φ = Φ + (b + c) = a + (b + c); if a2 6= 0 then
(a + b) + c =

(
a1
1 + b1

0

)
+ c1

0 = a1×0+b1×1
1×0 +

c1
0 = 0+b1

0 + c1
0 = b1

0 + c1
0 =

b1
|b1|

+
c1
|c1|

0 =
0+
(
b1
|b1|

+
c1
|c1|

)
0 =

a1×0+
(
b1
|b1|

+
c1
|c1|

)
×1

1×0 = a1
1 +

b1
|b1|

+
c1
|c1|

0 = a1
1 +

(
b1
0 + c1

0

)
= a+ (b+ c).

• b, c ∈ CT∞ does not hold. In this case, (a +

b) + c =
Ä
a1
a2

+ b1
b2

ä
+ c1

c2
= a1b2+b1a2

a2b2
+ c1

c2
=

(a1b2+b1a2)c2+c1a2b2
a2b2c2

= a1b2c2+b1a2c2+c1a2b2
a2b2c2

=
a1b2c2+b1c2a2+c1b2a2

a2b2c2
= a1b2c2+(b1c2+c1b2)a2

a2b2c2
=

a1
a2

+ b1c2+c1b2
b2c2

= a1
a2

+
Ä
b1
b2

+ c1
c2

ä
= a+ (b+ c).

(II) If a = c then (a+b)+c = (a+b)+a = a+(a+b) =
a+ (b+ a) = a+ (b+ c).
(III) Suppose a = −c and b = a. If either a /∈ CT∞ or
b /∈ CT∞ or c /∈ CT∞ then the result follows from item (I);
otherwise, (a+b)+c = (a+a)−a = 2a−a = a−a =
Φ = a+ Φ = a+ (−c+ c) = a+ (a+ c) = a+ (b+ c).
(IV) Suppose a = −c and b = c. This case is analogous
to item (III).
(V) If there is z ∈ CT∞ such that a, b and c are all cube
roots of z then (a + b) + c = −c + c = Φ = a − a =
a+ (b+ c).
Now suppose that (a + b) + c = a + (b + c). If either
a /∈ CT∞ or b /∈ CT∞ or c /∈ CT∞ then there is nothing
to show; otherwise let us show that either a = c or
a = −c and b = a or a = −c and b = c or there
is z ∈ CT∞ such that a, b and c are all cube roots of
z. Indeed, a = a1

0 , b = b1
0 and c = c1

0 . Without loss
of generality, suppose |a1| = |b1| = |c1| = 1. Hence
(a + b) + c =

(
a1
0 + b1

0

)
+ c1

0 = a1+b1
0 + c1

0 and a +
(b + c) = a1

0 +
(
b1
0 + c1

0

)
= a1

0 + b1+c1
0 . Therefore, if

(a+ b)+ c = a+(b+ c) then we have five possibilities:
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• b1 = −a1 and b1 = −c1. In this case, a1 = c1
whence a = c.

• b1 = −a1 and b1 6= −c1 and a1|b1 +c1|+b1 +1 c =
0. In this case, −b1|b1 + c1|+ b1 + c1 = 0 whence
c1 = b1(|b1 + c1| − 1). Notice that, since |b1| = 1
and |c1| = 1, 1 = |c1| = |b1(|b1 + c1| − 1)| =
|b1|||b1 + c1| − 1| = ||b1 + c1| − 1| and, since |b1 +
c1|−1 ∈ R, it follows that either ||b1+c1|−1| = −1
or ||b1 + c1| − 1| = 1. Hence, since b1 6= −c1,
||b1 + c1| − 1| = 1 whence c1 = b1 whence c = b.

• b1 6= −a1 and a1 + b1 + c1|a1 + b1| = 0 and
b1 = −c1. In this case, a1 + b1 − b1|a1 + b1| = 0
whence a1 = b1(|a1 + b1| − 1). Notice that, since
|a1| = 1 and |b1| = 1, 1 = |a1| = |b1(|a1 + b1| −
1)| = |b1|||a1 + b1| − 1| = ||a1 + b1| − 1| and,
since |a1 +b1|−1 ∈ R, it follows that either ||a1 +
b1| − 1| = −1 or ||a1 + b1| − 1| = 1. Hence, since
b1 6= −a1, ||a1 + b1| − 1| = 1 whence a1 = b1
whence a = b.

• b1 6= −a1 and a1 + b1 + c1|a1 + b1| = 0 and
b1 6= −c1 and a1|b1 + c1| + b1 + c1 = 0. In this
case, a1+b1+c1|a1+b1| = 0 = a1|b1+c1|+b1+c1
whence a1(|b1 + c1| − 1) = c1(|a1 + b1| − 1). If
|b1 + c1| − 1 = 0 then |a1 + b1| − 1 = 0 whence
|b1 + c1| = 1 and |a1 + b1| = 1 whence there is
z ∈ C such that a1, b1 and c1 are all cube roots of
z.
If |b1 + c1| − 1 6= 0 then a1 = |a1+b1|−1

|b1+c1|−1 c1 whence
either a1 = −c1 or a1 = c1. If a1 = −c1 then a1 +
b1−a1|a+1 b1| = 0 whence b1 = a1(|a1 +b1|−1)
whence b1 = a1, furthermore a1|b1+c1|+b1+c1 =
0 whence b1 = c1(|b1 + c1| − 1) whence b1 = c1,
hence a = c, which is absurd. If a1 = c1 then
c1|b+1 c1|+b1 +c1 = 0 whence c1(|b1 +c1|+1) =
−b1, hence c1 = −b1, which is an absurd.

• b1 6= −a1 and a1 + b1 + c1|a1 + b1| 6= 0 and
b1 6= −c1 and a1|b1 + c1| + b1 + c1 6= 0. In
this case, a1+b1+c1|a1+b1|

0 = a1|b1+c1|+b1+c1
0

whence
a1+b1
|a1+b1|

+c1

0 =
a1+

b1+c1
|b1+c1|
0 . Let us show that

a1 = c1. Denote α := Arg(a1), β := Arg(b1)
and γ := Arg(c1). Suppose α, β, γ ∈ [0, π].
The other cases are analogous. Firstly notice
that Arg(a1 + b1) = α+β

2 . Indeed, since
a1 + b1 = cos(α) + cos(β) + (sin(α) + sin(β))i,
it is sufficient to show that cos(α) + cos(β) =

|a1 + b1| cos
Ä
α+β

2

ä
and sin(α) + sin(β) =

|a1 + b1| sin
Ä
α+β

2

ä
. It follows that |a1 + b1| =√

(cos(α) + cos(β))2 + (sin(α) + sin(β))2 =√
2
√

1 + cos(α− β). Further, we know that
cos(α) + cos(β) = 2 cos

Ä
α+β

2

ä
cos
Ä
α−β

2

ä
=

2 cos
Ä
α−β

2

ä
cos
Ä
α+β

2

ä
=

2
√

1− sin2
Ä
α−β

2

ä
cos
Ä
α+β

2

ä
=

2
√

1−
Ä
1− cos(α−β)

2

ä
cos
Ä
α+β

2

ä
=

√
2
√

1 + cos(α− β) cos
Ä
α+β

2

ä
= |a1 +

b1| cos
Ä
α+β

2

ä
. In similar way we see that

sin(α) + sin(β) = |a1 + b1| sin
Ä
α+β

2

ä
. This

concludes that Arg(a1 + b1) = α+β
2 . Analogously

it follows that Arg
Ä
a1+b1
|a1+b1| + c1

ä
=

α+β
2 +γ

2 and

Arg(b1 + c1) = β+γ
2 and Arg

Ä
a1 + b1+c1

|b1+c1|

ä
=

α+ β+γ
2

2 . Hence Arg
Ä
a1+b1
|a1+b1| + c1

ä
= α+β+2γ

4

and Arg
Ä
a1 + b1+c1

|b1+c1|

ä
= 2α+β+γ

4 . Since
a1+b1
|a1+b1|

+c1

0 =
a1+

b1+c1
|b1+c1|
0 , it follows that

Arg
Ä
a1+b1
|a1+b1| + c1

ä
= Arg

Ä
a1 + b1+c1

|b1+c1|

ä
whence

α+β+2γ
4 = 2α+β+γ

4 . Thus α = γ. Therefore
a1 = c1 whence a = c.

c) a+ 0 = a1
a2

+ 0
1 = a1×1+0×a2

a2×1 = a1+0
a2

= a1
a2

= a.

d) Suppose a /∈ CT \C. We have that a− a = a1
1 −

a1
1 =

a1
1 + −a1

1 = a1×1+(−a1)×1
1×1 = a1−a1

1 = 0
1 = 0.

Suppose a ∈ CT \ C. We have that a− a = Φ 6= 0.

e) a× b = a1
a2
× b1

b2
= a1b1

a2b2
= b1a1

b2a2
= b1

b2
× a1

a2
= b× a.

f) (a×b)×c =
Ä
a1
a2
× b1

b2

ä
× c1
c2

= a1b1
a2b2
× c1
c2

= (a1b1)c1
(a2b2)c2

=
a1(b1c1)
a2(b2c2) = a1

a2
× b1c1

b2c2
= a1

a2
×
Ä
b1
b2
× c1

c2

ä
= a× (b× c).

g) a× 1 = a1
a2
× 1

2 = a1×1
a2×1 = a1

a2
= a.

h) Suppose a /∈ {0} ∪ CT \ C. We have that a = a1
1 with

a1 6= 0, whence a ÷ a = a1
1 ÷

a1
1 = a1

1 ×
(
a1
1

)−1
=

a1
1 ×

1
a1

1 =
a1× 1

a1

1×1 = 1
1 = 1.

Suppose a ∈ {0} ∪ CT \ C. We have that a÷ a = Φ.

i) (I) Suppose either a = Φ or b = Φ or c = Φ. In this
case, a× (b+ c) = Φ = (a× b) + (a× c).
(II) Suppose a /∈ CT∞. We have three possibilities:

• a = Φ. In this case, a × (b + c) = Φ × (b + c) =
Φ = Φ+Φ = (Φ×b)+(Φ×c) = (a×b)+(a×c).

• a = 0. In this case, a = 0
1 . If b, c ∈ CT∞ then

a × (b + c) = 0
1 ×

(
b1
0 + c1

0

)
= 0

1 ×
b1
|b1|

+
c1
|c1|

0 =
0×
(
b1
|b1|

+
c1
|c1|

)
1×0 = 0

0 = Φ = Φ + Φ = 0
0 + 0

0 =
0×b1
1×0 + 0×c1

1×0 =
(

0
1 ×

b1
0

)
+
(

0
1 ×

c1
0

)
= (a× b) +

(a× c); otherwise a× (b+ c) = 0
1 ×
Ä
b1
b2

+ c1
c2

ä
=

0
1 ×

b1c2+c1b2
b2c2

= 0×(b1c2+c1b2)
1×b2c2 = 0

b2c2
= 0+0

b2c2
=

0×c2+0×b2
b2c2

= 0
b2

+ 0
c2

= 0×b1
1×b2 + 0×c1

1×c2 =
Ä

0
1 ×

b1
b2

ä
+Ä

0
1 ×

c1
c2

ä
= (a× b) + (a× c).

• a ∈ C \ {0}. In this case, a = a1
1 with a1 6= 0. If

b, c ∈ CT∞ then a × (b + c) = a1
1 ×

(
b1
0 + c1

0

)
=

a1
1 ×

b1
|b1|

+
c1
|c1|

0 =
a1×
(
b1
|b1|

+
c1
|c1|

)
1×0 =

a1
b1
|b1|

+a1
c1
|c1|

0 =
a1b1
|b1|

+
a1c1
|c1|

0 =
1
|a1|

(
a1b1
|b1|

+
a1c1
|c1|

)
0 =

1
|a1|

a1b1
|b1|

+ 1
|a1|

a1c1
|c1|

0 =
a1b1
|a1||b1|

+
a1c1
|a1||c1|

0 =
a1b1
|a1b1|

+
a1c1
|a1c1|

0 = a1b1
0 + a1c1

0 = a1×b1
1×0 + a1×c1

1×0 =(
a1
1 ×

b1
0

)
+
(
a1
1 ×

c1
0

)
= (a × b) + (a × c);

otherwise a × (b + c) = a1
1 ×

Ä
b1
b2

+ c1
c2

ä
=

a1
1 ×

b1c2+c1b2
b2c2

= a1(b1c2+c1b2)
1×b2c2 = a1b1c2+a1c1b2

b2c2
=

(a1b1)c2+(a1c1)b2
b2c2

= a1b1
b2

+ a1c1
c2

= a1b1
1×b2 + a1c1

1×c2 =Ä
a1
1 ×

b1
b2

ä
+
Ä
a1
1 ×

c1
c2

ä
= (a× b) + (a× c).
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(III) Suppose a, b, c ∈ CT \ C. If either a = Φ
or b = Φ or c = Φ then a × (b + c) = Φ =
(a × b) + (a × c); otherwise a, b, c ∈ CT∞ whence

a × (b + c) = a1
0 ×

(
b1
0 + c1

0

)
= a1

0 ×
b1
|b1|

+
c1
|c1|

0 =
a1
(
b1
|b1|

+
c1
|c1|

)
0×0 =

a1
(
b1
|b1|

+
c1
|c1|

)
0 =

a1
b1
|b1|

+a1
c1
|c1|

0 =
a1b1
|b1|

+
a1c1
|c1|

0 =
1
|a1|

(
a1b1
|b1|

+
a1c1
|c1|

)
0 =

1
|a1|

a1b1
|b1|

+ 1
|a1|

a1c1
|c1|

0 =
a1b1
|a1||b1|

+
a1c1
|a1||c1|

0 =
a1b1
|a1b1|

+
a1c1
|a1c1|

0 = a1b1
0 + a1c1

0 =
a1×b1
0×0 + a1×c1

0×0 =
(
a1
0 ×

b1
0

)
+
(
a1
0 ×

c1
0

)
= (a × b) +

(a× c).
(IV) Suppose |b| = |c|. We have five possibilities:
• a /∈ CT∞. This case is proved in item (II).
• a ∈ CT∞ and b = c = Φ. This case is proved in

item (I).
• a ∈ CT∞ and b, cCT∞. This case is proved in (III).
• a ∈ CT∞ and b, c ∈ C and b = c = 0. In this case
a× (b+ c) = a× (0 + 0) = a× 0 = Φ = Φ + Φ =
a× 0 + a× 0 = a× b+ a× c

• a ∈ CT∞ and b, c ∈ C and bc 6= 0. In this case a×
(b+c) = a1

0 ×
(
b1
1 + c1

1

)
= a1

0 ×
b1×1+c1×1

1×1 = a1
0 ×

b1+c1
1 = a1(b1+c1)

0×1 = a1(b1+c1)
0 = a1b1+a1c1

0 =
a1b1+a1c1
|a1b1|

0 =
a1b1
|a1b1|

+
a1c1
|a1b1|

0 =
a1b1
|a1||b1|

+
a1c1
|a1||b1|

0 =
a1b1
|a1||b1|

+
a1c1
|a1||c1|

0 =
a1b1
|a1b1|

+
a1c1
|a1c1|

0 = a1b1
0 + a1c1

0 =
a1b1
0×1 + a1c1

0×1 =
(
a1
0 ×

b1
1

)
+
(
a1
0 ×

c1
1

)
= (a× b) +

(a× c).
(V) Suppose Arg(b) = Arg(c) and bc 6= 0. We have
four possibilities:
• a /∈ CT∞. This case is proved in item (II).
• a ∈ CT∞ and b = c = Φ. This case is proved in

item (I).
• a ∈ CT∞ and b, c ∈ CT∞. This case is proved in item

(III).
• a ∈ CT∞ and b, c ∈ C. In this case, since Arg(b) =

Arg(c) and bc 6= 0, it follows that b = αc for some
positive α ∈ R, whence b1 = αc1, and b1 6= 0 and
c1 6= 0. Thus a × (b + c) = a1

0 ×
(
b1
1 + c1

1

)
=

a1
0 ×

b1×1+c1×1
1×1 = a1

0 ×
b1+c1

1 = a1(b1+c1)
0×1 =

a1(b1+c1)
0 = a1(αc1+c1)

0 = a1(α+1)c1
0 = a1c1

0 =
2
a1c1
|a1c1|

0 =
a1c1
|a1c1|

+
a1c1
|a1c1|

0 = a1c1
0 + a1c1

0 = a1αc1
0 +

a1c1
0 = a1b1

0×1 + a1c1
0×1 =

(
a1
0 ×

b1
1

)
+
(
a1
0 ×

c1
1

)
=

(a× b) + (a× c).

Now suppose that Arg(b) = Arg(c) and bc 6= 0 do not
hold simultaneously and |a| + |b| + |c| = Φ does not
hold and a /∈ CT∞ does not hold and a, b, c ∈ CT \ C
does not hold and |b| = |c| does not hold. Let us show
that a × (b + c) 6= (a × b) + (a × c). We have five
possibilities:
• b = 0 and c 6= 0 and c 6= Φ and a ∈ CT∞. In this

case, a× (b+ c) = a× (0 + c) = a× c = ac ∈ CT∞
and (a×b)+(a×c) = (a×0)+(a×c) = Φ+ac = Φ
whence a× (b+ c) 6= (a× b) + (a× c).

• b 6= 0 and c = 0 and b 6= Φ and a ∈ CT∞. This
case is analogous to the previous one.

• Arg(b) 6= Arg(c) and bc 6= 0 and a ∈ CT∞
and b, c ∈ C and |b| 6= |c|. In this case,
a× (b+ c) = a1

0 ×
(
b1
1 + c1

1

)
= a1

0 ×
b1×1+c1×1

1×1 =

a1
0 ×

b1+c1
1 = a1(b1+c1)

0×1 = a1(b1+c1)
0 and

(a × b) + (a × c) =
(
a1
0 ×

b1
1

)
+
(
a1
0 ×

c1
1

)
=

a1b1
0×1 + a1c1

0×1 = a1b1
0 + a1c1

0 =
a1b1
|a1b1|

+
a1c1
|a1c1|

0 =
a1b1
|a1||b1|

+
a1c1
|a1||c1|

0 =
1
|a1|

(
a1b1
|b1|

+
a1c1
|c1|

)
0 =

a1b1
|b1|

+
a1c1
|c1|

0 =
a1b1|c1|+a1c1|b1|

|b1||c1|
0 = a1b1|c1|+a1c1|b1|

0 .
If a × (b + c) = (a × b) + (a × c) then it
would follow that a1(b1+c1)

0 = a1b1|c1|+a1c1|b1|
0 .

Hence there would be a positive α ∈ R such
that a1(b1 + c1)α = a1b1|c1| + a1c1|b1|
whence (b1 + c1)α = b1|c1| + c1|b1|. If
α = |c1| then (b1 + c1)α = b1|c1| + c1|b1|
whence (b1 + c1)α = b1α + c1|b1| whence
b1α + c1α = b1α + c1|b1| whence c1α = c1|b1|
whence α = |b1| whence |c1| = α = |b1| whence
|c| = |b|, which is an absurd. If α 6= |c1| then
1 − |c1|α 6= 0 whence (b1 + c1)α = b1|c1| + c1|b1|
whence b1 + c1 = b1

|c1|
α + c1

|b1|
α whence

b1 − b1
|c1|
α = c1

|b1|
α − c1 whence

b1
Ä
1− |c1|α

ä
= c1

Ä
|b1|
α − 1

ä
whence

b1 = c1
|b1|
α −1

1− |c1|α
. If

|b1|
α −1

1− |c1|α
= 0 then b1 = 0

whence b = 0, which is an absurd. If
|b1|
α −1

1− |c1|α
> 0

then Arg(b1) = Arg(c1) whence Arg(b) = Arg(c),

which is an absurd. If
|b1|
α −1

1− |c1|α
< 0 then, calling

|b1|
α −1

1− |c1|α
= −λ with λ > 0, b1 = −λc1

whence (b1 + c1)α = b1|c1| + c1|b1| whence
(−λc1 + c1)α = −λc1|c1| + c1| − λc1| whence
(1 − λ)c1α = −λc1|c1| + c1λ|c1| whence
(1 − λ)c1α = −λc1|c1| + λc1|c1| whence
(1 − λ)c1α = 0 whence λ = 1 whence
b1 = −c1 whence |b1| = |c1| whence |b| = |c|,
which is an absurd. Anyway the equality
a× (b+ c) = (a× b) + (a× c) produces an absurd.
Therefore a× (b+ c) 6= (a× b) + (a× c).

• Arg(b) 6= Arg(c) and bc 6= 0 and a ∈ CT∞
and b ∈ C and c ∈ CT∞. In this case,
a × (b + c) = a × c = a1

0 ×
c1
0 = a1c1

0 and
(a × b) + (a × c) =

(
a1
0 ×

b1
1

)
+
(
a1
0 ×

c1
0

)
=

a1b1
0×1 + a1c1

0×0 = a1b1
0 + a1c1

0 =
a1b1
|a1b1|

+
a1c1
|a1c1|

0 =
a1b1
|a1||b1|

+
a1c1
|a1||c1|

0 =
1
|a1|

(
a1b1
|b1|

+
a1c1
|c1|

)
0 =

a1b1
|b1|

+
a1c1
|c1|

0 =
a1b1|c1|+a1c1|b1|

|b1||c1|
0 = a1b1|c1|+a1c1|b1|

0 .
If a × (b + c) = (a × b) + (a × c) then it
would follow that a1(b1+c1)

0 = a1b1|c1|+a1c1|b1|
0 .

Hence there would be a positive α ∈ R such
that a1c1α = a1b1|c1| + a1c1|b1| whence
c1α = b1|c1|+ c1|b1| whence c1α− c1|b1| = b1|c1|
whence c1(α − |b1|) = b1|c1|. If α − |b1| = 0
then either b1 = 0 or c1 = 0, which is an
absurd. If α − |b1| 6= 0 then c1 = b1

|c1|
α−|b1| .

If α − |b1| > 0 then Arg(c1) = Arg(b1)
whence Arg(c) = Arg(b), which is an absurd.
If α − |b1| < 0 then, call |c1|

α−|b1| = −λ with
λ > 0, c1 = −λb1 whence c1α = b1|c1| + c1|b1|
whence c1α = b1| − λb1| − λb1|b1| whence
c1α = λb1|b1| − λb1|b1| whence c1α = 0 whence
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c1 = 0 whence c = 0, which is an absurd. Anyway
the equality a×(b+c) = (a×b)+(a×c) produces
an absurd. Therefore a×(b+c) 6= (a×b)+(a×c).

• Arg(b) 6= Arg(c) and bc 6= 0 and a ∈ CT∞ and
b ∈ CT∞ and c ∈ C. This case is analogous to the
previous one.
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